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PART | - GROUPS

(1) (a) Give an example of a binary operation®r= {1, 2, 3} which is commutative with

a unit, but which fails to be associative. (2)
(b) Show that any finite cyclic group has exactly one subgfigny order dividing the
order of the group. (2)
(c) For all integers: > 2, compute the center of the dihedral grodp,,, i.e. the group
of symmetries of a regular-gon. (2)
SOLUTION

a). Assume that is the unit element. If we have tha& b = 1 andb x ¢ = 1, we get that
(axb)xc=1%c=c,whileax (bxc) =ax1=a,soifa # ¢, the operation is not
associative. We can acheive thisik b = 1 whenever # 1 andb # 1. In order for the
operation to be commutative, we need that the table is synmunkfence the following
operation satisfies the criteria:

since for exampl€2 « 2) * 3 =1%3 = 3, while2 % (2%3) =21 = 2.

b). We can assume that our cyclic group is of ordend equal#,, under addition since
all cyclic groups of the same order are isomorphic.
Let d be any divisor of.. We can define a subgroup of ordéas

([n/dln) = {[n/d],, [2n/d],, 3[n/d]., ..., d[n/d], = 0}.

Let H be any subgroup df,, of orderd and leta be the least positive integer such
that[a], € H. ThenH consists of all multiples ofal,,. In fact, if [b],, is in H we can
divide b by ¢ and geth = ga + r, where0 < r < a. SinceH is a subgroup we have that
[r]n = [b]n — ¢la], is also inH and by the minimality of: we get that- = 0 and hence
[b]n = qla]y-
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Now H has ordern/a and we deduce thdi is exactly the subgroup of ordérgiven
before. Hence there is exactly one subgroup of otider anyd dividing n.

c). The symmetries of a regulargon consists of. rotations, including the trivial rota-
tion which is the unit element, together wittreflections. Let- be a rotation generating
the rotation subgroup and letbe any of the reflections. Theb,,, is generated by and
s. In order to find the center, it is sufficient to find all the ebrts which commute with
both generators.

We can write any of the rotations a$ for somei = 0,1,...,n — 1. In trivially
commutes with-, but in order to commute with, we have to have

TiS = STi.

We have the relationr = r~'s, which comes from that when we conjugate a rotation
by a reflection, we get the reverse rotation. Hence we have‘tha- sr—¢ and in order
for ' to commute withs, we needsr’ = sr—¢, which is equivalent te?* = 1. Thus we
conclude that the only rotations that are in the centeraee 1 andr"/? if n is even.

The reflections can be written as’ and for this to commute witk we need

ssrt =sr's &= r*=r""

but in order to commute with we need
rsr’ = srir = =t = r? = 1

Hence a reflection is in the center if and only.it= 2, in which case the group is of order
4 and abelian. Hence for > 2 we have that the center is trivial for oddand equal to
{1,7"/2} for evenn.

(2) (a) Show that the center of any group is a normal subgradmaduce that any simple

group has a trivial center. (2)
(b) Let® : G — H be a group homomorphism and Igtbe a normal subgroup df .
Show thatd~!(K) = {a € G|®(a) € K} is a normal subgroup af. (2)

(c) Show that in the situation described in (2b) we get an@edihomomorphism
d:G/PHK) — H/K.
2)

SOLUTION

a). Let Z = Z(G) be the center of a grou@@ and letz be any element of. Then we

have that

aza” ' = zaa"' = 2

for any elementt € G. HenceaZa~! = Z andZ is normal. A simple group has no
non-trivial normal subgroups and hence its center has tabaltsince it is normal.
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b). Let a be any element off and letb be any element ob~!(K'). Then we have that
®(b) € K and we get that

®(aba™t) = ®(a)®(b)®(a™ ') = ®(a)®(b)P(a) ™ € K

since®(b) € K and K is normal. We thus have thaba™' is in ®~!(K) and hence
d~!(K) is normal.

c). We define the homomorphisin: G/ '(K) — H/K by ®(a® ' (K)) = ®(a)K,
for a € G. We have to check that this is well-definedafh~! (K) = vd~!(K) we have
thata='b € ®7!(K) and henceb(a~'0) € K and®(a)K = ®(b) K, which shows that
the result doesn’t depend on which representative we ctfoosiee cosets ob ! (K).
Furthermore® is a homomorphism since
P(a®H(K)d(K)) = (abd H(K)) = ®(ab)K = ®(a) KP(b) K

= $(ad " (K)) (b0 (K)).

