otal
ests ar

Introduction

A matrix is totally positive (resp. totally non-negative) if
all its minors are positive (resp. non-negative) real num-
bers. The first systematic study of these classes of matri-
ces was undertaken in the 1930s by F. R. Gantmacher and
M. G. Krein [20-22], who established their remarkable spec-
tral properties (in particular, an n X n totally positive ma-
trix x has n distinct positive eigenvalues). Earlier, 1. J.
Schoenberg [41] had discovered the connection between
total non-negativity and the following variation-dimin-
ishing property: the number of sign changes in a vector
does not increase upon multiplying by x.

Total positivity found numerous applications and was
studied from many different angles. An incomplete list in-
cludes oscillations in mechanical systems (the original mo-
tivation in [22]), stochastic processes and approximation
theory [25, 28], Pélya frequency sequences [28, 40], repre-
sentation theory of the infinite symmetric group and the
Edrei-Thoma theorem [13, 44], planar resistor networks
[11], unimodality and log-concavity [42], and theory of im-
manants [43]. Further references can be found in S. Karlin’s
book [28] and in the surveys [2, 5, 38].

In this article, we focus on the following two problems:

1. parametrizing all totally non-negative matrices
2. testing a matrix for total positivity

Our interest in these problems stemmed from a surpris-
ing representation-theoretic connection between total
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Parametrizations

positivity and canonical bases for quantum groups, dis-
covered by G. Lusztig [33] (cf. also the surveys in [31,
34]). Among other things, he extended the subject by
defining totally positive and totally non-negative elements
for any reductive group. Further development of these
ideas in [3, 4, 15, 17] aims at generalizing the whole body
of classical determinantal calculus to any semisimple
group.

As often happens, putting things in a more general per-
spective shed new light on this classical subject. In the next
two sections, we provide self-contained proofs (many of
them new) of the fundamental results on problems 1 and
2, due to A. Whitney [46], C. Loewner [32], C. Cryer [9, 10],
and M. Gasca and J. M. Peiia [23]. The rest of the article
presents more recent results obtained in [15]: a family of
efficient total positivity criteria and explicit formulas for
expanding a generic matrix into a product of elementary
Jacobi matrices. These results and their proofs can be gen-
eralized to arbitrary semisimple groups [4, 15], but we do
not discuss this here.

Qur approach to the subject relies on two combinator-
ial constructions. The first one is well known: it associates
a totally non-negative matrix to a planar directed graph
with positively weighted edges (in fact, every totally non-
negative matrix can be obtained in this way [6]). Our sec-
ond combinatorial tool was introduced in [15]; it is a par-
ticular class of colored pseudoline arrangements that we
call the double wiring diagrams.
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Figure 1. A planar network.

Planar Networks

To the uninitiated, it might be unclear that totally positive
matrices of arbitrary order exist at all. As a warm-up, we
invite the reader to check that every matrix given by

d dh dhi
bd bdh + e bdhi + eg + ei
abd abdh + ae + ce abdhi + (a + c)e(g + 1) + f

, (D

where the numbers a, b, ¢, d, ¢, f, g, h, are i are positive, is
totally positive. It will follow from the results later that
every 3 X 3 totally positive matrix has this form.

We will now describe a general procedure that produces
totally non-negative matrices. In what follows, a planar
network (I', w) is an acyclic directed planar graph I' whose
edges e are assigned scalar weights w(e). In all of our ex-
amples (cf. Figures 1, 2, 5), we assume the edges of I' di-
rected left to right. Also, each of our networks will have »
sources and n sinks, located at the left (resp. right) edge
of the picture, and numbered bottom to top.

The weight of a directed path in I is defined as the prod-
uct of the weights of its edges. The weight matrixz x(I', )
is an n X n matrix whose (%, j)-entry is the sum of weights
of all paths from the source 7 to the sink j; for example, the
weight matrix of the network in Figure 1 is given by (1).

The minors of the weight matrix of a planar network
have an important combinatorial interpretation, which can
be traced to B. Lindstrém [30] and further to S. Karlin and
G. McGregor [29] (implicit), and whose many applications
were given by L. Gessel and G. X. Viennot {26, 27].

In what follows, A; j(x) denotes the minor of a matrix
x with the row set I and the column set J.

The weight of a collection of directed paths in I' is de-
fined to be the product of their weights.

LEMMA 1 (Lindstrém’s Lemma). A minor Ar; of the
weight matrix of a planar network is equal to the sum of
weights of all collections of vertex-disjoint paths that con-
nect the sources labeled by I with the sinks labeled by J.

