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PART | - GROUPS

(1) (a) The axioms of a group only state the existence of antityeelemente such that
a*x e = e x*a = aforall ainthe group. Show that this element is unique. (2)
(b) The dihedral grou@,,, can be defined as the symmetries of a regutgon. Show

that the center oDy, is trivial if and only if n is odd. (2)
(c) Determine the highest order of an element in the symmetgupS;. (2)
SOLUTION

a). Suppose that’ was another identity element. This means that we have that
€ =exe =e

where the first equality comes froehbeing an identity element and the second from
being an identity element.

b). The dihedral group consists afreflections in the: symmetry axes and rotations,
rt, wherer is the basic rotation b9 /n. For any reflectiors, we have thatr = r~!s,
which means that no reflection is in the center, unless »—! which happens only if
n = 2, whereD, is abelian.

For any rotation-?, and any reflections, we have thatr’ = r~’s. This means that
r* cannot be in the center unlegs= r~‘. This happens exactly wheid’ = e. If n is
odd this is impossible, and the center is therefore triviak is even, we have that*/?
commutes with all reflections and with all rotations. Hertoe ¢enter is non-trivial if:
is even.

c). The order of a permutation is the least common multiple ofi¢hgth of its cycles.

In order to get a large order, we need cycle with no commorofadietween the cycle
lenths. With one cycle, the order 1%, with two cycles, the order is maximal for the
partition3 + 7, where we get ordex1. With three cycles, and no common factor, we get
the highest order fof + 3 + 2, where we get orde30. When there are more than three
cycles, we cannot avoid common factors, and the order wilrballer. Of course, we
can run through all the partition® partitions of10.
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(2) (a) The First Isomorphism Theorem says that there is@nasphism’/ ker & = im ¢
for any group homomorphisd : G — H. Prove this theorem. (2)
(b) Use the First Isomorphism Theorem to show stk = Z, x Z, whereK < 7?2
is the subgroup generated by, 6). (Hint: Find a surjective group homomorphism
72 — 7y x Z with kernel K.) (4)

SOLUTION

a). Let K = ker ® and define a homorphism
V:G/K— H

by ¥(aK) = ®(a), fora € G. This is well-defined since f K = bK, we haverb~! € K
and®(ab!) = ey. Hence®(a) = ®(b). It is a homomorphism sincé (a K * bK) =
U(abK) = ®(ab) = ¥(aK)V(bK), for all cosetsi K, bK € G/H.

The homomorphisn¥ is injective since the kernel dof is given by

ker ={aK € G/K|aK = K} = {K}.
ThusV¥ gives an isomorphism af / K onto the imagém ¥ = im ®.

b). In order to define a homomorphisth : Z? — Z, x Z, it is sufficient to define
®(1,0) = (a,b) and®(0,1) = (c, d), sinceZ? is a free abelian group. The kernel is
given by the element&r, y) € Z? such thatux + cy = 0 in Z, andbx + dy = 0 in Z.

We need thaker & = H. In order for(4, 6) to be in the kernel, we need th#t+ 6d = 0

in Z, which is true ifb = 3 andd = —2. The solutions to the equatidx — 2y = 0 is
given by the multiples ofz, y) = (2, 3). In order for the kernel to be generated(3y6)
rather than by2, 3), we need that the first equation excludeés3) as a solution. This
means thaka + 3¢ # 0in Zy, i.e. thatc = 1. The homomorphisnk(z, y) = (y, 3z — 2y)

has kernel generated 9y, 6) and therefore, by the isomorphism theorem, we have that
72K =~ 7y x 7.
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(3) When a group acts on itself by conjugation, the orbitscatkedconjugacy classes.
(&) Show thatin a finite group, the size of the conjugacy atassaining an elementis
related to the number of elements commuting withe., the size of the centralizer,
Ce(a). (2)
(b) Use the relation to compute the size of the conjugacysaasataining the matrix

=)

in the general linear grou@l,(FF3) of invertible2 x 2-matrices over the field with
three elements. (Hint: the number of element&in(F;) is 48.) 4)

SOLUTION

a). For any group action of a finite group on a setX we have that

G| = |Gal - |Gzl
for any element: € X. In the case wheré& acts on itself by conjugation, we have that
the stabilizerG,, consists of the elementse G such thath.a = «, i.e.,bab™! = a.

This is exactly the set of elements commuting withi.e., the centralizeiC';(a). Thus
we have that the size of the conjugacy class ©f given by|G|/|Ca(a)].

b). We look at the condition to commute with. For a given matrix

a b
5= (5 o
to commute withA, we have the conditiod B — BA = 0. We have that
11 a b a b 11
AB=BA =\, 1) (c d)_(c d) (0 1)

_fa+c b+d\ [(a a+b\ _ (c d—a)’

o c d c c+d) \0 ¢
This meansAB — BA = (0 ifand only ifa = d andc = 0. Thus the matrices commuting
with A are exactly the matrices of the form

a b
B- (0 ) |
Now we look for the elements i@';(A), which means that we only count the invertible
matrices commuting witll. The only condition foi3 to be invertible is that # 0. Thus

|Ce(A)| =2 -3 = 6. The conclusion is therefore that the conjugacy clasd obntains
|G|/|Ca(A)| = 48/6 = 8 elements.
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PART Il - RINGS

(1) (a) Prove that @ x 2-matrix over a field is invertible if and only if the first colums a
nonzero vector and the second column is not a multiple of teedolumn. (2)

(b) LetFF, be a finite field withg elements. Prove that the groGj,(F,) of invertible

2 x 2-matrices oveff, has(¢*> — 1)(¢* — ¢q) elements. (2)

(c) Determine the number of zero-divisors in the riig(F,) of 2 x 2-matrices over,.

