
Lecture 3

Operations on complex vector spaces

1.16 Direct sums and homomorphisms

Let V and W be finite dimensional complex vector spaces. The direct sum
V ⊕W consists of pairs (v, w) of vectors v ∈ V and w ∈ W . Addition and
the action of C are defined coordinatewise

(v, w) + (v1, w1) = (v + v1, w + w1) z(v, w) = (zv, zw)

The set V ⊕W with these operations is a finite dimensional C- vector space
and hence a topological space.

If {v1, . . . , vn} and {w1, . . . , wm} are basis of V and W , then:

{(v1, 0), . . . , (vn, 0), (0, w1), . . . , (0, wm)}

is a base of V ⊕W . It follows that dim(V ⊕W ) = dim(V ) + dim(W ).
The set of linear homomorphisms hom(V, W ) has also a natural complex

vector space structure given by the following operations. Let f, g : V −→ W

be linear homomorphisms.

(f + g)(v) := f(v) + g(v) (zf)(v) := z(f(v)

1.16.1 Excercise. Let V and W be complex vector spaces.

(1) Show that, for any vector space U ,

hom(V ⊕W,U) and hom(V, U)⊕ hom(W,U)

are isomorphic vector spaces.

(2) If T is a complex vector space such that, for any U , hom(T, U) and
hom(V, U)⊕hom(W,U) are isomorphic, then T is isomorphic to V ⊕W .

(3) Show that V ⊕W and W ⊕ V are isomorphic vector spaces.

Let us choose basis {v1, . . . , vn} and {w1, . . . , wm} in V and W . Let
δij : V −→ W be the unique homomorphism such that:

δij(vs) =

�
wi if s = j

0 if s �= j
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The set {δij}1≤i≤m,1≤j≤n is a base for hom(V, W ). Consequently:

dim(hom(V, W )) = dim(V )dim(W )

Furthermore, if f : V −→ W is a linear function, then it can be written as a
linear combination:

f : Σi,jcijδij

Thus f(vj) = Σm
i=1cijwi. This means that [cij]1≤i≤m,1≤j≤n is the standard

matrix associated to f with respect to the chosen basis. The association
f �→ [cij] is a linear isomorphism between hom(V, W ) and m × n complex
matrices. Such matrices can be identified with Cnm.

Let f : V −→ V be a linear function. Let us choose a base {v1, . . . , vn}
in V . Let [cij]1≤i≤n,1≤j≤n be the matrix associated to f with respect to the
chosen base. We can use this matrix to define:

det(f) := det[cij]

1.16.2 Excercise. (1) Show that, for a linear function f : V −→ V , det(f)
does not depend on the choice of a base in V .

(2) Show that det : hom(V, V ) −→ C is continuous.

(3) Show that the composition function:

hom(V, W )× hom(W,U) � (f, g) �→ gf ∈ hom(V, U)

is continuous.

For an n-dimensional complex vector space V , we define GL(V ) to be
the subset of hom(V, V ) that consists of these linear functions f : V −→ V

which are isomorphisms. We think about GL(V ) as a topological space with
the topology given by the subspace topology of hom(V, V ). If we choose a
base in V and identify hom(V, V ) with n×n complex matrices, then GL(V )
can be identified with these matrices whose determinant is not 0. Thus the
determinant induces a continuous function

det : GL(V ) −→ C∗

where C∗ is the subspace of non-zero complex numbers in C.

1.16.3 Excercise. Let V be a finite dimensional complex vector space.

(1) Show that GL(V ) � f �→ f
−1 ∈ GL(V ) is a continuous function.

(2) Show that π0(det) : π0(GL(V )) −→ π0(C∗) is a bijection.

(3) Show that GL(V ) is a path connected space.
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1.17 Tensor products

Let V and W be complex vector spaces. Consider a complex vector space
T whose base is given by all the pairs of vectors (v, w) where v ∈ V and
w ∈ W . Thus elements in T are given by finite linear combinations

z1(v1, w1) + · · · + zn(vn, wn)

where zi’s are complex numbers. Let U ⊂ T be a vector subspace generated
by:

(zv, w)− (v, zw) z(v, w)− (zv, w)

(v1 + v2, w)− (v1, w)− (v2, w) (v, w1 + w1)− (v, w1)− (v, w2)

for all vectors v, v1, v2 in V , w, w1, w2 in W and all complex numbers z.
Define the tensor product of V and W to be the quotient vector space

V ⊗W := T/U . Define further a function µ : V ×W −→ V ⊗W by:

µ(v, w) := (v, w)U

1.17.1 Excercise. Show that µ has the following properties:

µ(z1v1 + z2v2, w) = z1µ(v1, w) + z2µ(v2, w)