(3) A groupG which acts on a seX is said to acfreely if all stabilizers are trivial.
(&) Show that any group acts freely on itself by left multpalion. (1)
(b) Show that if a finite group: acts freely on a non-empty s&t, then| X | > |G|. (2)
(c) Show that any free action of a groGpcan be identified with the action of the group
on a union of copie& whereG acts by left multiplication on each copy 6f.  (3)

SOLUTION

a). A group acts on itself by left multiplication as we have that
e.a=ex*xa=a, YVa € G,

and

a.(b.c) =ax(bxc)=(axb)xc= (axb).c.
This action is free since.b = b <= a xb = b <= a = e. Hence the stabilizef, is
trivial for any element in G.

b). If G is a finite group acting on a sét we have thalG| = |Gz||G.| for any element
x in X. If the action is free we have that all orbits have si@é. Since X is a disjoint
union of the orbits under the actiot contains at least one subset of sjié.

c). Let G be a group that acts freely on a sétand letB be a subset ok consisting of
exactly one element from each orbit. Then we can identifwith B x G under the map

GxB — X
(a,b) — a.b

The map is surjective sinc¥ is the union of the orbits and each orbit is mapped onto
by G x {b}, whereb is the element iB corresponding to the orbit. It is injective since
a.b = c.d implies thatb = d since B has only one element from each orbit, and hence
a.b = c.b which implies that: !¢ is in G,.. Since the action is free, we deduce that ¢

and the map is injective.
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When identifyingG' x B with X in this way, we get that the action 6f on X corre-
sponds to an action @f on G x B given by
c.(a,b) = c.(a.b) = (ca).b
Thus the action is equivalent to left muliplication on eachio
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PART Il - RINGS

(1) Consider the function : Z[x] — Zs defined byf(z) — [f(3)]s.
(a) Show that is a ring homomorphism. (1)
(b) Show thater(¢) is not a prime ideal. (2)
(c) Show thatcer (o) is finitely generated and find a finite set of generators.  (3)

SOLUTION

a). o((f +9)(x) = [(f + 9)3)]s = [F3)]s + [9(3)]s = &(f) + ¢(9), o((f - 9)(x)) =
[(f-9)B3)ls = [f3)]s - [9B3)]s = o(f) - &(9)

b). ¢ is surjective since for every:]s € Zs we have that([k]|s) = [k]s. The fundametal
theorem of ring homomorphisms implies that

Zlx]/Ker(¢) = Zs.

BecauseZ[x] is a commutative ring with unity and becausgis not an integral domain
(for ex.[2]s - [4]s = 0) the idealker(¢) cannot be prime.

c). We see thaker(¢) = {f(z)]|[f(3)]s = 0}. Clearlyz — 3 and8 belong toker(¢) so
that< = — 3,8 >C ker(¢). Let f(x) € ker(¢). Becauser — 3 is monic the division
theorem implies that

f(z) = (x = 3)q(z) + r(x)
with 7(z) = 0 ordeg(r(x)) = 0. Assumer(z) = r € Z. Becauséf(3)]s = 0 it follows

that[r|s = 0 and thus € 8Z. This shows thayf(x) can be written as a combination of
(x — 3) and8 which implies thater(¢) C< = — 3,8 > and thus

ker(¢) =<x —3,8 > .

(2) Consider the field witly elements[F,, and the polynomiaf (z) = 2? + 1 € F,[z]. Let
K =Fy[z]/(f(z)).

