
SF2729 Groups and Rings
Suggested solutions to the final exam

Thursday, August 19, 2010

PART I - GROUPS

(1) (a) Give an example of a binary operation onS = {1, 2, 3} which is commutative with
a unit, but which fails to be associative. (2)

(b) Show that any finite cyclic group has exactly one subgroupof any order dividing the
order of the group. (2)

(c) For all integersn ≥ 2, compute the center of the dihedral group,D2n, i.e. the group
of symmetries of a regularn-gon. (2)

SOLUTION

a). Assume that1 is the unit element. If we have thata ∗ b = 1 andb ∗ c = 1, we get that
(a ∗ b) ∗ c = 1 ∗ c = c, while a ∗ (b ∗ c) = a ∗ 1 = a, so if a 6= c, the operation is not
associative. We can acheive this ifa ∗ b = 1 whenevera 6= 1 andb 6= 1. In order for the
operation to be commutative, we need that the table is symmetric. Hence the following
operation satisfies the criteria:

∗ 1 2 3
1 1 2 3
2 2 1 1
3 3 1 1

since for example(2 ∗ 2) ∗ 3 = 1 ∗ 3 = 3, while 2 ∗ (2 ∗ 3) = 2 ∗ 1 = 2.

b). We can assume that our cyclic group is of ordern and equalsZn under addition since
all cyclic groups of the same order are isomorphic.

Let d be any divisor ofn. We can define a subgroup of orderd as

〈[n/d]n〉 = {[n/d]n, [2n/d]n, 3[n/d]n, . . . , d[n/d]n = 0}.

Let H be any subgroup ofZn of orderd and leta be the least positive integer such
that [a]d ∈ H. ThenH consists of all multiples of[a]n. In fact, if [b]n is in H we can
divide b by a and getb = qa + r, where0 ≤ r < a. SinceH is a subgroup we have that
[r]n = [b]n − q[a]n is also inH and by the minimality ofa we get thatr = 0 and hence
[b]n = q[a]n.
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Now H has ordern/a and we deduce thatH is exactly the subgroup of orderd given
before. Hence there is exactly one subgroup of orderd for anyd dividing n.

c). The symmetries of a regularn-gon consists ofn rotations, including the trivial rota-
tion which is the unit element, together withn reflections. Letr be a rotation generating
the rotation subgroup and lets be any of the reflections. ThenD2n is generated byr and
s. In order to find the center, it is sufficient to find all the elements which commute with
both generators.

We can write any of the rotations asri for somei = 0, 1, . . . , n − 1. In trivially
commutes withr, but in order to commute withs, we have to have

ris = sri.

We have the relationsr = r−1s, which comes from that when we conjugate a rotation
by a reflection, we get the reverse rotation. Hence we have that ris = sr−i and in order
for ri to commute withs, we needsri = sr−i, which is equivalent tor2i = 1. Thus we
conclude that the only rotations that are in the center arer0 = 1 andrn/2 if n is even.

The reflections can be written assri and for this to commute withs we need

ssri = sris ⇐⇒ ri = r−i

but in order to commute withr we need

rsri = srir ⇐⇒ ri−1 = ri+1 ⇐⇒ r2 = 1.

Hence a reflection is in the center if and only ifn = 2, in which case the group is of order
4 and abelian. Hence forn ≥ 2 we have that the center is trivial for oddn and equal to
{1, rn/2} for evenn.

(2) (a) Show that the center of any group is a normal subgroup and deduce that any simple
group has a trivial center. (2)

(b) LetΦ : G −→ H be a group homomorphism and letK be a normal subgroup ofH.
Show thatΦ−1(K) = {a ∈ G|Φ(a) ∈ K} is a normal subgroup ofG. (2)

(c) Show that in the situation described in (2b) we get an induced homomorphism

Φ̃ : G/Φ−1(K) −→ H/K.

(2)

SOLUTION

a). Let Z = Z(G) be the center of a groupG and letz be any element ofZ. Then we
have that

aza−1 = zaa−1 = z

for any elementa ∈ G. HenceaZa−1 = Z andZ is normal. A simple group has no
non-trivial normal subgroups and hence its center has to be trivial since it is normal.
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b). Let a be any element ofG and letb be any element ofΦ−1(K). Then we have that
Φ(b) ∈ K and we get that

Φ(aba−1) = Φ(a)Φ(b)Φ(a−1) = Φ(a)Φ(b)Φ(a)−1 ∈ K

sinceΦ(b) ∈ K andK is normal. We thus have thataba−1 is in Φ−1(K) and hence
Φ−1(K) is normal.

c). We define the homomorphism̃Φ : G/Φ−1(K) −→ H/K by Φ̃(aΦ−1(K)) = Φ(a)K,
for a ∈ G. We have to check that this is well-defined. IfaΦ−1(K) = bΦ−1(K) we have
thata−1b ∈ Φ−1(K) and henceΦ(a−1b) ∈ K andΦ(a)K = Φ(b)K, which shows that
the result doesn’t depend on which representative we choosefor the cosets ofΦ−1(K).

