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7. THE SEVENTH LECTURE- ISOMORPHISMTHEOREMS FREE GROUPS AND GROUP
PRESENTATIONS

In the seventh lecture, which is the last of the lectures efitst part of the course, we
start by looking at the three isomorphism theorems and theceged to free groups and group
presentations.

Recall the first isomorphism theorem from the fourth lecture

Theorem 7.1(First Isomorphism theorem). If & : G — H isa group homomor phism we
have an isomor phism
G/ ker & — im®.

Proof. Let K = ker ® and define a map
V:G/K— H

by ¥(aK) = ®(a), fora € G. This is well-defined since i K = vK, we haveub™! € K and
®(ab~!) = eg, which implies thatb(a) = ®(b).
It is a homomorphism, since

U(aK % bK) = V(abK) = ®(ab) = ®(a)P(b) = V(aK)V(bK).
The homomorphisn is injective since the kernel of is given by
kerV = {aK € G/K|aK = K} = {K}.
Thus® gives an isomorphism a@F/ K onto the imagémV¥ = im®. O

We will state the second isomorphism theorem as in [1] whsdlightly more general than in
[2]. In order to do this, we need the following definition.

Definition 7.2 (Normalizer) The normalizer of a subgroufg < G is given by
Ne(H)={a € GlaHa ' = H} = {a € G|laH = Ha}.

The sixth lecture is based on the sections 34, 38-40 of Ch¥ffiten A First Course in Abstract Algebra [2].
1
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Exercise 7.3.Show that N (H) isa subgroup containing H and that it is the largest subgroup
containing H inwhich H isnormal. In particular, H isnormal if and only if No(H) = G.

Theorem 7.4 (Second Isomorphism theorem).If K and H are subgroups of G and H <
N¢(K), then HK isasubgroup of G, K isnormal in HK and H N K isnormal in H. Further-

more we have that
HK . H

K HNK’
Proof. We start by checking that K is a subgroup. Ih, hy, € H andky, k; € K we get

haki (hoks) ™ = hukiky 'hy' = hyhy KK,

for somek!, k), € K, sinceH < Nq(K). HenceH K is a subgroup.
Next, we check thak is normal inH K which follows from

hkk'(hk)™ = hkk'k 'Rt = hh K" = &

for somek” in K sinceH < Ng(K).

Now, we check that/ N K is normal inH. If k € HN K andh € H we getthathkh=' € H
sinceh, k € H, but alsohkh™! € K sinceH < Ng(K). Thereforehkh™' € HN K andH N K
normal i H.

Finally, we will prove the isomorphism. In order to do thiss wonstruct a homomorphism

o:HK — H/HNK

by

O(hk)=hHNK, Vhe HVEecK.
This is well-defined sincé, k; = hyk, implies thath; 'hy = kik,* whichisinH N K. Itis a
homomorphism since

q)(hlklhzkg) - (I)(hlhgkikz) - hlth N K - (h,lH N K) * (th N K),

forall hy, ho in H and allky, ks in K.
Since® is surjective it is by the First Isomorphism Theorem suffitie® show thaker ® = K.
We have that
ker® = {hk € HK|h€e HNK} = K,

which finishe the proof. OJ

Theorem 7.5(Third Isomorphism Theorem). If H < K are normal subgroups of G we have
that
G/H ~
Proof. We can construct a homomorphism
¢:G/H— G/K

by
O(gH) = aK
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forall a in G. Itis well-defined since; H = a, H implies thatajlag € H, butsinced < K we
geta; K = as K. Foray, as € G we have that

O(a1H xasH) = P(arasH) = (a1a0) K = a1 K * as K
which shows thatb is a homomorphism. Sincé is surjective it is by the First Isomorphism
Theorem sufficient to show th&br ® = K/H. Since the unit inG/K is the cosetK, the
kernel is given by

ker ® = {aH|aK = eK} ={aH|la € K} = K/H,

which finishes the proof. O

In the fourth lecture, we also looked at the proof of the strrectheorem for finitely generated
abelian groups. It was needed to present these groups asrgaaf free abelian groups.