(&) Compute the number of elementsin (2)
(b) Determine all integerg for which K is a field. 4)
SOLUTION

a). Observe thaf( is a vector field oveF, of dimensior2. In fact it is
K ={ap+ a1z,a9,a; € F }.

Moreover the elements, = are linearly independet so thét, =} is a basis ofK as a
vector space ovef, and thug K| = ¢°.
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b). Becausel, is a field the integer; must be a power of a prime. Moreovey|z]
is an Eucledian Domain and thus a PID. This implies that tlealigenerated by the
polynomial f(x) is maximal if and only iff(x) is irreducible and thugs is a field if
and only if f(x) is irreducible. Becausehar(F,) = 2 for all evenq the polynomial is
reducible for all sucly. In fact we have that

(22 +1) = (z+1)2

Assume thay is odd. The polynomiaf () is irreducible if only if it has no root if¥,
i.e. if there i no element: € F, such thatv? = —1. Assume thaff (x) is reducible, then
there is an element € F, such thatv? = —1. This means that has ordet in the group
(F;,-). By Lagrange theorem th¢/|F;| = ¢ — 1, so thatg = 1 mod4. Conversely if
q = 1 mod4, then4 dividesq — 1 and sinceF; is cyclic, there is an elemente F; of
order4, i.e. an element such thatz* = 1 anda # £1. This implies thain? = —1. We
can conlude thak is a field if and only ifg is odd and it is not congruent tomodulo4.
This is equivalenttg = 3 (mod 4), and sincey is a prime power it is an odd power of
a primep satisfyingp = 3 (mod 4).

3)

Let A be a commutative ring with unity. An elememte A is said to benilpotent if
a® = 0 for somek. Let N(A) be the set of all nilpotent elements 4f

(@) Show thatV(A) is an ideal. 2)

(b) Show that allV(A) is contained in every prime ideal of. (1)

(c) Show thatV(A) is the intersection of all prime ideals df. (3)
SOLUTION

a). First we show thatV(A) is closed under addition. Letandb be elements inV(A).
Then there are integeksandm such that:* = 0 andb™ = 0 and sinced is commutative
we can use the binomial theorem to get that

k+m
(a + b)k-l—m _ Z (k + m) aibk-i-m—i

- 1
=0

which is zero since’ = 0 for i > k andv**™~" = (0 for i < k. Hencea + b € N(A).

We now show thatV(A) is closed under multiplication by elements fromLeta € A
andb € N(A). Thereisk such that® = 0. Becaused is commutative itiga-b)* = a*-b*
and thuga - b)* = a* - 0 = 0 which implies that - b € N(A).

b). Letx € N(A). Then there ig such that* = 0. For every prime ideaP of A we
have that ¢ P and thusc* € P. From the definition of prime ideal it follows thatc P.

c). We have shown in the previous part that:

NACS () P

P prime
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Let nowz ¢ N(A). We will show that there is a prime ide&l such thatr ¢ P, which
will imply that N (A) = (p yime I LELS = {2",n € N} and consider
F={IcCATideal,INnS =0}
Becauser ¢ N(A) itis (0) € F and thusF is a non empty family of ideals. There is
then a maximal element (by Zorn’s Lemma).Bfwith respect to the inclusion order.,
Let P be the maximal element. By definitiang P. We are left to show tha® is a prime
ideal, i.e. thatforall, b € A suchthat ¢ Pandb € Pitisab ¢ P. Because: ¢ P and
b ¢ P and becaus® is maximal inF the idealsP + (a) and P + (b) have to intersect
S
P+ (a)NS#0, P+ (b)nS #0.
It follows that there are., m € N, py, po € P, hy, hy € A such thatt” = p; + ahy, 2™ =
p2 + bhsy. This implies that:

2" = pipa + p1bho + prahy + abhyihy
and thust™™™ € P + (ab). BecauseP does not intersed it follows thatab ¢ P.