Furthermore,̃Φ is a homomorphism since

Φ̃(aΦ−1(K)bΦ−1(K)) = Φ̃(abΦ−1(K)) = Φ(ab)K = Φ(a)KΦ(b)K

= Φ̃(aΦ−1(K))Φ̃(bΦ−1(K)).

(3) A groupG which acts on a setX is said to actfreely if all stabilizers are trivial.
(a) Show that any group acts freely on itself by left multiplication. (1)
(b) Show that if a finite groupG acts freely on a non-empty setX, then|X| ≥ |G|. (2)
(c) Show that any free action of a groupG can be identified with the action of the group

on a union of copiesG whereG acts by left multiplication on each copy ofG. (3)

SOLUTION

a). A group acts on itself by left multiplication as we have that

e.a = e ∗ a = a, ∀a ∈ G,

and
a.(b.c) = a ∗ (b ∗ c) = (a ∗ b) ∗ c = (a ∗ b).c.

This action is free sincea.b = b ⇐⇒ a ∗ b = b ⇐⇒ a = e. Hence the stabilizerGb is
trivial for any elementb in G.

b). If G is a finite group acting on a setX we have that|G| = |Gx||Gx| for any element
x in X. If the action is free we have that all orbits have size|G|. SinceX is a disjoint
union of the orbits under the actionX contains at least one subset of size|G|.

c). Let G be a group that acts freely on a setX and letB be a subset ofX consisting of
exactly one element from each orbit. Then we can identifyX with B ×G under the map

G × B −→ X
(a, b) 7−→ a.b

The map is surjective sinceX is the union of the orbits and each orbit is mapped onto
by G × {b}, whereb is the element inB corresponding to the orbit. It is injective since
a.b = c.d implies thatb = d sinceB has only one element from each orbit, and hence
a.b = c.b which implies thata−1c is in Gb. Since the action is free, we deduce thata = c
and the map is injective.
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When identifyingG × B with X in this way, we get that the action ofG on X corre-
sponds to an action ofG onG × B given by

c.(a, b) = c.(a.b) = (ca).b

Thus the action is equivalent to left muliplication on each orbit.
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PART II - R INGS

(1) Consider the functionφ : Z[x] → Z8 defined byf(x) 7→ [f(3)]8.
(a) Show thatφ is a ring homomorphism. (1)
(b) Show thatker(φ) is not a prime ideal. (2)
(c) Show thatker(φ) is finitely generated and find a finite set of generators. (3)

SOLUTION

a). φ((f + g)(x)) = [(f + g)(3)]8 = [f(3)]8 + [g(3)]8 = φ(f) + φ(g), φ((f · g)(x)) =
[(f · g)(3)]8 = [f(3)]8 · [g(3)]8 = φ(f) · φ(g)

b). φ is surjective since for every[k]8 ∈ Z8 we have thatφ([k]8) = [k]8. The fundametal
theorem of ring homomorphisms implies that

Z[x]/Ker(φ) ∼= Z8.

BecauseZ[x] is a commutative ring with unity and becauseZ8 is not an integral domain
(for ex. [2]8 · [4]8 = 0) the idealker(φ) cannot be prime.

c). We see thatker(φ) = {f(x)‖[f(3)]8 = 0}. Clearlyx − 3 and8 belong toker(φ) so
that< x − 3, 8 >⊆ ker(φ). Let f(x) ∈ ker(φ). Becausex − 3 is monic the division
theorem implies that

f(x) = (x − 3)q(x) + r(x)

with r(x) = 0 or deg(r(x)) = 0. Assumer(x) = r ∈ Z. Because[f(3)]8 = 0 it follows
that [r]8 = 0 and thusr ∈ 8Z. This shows thatf(x) can be written as a combination of
(x − 3) and8 which implies thatker(φ) ⊆< x − 3, 8 > and thus

ker(φ) =< x − 3, 8 > .

