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3. THE THIRD LECTURE - PERMUTATIONS

In the third lecture, we take a closer look at the example efsymmetric groups of permu-
tations which turns out to be the general example in the siase@ny group is isomorphic to a
subgroup of some symmetric group. In the case of finite grabjsis Cayley’s theorent.

Definition 3.1 (Symmetric group) If X is any set, thesymmetric group onX is the set of
bijective functionsr : X — X under composition. In the special case whér- {1,2,...,n},
we write S,, for S¢; 5,3 — the symmetric group on letters

.....

We shall now look more closely on finite permutations. Theweseveral different ways of
writing the same permutation, as we see in the following gplam

Example 3.2.Leto denote the pemutation iy which is given by (1) = 4,0(2) = 6,0(3) = 3,
o(4)=7,0(5) =5,0(6) =2,0(7) = 1, can be written in théwo-row notationas

12934567 1 23 45 6 7
o=y 637521~ (+ L L1 1]
4 6 3 7 5 21
in theone-row notatioras
o=1[4637521]

or in thecycle notatioras
o= (147)(26)(3)(5)
sinceo partitions the sef1,2, ..., 7} into the four disjoint cycles
1545751, 245 6+ 2, 3+ 3, 5+ 5
of lengths3, 2, 1 and1. We often omit the cycles of length one and write= (14 7)(26).

Theorem 3.3.1f X is finite, any permutation in Sy is a product of disjoint cyclic permutations.
The elements of each cycle form a minimal invariant subset.

The third lecture is based on the sections 8-9 of ChapterAlFirst Course in Abstract Algebra [1].
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Proof. Let z be any element ok and letY = {¢'(z)|i € Z} — theorbit of z unders. Now
Y is an invariant subset oX which contains no non-empty subset invariant ungleThuso
defines a cyclic permutation an.

Moreover,o defines a permutation of \ Y, and by induction or|.X'|, we can write this
permutation as a product of cycles. (The base for the indnigs the empty set for which the
statement is trivially true.) O

Definition 3.4 (Cycle type) The cycle type or justtype of the permutationr € S, is the
partition of the integen into cycle lengths corresponding to the lengths of the gyrrie.

Definition 3.5 (Conjugate permutationsYwo permutationsy andr, are the same up to rela-
belling of the elements ok if there is a permutatiop such that

o= pflTp.
which means that the diagram

X - X

pl pl

X - X
commutes.

Remark 3.6. Observe that the same definition makes sense for any group particular, we
recognize this from linear algebra when two matricéand P~ AP, define the same linear map
with respect to different bases.

Exercise 3.7.Show that iftX is finite, two permutations il§y are conjugate if and only if they
have the same cycle type.

Exercise 3.8.Show that the symmetric grouf), is generated by the adjacent transpositions,
(12),(23),...,(n—1n).

Definition 3.9 (Inversion, length) An inversionin a permutatiorv € S, is a pair(s, j), such
thatl <i < j <mando(i) > o(j). The number of inversions in is thelengthof o, denoted

by ((o).
Example 3.10.The permutatior = [463 752 1] has has length(c) = 3+4+2+3+2+1 =15
since4 comes befor@ smaller numbers; comes beford smaller numbers, etc.

Theorem 3.11.The length ofr equals the minimal number of factors in an expressios-
Si\Siy - - - Sips Wheres;, , s, , ..., s;, are adjacent transpositions.

Idea of proof.The number of inversions is either increased or decreaseddiy multiplication
with an adjacent transposition = (ii + 1). Thus/(o) is a lower bound for the numbers of
adjacent transpositions needed. On the other hand, we demsuee to use only transpositions
that increases the length, so it can be done (it transpositions. O

Example 3.12.We have that([4231]) =3+ 1 + 1 = 5 and indeed, we can write
(14)=1[4231] = (12)(23)(34)(23)(12).
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Definition 3.13 (Even and odd permutations, sigid permutations € S, is evenor odd de-
pending on if its length is even or odd. The sigrodk +1 if o is even and-1 if ¢ is odd.

