Lecture 3

Operations on complex vector spaces

1.16 Direct sums and homomorphisms

Let V and W be finite dimensional complex vector spaces. The direct sum
V @& W consists of pairs (v,w) of vectors v € V and w € W. Addition and
the action of C are defined coordinatewise

(v,w) + (v, wy) = (V+ v, w+w) z(v,w) = (zv, zw)

The set V & W with these operations is a finite dimensional C- vector space

and hence a topological space.
If {vy,...,v,} and {wy, ..., w,,} are basis of V and W, then:

{(v1,0),..., (vn,0),(0,w1),...,(0,wy,)}

is a base of V @ W. It follows that dim(V & W) = dim(V') + dim(W).

The set of linear homomorphisms hom(V, W) has also a natural complex
vector space structure given by the following operations. Let f,g: V — W
be linear homomorphisms.

(f +9)(0) == fv) +9)  (2f)(v) = 2(f(v)
1.16.1 Excercise. Let V and W be complex vector spaces.
(1) Show that, for any vector space U,
hom(V & W,U) and hom(V,U) @ hom(W,U)
are isomorphic vector spaces.

(2) If T is a complex vector space such that, for any U, hom(T,U) and
hom(V, U)@®hom(W, U) are isomorphic, then 7" is isomorphic to V& W.

(3) Show that V& W and W @ V are isomorphic vector spaces.

Let us choose basis {vy,...,v,} and {wy,...,wy,} in V and W. Let
0ij : V.— W be the unique homomorphism such that:

5::(v2) w; ifs=y
ij\Us) =
’ 0 ifs#j
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The set {0;; }1<i<m,1<j<n is @ base for hom(V, W). Consequently:
dim(hom(V, W)) = dim(V)dim (W)

Furthermore, if f : V' — W is a linear function, then it can be written as a
linear combination:
I Xijcioij

Thus f(v;) = X7 c;;w;. This means that [¢;]i<i<mi<j<n 1S the standard
matrix associated to f with respect to the chosen basis. The association
f + cij] is a linear isomorphism between hom(V, W) and m x n complex
matrices. Such matrices can be identified with C™™.

Let f: V — V be a linear function. Let us choose a base {vy,...,v,}

Il o R

chosen base. We can use this matrix to define:
det(f) := det|cy;]

1.16.2 Excercise. (1) Show that, for a linear function f:V — V, det(f)
does not depend on the choice of a base in V.

(2) Show that det : hom(V, V) — C is continuous.
(3) Show that the composition function:
hom(V, W) x hom(W,U) 3 (£, g) > gf € hom(V, U)

1s continuous.

For an n-dimensional complex vector space V', we define GL(V') to be
the subset of hom(V, V') that consists of these linear functions f:V — V
which are isomorphisms. We think about GL(V) as a topological space with
the topology given by the subspace topology of hom(V, V). If we choose a
base in V and identify hom(V, V') with n x n complex matrices, then GL(V)
can be identified with these matrices whose determinant is not 0. Thus the
determinant induces a continuous function

det : GL(V) — C*

where C* is the subspace of non-zero complex numbers in C.

1.16.3 Fxcercise. Let V be a finite dimensional complex vector space.

(1) Show that GL(V) > f+ f~' € GL(V) is a continuous function.
(2) Show that m(det) : mo(GL(V)) — mo(C*) is a bijection.
(3) Show that GL(V) is a path connected space.
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1.17 Tensor products

Let V and W be complex vector spaces. Consider a complex vector space
T whose base is given by all the pairs of vectors (v,w) where v € V and
w € W. Thus elements in 7" are given by finite linear combinations

Zl<vla wl) + -+ Zn(vna wTL)

where z;’s are complex numbers. Let U C T be a vector subspace generated
by:
(ZU7 U)) - (U7 ZU)) Z(”? U)) o (ZU7 U))

(v1 + v, w) — (v1,w) — (v, w) (v, w1 +wy) — (v,w1) — (v, Ws)

for all vectors v, v1,vo in V, w, wy,ws in W and all complex numbers z.
Define the tensor product of V and W to be the quotient vector space
V @ W :=T/U. Define further a function u: V x W — V @ W by:

(v, w) = (v,0)U
1.17.1 Excercise. Show that p has the following properties:
p(z1v1 + 2902, w) = z1p(v1, w) + 22p(va, W)

p(v, 1wy + zows) = 21 (v, w1) + 2op(v, wo)

We can use the above properties of u to define so called bilinear functions.
We say that a function f:V x W — U is bilinear if:

f(z101 + 2909, w) = 21 f (v1, w) + 22 f (ve, w)

f(v, 21wy + zows) = 21 f(v,wy) + 22f (v, ws)

for any vectors v, vy, and vy in V, w, wy, and we in W and any complex
numbers z; and z;. We use the symbol B(V,W|U) to denote the set of
bilinear functions f : V x W — U. Note that if f,g : V. xW — U
are bilinear, then so are f 4+ ¢ and zf for any complex number z. These
operations define a complex vector space structure on B(V, W |U).

1.17.2 Excercise. Let V and W be complex vector spaces.
(1) Show that, for any vector space U, B(V, W|U) and hom(V, hom(W, U))

are isomorphic vector spaces.

(2) Show that for any bilinear map f : V x W — U, there is a unique
linear map ¢g: V @ W — U for which gu = f.
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(3) Show that, for any vector space U, B(V, W |U) and hom(V @ W, U) are

isomorphic vector spaces.

(4) Show that if 7" is a vector space such that, for any U, B(V, W|U) and
hom(7T, U) are isomorphic, then 7" and V' ® W are isomorphic too.

(5) Show that V@ W and W ® V' are isomorphic.
(6) Show that (V@& W)® U and (V@ U) ® (W ® U) are isomorphic.

1.18 K-theory

Assume that we are given a set T, two elements 0,1 € T', and two operations:
+:TxT—T R:TxT—T

with the following properties:

The set T' with the above operations is not a commutative ring as the
addition may not have inverses. Our first goal is to transform 7' into a
commutative ring by adding additive inverses.

Consider the set of pairs T' x T" and the following relation on it:

(a,b) ~ (¢,d)ifa+d=b+c

1.18.1 Excercise. Show that ~ is an equivalence relation on 1" x T'.

We are going to use the symbol T to denote the set of equivalence classes
of the relation ~ on 7' x T'. For (a,b) € T x T, we are going to denote by

a—b the element in T" which is given by the equivalence class represented by
the pair (a,b). Thusa —b=c—din T if and only ifa+d=b+cin T.
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We define further:
1:=1-0 0:=0-0

(a=0b)+ (c—d):=(a+c)—(b+d)
(a—b)R(c—d)=(a®c+b®d)—(a®d+bXc)
1.18.2 Excercise. Show that:

1) the operations + and ® are well define on T.

2

a—a=0,

(1)
(2)
3) (a=b)+(c—d)=(c—d)+(a-0)
4) (a=b)+(b—a)=0

()

5) the set T with 0 as the zero element, 1 as the unit element, and the

operations + and ® is a commutative ring.

(6) Show that the function p: T — T which assigns to a € T' the element
a — 0 € T satisfies the following properties:

1(0) =0, p(1l) =1, pla+b) = pa) + pub), pla®b) = pla) @ p(b)

(7) Show that for any other function @ : T'— R from 7" to a commutative
ring R that satisfies the analogous to the above properties of u, there
is a unique ring homomorphism  : T" — R for which fu = a.

According to the above exercises, with T' we associated a commutative
ring 7" and a comparison function p: T — T

1.18.5 Example. Consider the natural numbers N with the usual addition
and multiplication. Then N can be identified with the ring of integers Z in
such way that the function p is given by the usual inclusion N C Z.

1.18.4 Example. Let T be the set of isomorphism classes of finite dimensional
complex vector spaces. For two vector spaces V and W define V 4+ W to be
the direct sum V @ W and V ® W to be the tensor product of V and W.
We also take 0 to be the trivial (0-dimensional) complex vector space and 1
to be the 1-dimensional complex vector space. The set T" with this choice of
elements and operations satisfies the required properties. The commutative
ring 7' is denoted by K (D"). Note that K (D) is isomorphic to Z.

1.18.5 Excercise. Give an example of T for which p : T — T is not an
inclusion.

26