(2) Consider the field withq elements,Fq, and the polynomialf(x) = x2 + 1 ∈ Fq[x]. Let
K = Fq[x]/(f(x)).
(a) Compute the number of elements inK. (2)
(b) Determine all integersq for whichK is a field. (4)

SOLUTION

a). Observe thatK is a vector field overFq of dimension2. In fact it is

K = {a0 + a1x, a0, a1 ∈ Fq}.

Moreover the elements1, x are linearly independet so that{1, x} is a basis ofK as a
vector space overFq and thus|K| = q2.



6 SF2729 - Final Exam 2010-08-19

b). BecauseFq is a field the integerq must be a power of a prime. MoreoverFq[x]
is an Eucledian Domain and thus a PID. This implies that the ideal generated by the
polynomialf(x) is maximal if and only iff(x) is irreducible and thusK is a field if
and only if f(x) is irreducible. Becausechar(Fq) = 2 for all evenq the polynomial is
reducible for all suchq. In fact we have that

(x2 + 1) = (x + 1)2.

Assume thatq is odd. The polynomialf(x) is irreducible if only if it has no root inFq,
i.e. if there i no elementα ∈ Fq such thatα2 = −1. Assume thatf(x) is reducible, then
there is an elementα ∈ Fq such thatα2 = −1. This means thatα has order4 in the group
(F∗

q, ·). By Lagrange theorem the4/|F∗

q| = q − 1, so thatq ≡ 1 mod4. Conversely if
q ≡ 1 mod4, then4 dividesq − 1 and sinceF∗

q is cyclic, there is an elementa ∈ F
∗

q of
order4, i.e. an elementa such thata4 = 1 anda 6= ±1. This implies thatα2 = −1. We
can conlude thatK is a field if and only ifq is odd and it is not congruent to1 modulo4.
This is equivalent toq ≡ 3 (mod 4), and sinceq is a prime power it is an odd power of
a primep satisfyingp ≡ 3 (mod 4).

(3) Let A be a commutative ring with unity. An elementa ∈ A is said to benilpotent if
ak = 0 for somek. Let N(A) be the set of all nilpotent elements ofA.
(a) Show thatN(A) is an ideal. (2)
(b) Show that allN(A) is contained in every prime ideal ofA. (1)
(c) Show thatN(A) is the intersection of all prime ideals ofA. (3)

SOLUTION

a). First we show thatN(A) is closed under addition. Leta andb be elements inN(A).
Then there are integersk andm such thatak = 0 andbm = 0 and sinceA is commutative
we can use the binomial theorem to get that

(a + b)k+m =
k+m
∑

i=0

(

k + m

i

)

aibk+m−i

which is zero sinceai = 0 for i ≥ k andbk+m−i = 0 for i ≤ k. Hencea + b ∈ N(A).
We now show thatN(A) is closed under multiplication by elements fromA. Leta ∈ A

andb ∈ N(A). There isk such thatbk = 0. BecauseA is commutative it is(a·b)k = ak·bk

and thus(a · b)k = ak · 0 = 0 which implies thata · b ∈ N(A).

b). Let x ∈ N(A). Then there isk such thatxk = 0. For every prime idealP of A we
have that0 ∈ P and thusxk ∈ P. From the definition of prime ideal it follows thatx ∈ P.

c). We have shown in the previous part that:

N(A) ⊆
⋂

P prime

P.
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Let nowx 6∈ N(A). We will show that there is a prime idealP such thatx 6∈ P, which
will imply that N(A) =

⋂

P primeP. Let S = {xn, n ∈ N} and consider

F = {I ⊂ A, I ideal , I ∩ S = ∅}.

Becausex 6∈ N(A) it is (0) ∈ F and thusF is a non empty family of ideals. There is
then a maximal element (by Zorn’s Lemma) ofF with respect to the inclusion order,⊆.
Let P be the maximal element. By definitionx 6∈ P. We are left to show thatP is a prime
ideal, i.e. that for alla, b ∈ A such thata 6∈ P andb 6∈ P it is ab 6∈ P. Becausea 6∈ P and
b 6∈ P and becauseP is maximal inF the idealsP + (a) andP + (b) have to intersect
S :

P + (a) ∩ S 6= ∅, P + (b) ∩ S 6= ∅.

It follows that there aren, m ∈ N, p1, p2 ∈ P, h1, h2 ∈ A such thatxn = p1 + ah1, x
m =

p2 + bh2. This implies that:

xn+m = p1p2 + p1bh2 + p2ah1 + abh1h2

and thusxn+m ∈ P + (ab). BecauseP does not intersectS it follows thatab 6∈ P.