If we like to study groups in general, we have to use sometimage general than free abelian
groups and therefore we introduitee groups.

Definition 7.6 (Free group) Let A be any set (which we will call aalphabet) and define/'[A]

to be the set of all finite words" a5 - - - a):», whereay, as, . . ., a,, € Aandny,ny, ..., n, € Z
modulo the equivalence relation generated by
a™a" = amt", VYm,n € Z

for subwords. The empty word is equivalenttbfor anya € A and is denoted by.
Composition of words gives a group structure BfA| with e as a unit. This group is called
thefree group on the alphabet A.

The idea is that in a free group the symbols in the alphabsatisfiy no relations apart from
a™a™ = a™*™. This is similar to the situation with free abelian group$iene we have no other
relations tham + b = b + a, between the generators.

Theorem 7.7. For any group G thereisa set A and a surjective homomorphism F[A] — G.
In particular, any group is the factor group of a free group by a normal subgroup.

Proof. Let A be a subset ofr such that? = (A), i.e., A is a set of generators @f. We now
defined : F[A] — G by

ni _nz n _ni _n2
D(ay" ay “'amm)—a1 ay” -+ a4

Nm
m

where the argument df is a word in the alphabet in F'|A] while the right hand side is a product
which is inG. If two words are equivalent, they will map to the same eleneid- since such
an equivalence corresponds to a relation which is valid yngaaup.
Since the group operation diA] is given by composition of word®; is a homomorphism.
Since(A) = G, we get thatd is surjective and the First Isomorphism Theorem tells us tha
G = F[A]/ ker ®. O

Example 7.8. The free abelian groups is generated byl and therefore we have a surjective
homomorphism

®: F[A] — Fy.
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The kernelker ® is the smallest normal subgroup containing all the comrowaba b1, for
a,b e A.

Definition 7.9 (relation, presentation)A relation in a group generated by a subsgkis an equal-
ity

ajtay? - - -apt = by"byE - b, a;,b; € A,n;,m; € Z.
All such relations can be rewritten as

aytay’ - -carm =e

and we denote the relation by the word on the left hand side atement off'[A].

If we have a set of relation$ = {r; },c; C F[A], we can letR be the smallest normal subgroup
containingS. If R is the kernel of the homomorphistn: F[A] — G given by Theorem 7.7
we say that the generatarstogether with the relationS = {r; }.c; give group presentation of
G.

Example 7.10.We can use the idea of group presentations to study groupslefay, wherep
is an odd prime. There is only one abelian group in this cAse+ Z, x Z,.

Now assume that is non-abelian of ordetp. We have elements of ordéy2 andp. Leta be
any element of ordes andb be any element of orde&: G is generated bya, b} since there can
be no proper subgroup containing an element of o2derd an element of ordet

The subgrougd? = (a) has to be normal. (IK = gHg~! # H we get thatY N K = {e} and
|HK| = p*since|HK| = |H| - |K|/|H N K|. HoweverH K is a subset of, sop® < 2p gives
a contradiction.)

Sinceb has order two, we have thiat= b and since = (a) is normal we get thatab = a*,
forsomek =0,1,2,...,p — 1. Thus we can say th&t has a presentation

(a,bla” = e,b* = e, bab = a*) = (a,bla? = e,b* = e, ba = a*b)

forsomek =0,1,...,p— 1.
Using the relatio? = e we get that
a = b*a = b(ba) = ba*b = d*'V? = "
using the relatiorba = a*b several times. Since has prime ordep, we know thatk? = 1
(mod p). This equation has only two solutions in the fiélgand we getc = 1 ork = p — 1.
In the first case we have: = ab, which implies that5 is abelian contradicting our assumption.
Thus we are left with only one non-abelian group of orgierwhich is the Dihedral groups,
with the presentation
(a,bla? = e,b* = e,bab = a™ )

RECOMMENDED EXCERCISES

VII-34 Isomorphism Theorems. 7-9
VII-38 Free Abelian Groups. 11, 16-18
VI11-39 Free Groups. 11
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VI1-40 Group Presentations. 10,11
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