Theorem 3.14.The sign function defines a group homomorphism
sgn : S, — {+1}.

Proof. Let o and7 be permutaions of lengtth= /(o) andb = /(7). Then we can write'T as a
product ofa 4+ b adjacent transpositions. Since the length increases oeases by one for each
factor in such an expression, we get that
loT)=a+0b (mod 2).
Hence
sgn(o7) = (—1)*" = (~1)*(~1)" = sgn(0) sgn(7)
which proves thatgn is a group homomorphism. O

Definition 3.15 (Alternating group) The even permutations form a subgradipof the symmet-
ric group.S,,. This subgroup is called tredternating group om letters

Remark 3.16. Seen in this way, it is clear that, < S,,, since it is the kernel of the homomor-
phismsgn.
3.1. Group actions. For any groug> we say that7 actson a setX of there is an operation
GxX — X
(g,2) — gz

such that

(1) (g« h).x = g.(h.x),forallg,h € Gandx € X.

(2) ex =z, forallx € X.

Remark 3.17. This is a generalization of the way we look at the symmetrmugron X as
function onX. The symmetric group o acts onX by definition.

Theorem 3.18. An action ofG on the setX is equivalent to a group homomorphigi— Sx.

Proof. If we have a group action, we can define funct@n— Sx by g — o,, whereo,
is the permutation given by, (z) = g.z, Vo € X. Observe that, is a permutation since
040041 = 0. = 1d by (1) and (2).
On the other hand, given a group homomorphisnG — S, we can define a group action
on X by
g.x = ¢(g)(z), Vg € G,Vx € X.

This is a group action singe< G is mapped to the identity permutation and
(gxh).x = (g h)(x) = (¢(g) 0 o(h))(x) = ¢(g)(¢(h)(x)) = g.(h.x).
O

Definition 3.19(Faithful action) The action of7 on X is faithfulif all elements of& correspond
to different permutations, i.e., if the corresponding hoamoophism isinjective
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Theorem 3.20(Cayley’s theorem)Any finite group is isomorphic to a subgroup of a symmet-
ric group.

Proof. The groupG acts on thesetG by the binary operation. Hence we have a homomorphism
G — S¢ and in order to conclude the theorem, it is sufficient to saettiis is an injective ho-
momorphism, i.e., that the action is faithful. (An inje@ikkomomorphism gives an isomorphism
between the source and the image.)

Suppose thay andh acts in the same way. Then we have that= g = h.e = h, which
implies thatg = h. O

In general G can be identified with a subgroup of a much smaller symmetdag The good
news in the theorem is that we don’t loose any generality By gtudying permutation groups,
rather than all finite groups.

Definition 3.21(Orbits). If G acts onX we define therbit of z € X underG as
Gz = {g.x|g € G}.

Theorem 3.22.The action ofG on X partitions X into disjoint orbits. In particular we have
thatGx = Gy or Gx N Gy = .

Proof. If x € Gy, we have that = h.y for some element € GG. Hence we have that

Gz ={g.z|]g € G} = {g.(h.y)lg € G} ={gh.ylg € G} ={g.ylg € Gh} ={g.ylg € G} = Gy
sinceGh = {gh|g € G} = G.

If GzNGy # O we can findg, h € G such thay.o = h.y, but this means that= ¢g~'.(g.x) =
g '.(h.y) = (g7'h).y € Gy. Hence by the above argumert = Gy.

Any element inz is in some orbit, which proves that the orbits partitinnto disjoint subsets.

We can also see this by checking that we get an equivaleretgorebyx ~ y if and only if
dJgeG:gx=y. O

Example 3.23.We can look at the symmetry grodpof the cube as acting on different sets:

e The set okix faces G acts faithfully and we getr — Si.

e The set okight corners G acts faithfully and we getr — Ss.

e The set otwelve edges acts faithfully and we getr — Si5.

e The set offour diagonals GG acts faithfully and we getr — Sj.

e The set ofthree pairs of opposite face& does not act faithfully and we get a surjective
homomorphism¢z — Ss.
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