(2)

SOLUTION

Z over a fieldF' is invertible if and only if its determinant

ad — be is invertible in F', i.e., nonzero. (The usual formula for the inverse &f a 2-
matrix holds.) It is clear that the determinant is zero if tingt column is zero or if the
second column is a multiple of the first columnalt# 0, thenb = Aa for somel € F.
Thenad — be = a(d — Ac), so the determinant is nonzero if the second column is not a

multiple of the first column. Similarly whea=# 0.

a). A 2 x 2-matrix i

b). There are;> — 1 nonzero vectors i’? and each of them hasdistinct multiples. So
there arey®> — 1 choices for the first column and for each of those choicesetheg® — ¢
possibilities for the second column.

c). A zero-divisor is certainly not invertible, so2ax 2-matrix that is a zero-divisor must
have determinant zero. Conversely,

a b d —b\ (ad—bc 0
c d)\—c a ) 0 ad —be )’
S0 a nonzero matrix with zero determinant is a zero-divibere arg;* — ¢ — ¢> + ¢

matrices with nonzero determinant among ¢helements of\/,(F,), so there are® +
¢*> — q — 1 zero-divisors.
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(2) (a) Prove that® — x + 1 is irreducible inZ;[z]. (2)
(b) Let F be the fieldZ;[z]/(x® — x + 1). Write ~y for the element: + (23 — z + 1), SO
F = Z3(~). Determine the order of? in the multiplicative group™. (2)

(c) Let R be the ringZ[\/—3]. Is the ideal 2, 1 + v/—3) a principal ideal inR? (2)

SOLUTION

a). A polynomial of degre® or 3 over a field is irreducible if and only if it has no zeroes.
Every element o is a zero ofr® — z, soz® — x + 1 has no zeroes.

b). F'is indeed a field. As a vector space oy it has dimensiom = 3, so it has
3" = 3% = 27 elements. The multiplicative group* has26 elements. The possible
orders of elements of* are thereforel, 2, 13 and 26; in fact, all orders occur, since
F* is well-known to be cyclic. The elements 6f can uniquely be written in the form
a + by + cy?, with a, b, andc arbitrary elements df.;, so the order of/? is not1. Since
v =~ — 1, we find thaty* = ~2 — ~, so the order ofy? is not2 either. Finally, since
7?8 = 1, the order ofy? is at mostl3 (in fact, it dividesl3). So the order of? equalsl 3.

c). The ringZ[+/—3] has a multiplicative norm given by
N(a +bv/=3) = (a +bv/=3)(a — bv/=3) = a* + 3b°.

We see directly that the only units atdl. The element& and1 + /—3 both have norm
4. If the ideal they generate is principal, then the norm of megator must dividd. The
generator cannot have normsince2 and1 + /-3 don't differ by a unit. There is no
element with norn®, so the only possibility left is a generator with nofimin which
case the ideal would equ&. However, one easily checks that every elementb/—3
of the ideal(2, 1 + /—3) has the property that+ b is even, sd is not in the ideal. The
conclusion is that the ideal is not principal.
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(3) (a) Prove thaf(z) = x* + 422 + 2 is irreducible inQ[z]. (2)
(b) Let K be the fieldQ[z]/(f(z)). Write « for the element: + (f(x)), SOK = Q(«).
Put3 = «o?. DeterminelQ(3) : Q] and show thaf (x) factors as a product of two

polynomials of positive degree i@(5)[z]. (2)
(c) Prove thatv® + 3« is a zero off (x) and conclude thaf(x) factors as a product of
linear factors inQ(«a)|x]. 2)
SOLUTION

a). This follows immediately from the Eisenstein criterion foe 2.

b). The element3 = «o? is a zero of the polynomia}(z) = x* + 4z + 2, which also
is irreducible inQ|z] (for the same reason). 3Q(5) : Q] = 2. Clearly,g(z) = (= —
B)(x + 4+ B)inQ(B)[a]. Sof(x) = g(2?) = (2 — B)(2* + 4 + 3) in Q(B)[x], which

gives a factorisation as desired.

c). Clearly,a and—a« are the zeroes of the factor® — 3) in Q(«). So we should check
thata?® + 3o is a zero ofr? + 4 + 3. A computation using that* = —4a? — 2 and hence
ab = —4a* — 202 shows that this is indeed the case:

(@®+3a)* +4+a®=a’+6a" +10a” + 4 =2a" +8a° +4 = 0.

Clearly, —a?® — 3« is then a zero off (x) as well. Having found four distinct zeroes of
f(z) in Q(«), we conclude thaf (x) factors as a product of linear factors @{«)[z].
(We have shown th&(«) is a splitting field forf (x) overQ.)