µ(v, z1w1 + z2w2) = z1µ(v, w1) + z2µ(v, w2)

We can use the above properties of µ to define so called bilinear functions.
We say that a function f : V ×W −→ U is bilinear if:

f(z1v1 + z2v2, w) = z1f(v1, w) + z2f(v2, w)

f(v, z1w1 + z2w2) = z1f(v, w1) + z2f(v, w2)

for any vectors v, v1, and v2 in V , w, w1, and w2 in W and any complex
numbers z1 and z2. We use the symbol B(V, W |U) to denote the set of
bilinear functions f : V × W −→ U . Note that if f, g : V × W −→ U

are bilinear, then so are f + g and zf for any complex number z. These
operations define a complex vector space structure on B(V, W |U).

1.17.2 Excercise. Let V and W be complex vector spaces.

(1) Show that, for any vector space U , B(V, W |U) and hom(V, hom(W, U))
are isomorphic vector spaces.

(2) Show that for any bilinear map f : V ×W −→ U , there is a unique
linear map g : V ⊗W −→ U for which gµ = f .
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(3) Show that, for any vector space U , B(V, W |U) and hom(V ⊗W,U) are
isomorphic vector spaces.

(4) Show that if T is a vector space such that, for any U , B(V, W |U) and
hom(T, U) are isomorphic, then T and V ⊗W are isomorphic too.

(5) Show that V ⊗W and W ⊗ V are isomorphic.

(6) Show that (V ⊕W )⊗ U and (V ⊗ U)⊕ (W ⊗ U) are isomorphic.

1.18 K-theory

Assume that we are given a set T , two elements 0, 1 ∈ T , and two operations:

+ : T × T −→ T ⊗ : T × T −→ T

with the following properties:

(1) (a + b) + c = a + (b + c)

(2) a + b = b + a

(3) 0 + a = a

(4) (a⊗ b)⊗ c = a⊗ (b⊗ c)

(5) a⊗ b = b⊗ a

(6) 1⊗ a = a

(7) a⊗ (b + c) = (a⊗ b) + (a⊗ c)

The set T with the above operations is not a commutative ring as the
addition may not have inverses. Our first goal is to transform T into a
commutative ring by adding additive inverses.

Consider the set of pairs T × T and the following relation on it:

(a, b) � (c, d) if a + d = b + c

1.18.1 Excercise. Show that � is an equivalence relation on T × T .

We are going to use the symbol �T to denote the set of equivalence classes
of the relation � on T × T . For (a, b) ∈ T × T , we are going to denote by
a− b the element in �T which is given by the equivalence class represented by
the pair (a, b). Thus a− b = c− d in �T if and only if a + d = b + c in T .
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We define further:

1 := 1− 0 0 := 0− 0

(a− b) + (c− d) := (a + c)− (b + d)

(a− b)⊗ (c− d) := (a⊗ c + b⊗ d)− (a⊗ d + b⊗ c)

1.18.2 Excercise. Show that:

(1) the operations + and ⊗ are well define on T̂ .

(2) a− a = 0,

(3) (a− b) + (c− d) = (c− d) + (a− b)

(4) (a− b) + (b− a) = 0

(5) the set �T with 0 as the zero element, 1 as the unit element, and the
operations + and ⊗ is a commutative ring.

(6) Show that the function µ : T −→ �T which assigns to a ∈ T the element
a− 0 ∈ �T satisfies the following properties:

µ(0) = 0, µ(1) = 1, µ(a + b) = µ(a) + µ(b), µ(a⊗ b) = µ(a)⊗ µ(b)

(7) Show that for any other function α : T −→ R from T to a commutative
ring R that satisfies the analogous to the above properties of µ, there
is a unique ring homomorphism β : �T −→ R for which βµ = α.

According to the above exercises, with T we associated a commutative
ring �T and a comparison function µ : T −→ �T .

1.18.3 Example. Consider the natural numbers N with the usual addition
and multiplication. Then �N can be identified with the ring of integers Z in
such way that the function µ is given by the usual inclusion N ⊂ Z.

1.18.4 Example. Let T be the set of isomorphism classes of finite dimensional
complex vector spaces. For two vector spaces V and W define V + W to be
the direct sum V ⊕W and V ⊗W to be the tensor product of V and W .
We also take 0 to be the trivial (0-dimensional) complex vector space and 1
to be the 1-dimensional complex vector space. The set T with this choice of
elements and operations satisfies the required properties. The commutative
ring �T is denoted by K(D0). Note that K(D0) is isomorphic to Z.

1.18.5 Excercise. Give an example of T for which µ : T −→ �T is not an
inclusion.
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