To illustrate, consider the matrix x in (1). We have, for
example, Agz23(x) = bedegh + bdfh + fe, which also
equals the sum of the weights of the three vertex-disjoint
path collections in Figure 1 that connect sources 2 and 3
to sinks 2 and 3.

Proof. Tt suffices to prove the lemma for the determinant
of the whole weight matrix x = x(I', w) (i.e., for the case
I =J = [1, n]). Expanding the determinant, we obtain
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det(z) = > 3" sgn(w) w(m), ®)

the sum being over all permutations w in the symmetric
group S, and over all collections of paths 7= = (m, ..., m,)
such that m; joins the source ¢ with the sink w(%). Any col-
lection 7 of vertex-disjoint paths is associated with the
identity permutation; hence, w() appears in (2) with the
positive sign. We need to show that all other terms in (2)
cancel out. Deforming I" a bit if necessary, we may assume
that no two vertices lie on the same vertical line. This
makes the following involution on the non-vertex-disjoint
collections of paths well defined: take the leftmost com-
mon vertex of two or more paths in 7, take two smallest
indices ¢ and j such that =; and 7; contain », and switch
the parts of 7; and 7; lying to the left of v. This involution
preserves the weight of 7 while changing the sign of the
associated permutation w; the corresponding pairing of
terms in (2) provides the desired cancellation. O

COROLLARY 2. If a planar network has non-negative
real weights, then its weight matrizx is totally non-nega-
tive.

As an aside, note that the weight matrix of the network

n n
3 3
2 2
1 1
(with unit edge weights) is the “Pascal triangle”
(10000 -]
11000
12100 -
13310 ,
14641 .
LS I

which is totally non-negative by Corollary 2. Similar argu-
ments can be used to show total non-negativity of various
other combinatorial matrices, such as the matrices of g-bino-
mial coefficients, Stirling numbers of both kinds, and so forth.

We call a planar network I' totally connected if for any
two subsets I, J C [1, n] of the same cardinality, there ex-
ists a collection of vertex-disjoint paths in I connecting the
sources labeled by I with the sinks labeled by J.

COROLLARY 3. If a totally connected planar network has
positive weights, then its weight matrix is totally positive.

For any n, let I'y denote the network shown in Figure 2.
Direct inspection shows that [y is totally connected.

COROLLARY 4. For any choice of positive weights w(e),
the weight matrix x(T'o, w) s totally positive.

It turns out that this construction produces all totally
positive matrices; this result is essentially equivalent to
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Figure 2. Planar network I'o.

A. Whitney’s Reduction Theorem [46] and can be sharp-
ened as follows. Call an edge of I'y essential if it either is
slanted or is one of the »n horizontal edges in the middle of
the network. Note that 'y has exactly n? essential edges.
A weighting w of ['y is essential if w(e) # 0 for any essen-
tial edge ¢ and w(e) = 1 for all other edges.

THEOREM 5. The map o — x(1s, w) restricts to a bijec-
tion between the set of all essential positive weightings
of Tg and the set of all totally positive n X n matrices.

The proof of this theorem will use the following notions.
A minor Ay is called solid if both I and J consist of sev-
eral consecutive indices; if, furthermore, I U J contains 1,
then A, ; is called initial (see Fig. 3). Each matrix entry is
the lower-right corner of exactly one initial minor; thus,
the total number of such minors is n2.

LEMMA 6. The n? weights of essential edges in an es-
sential weighting w of T'y are related to the n? initial mi-
nors of the weight matrix x = x(I'y, w) by an tnvertible
monomial transformation. Thus, an essential weighting
w of 'y is uniquely recovered from x.

Proof. The network I'y has the following easily verified
property: For any set I of k consecutive indices in [1, n],
there is a unique collection of k vertex-disjoint paths con-
necting the sources labeled by [1, k] (resp. by I) with the
sinks labeled by I (resp. by [1, k]). These paths are shown
by dotted lines in Figure 2, for k = 2 and I = [3, 4]. By
Lindstrom’s lemma, every initial minor A of x(Ty, ) is
equal to the product of the weights of essential edges cov-
ered by this family of paths. Note that among these edges,
there is always a unique uppermost essential edge e(A) (in-
dicated by the arrow in Figure 2). Furthermore, the map
A+ ¢(A) is a bijection between initial minors and essen-
tial edges. It follows that the weight of each essential edge
e = e(A) is equal to A times a Laurent monomial in some
initial minors A’, whose associated edges e(A") are located
below e. O

Figure 3. Initial minors.

To illustrate Lemma, 6, consider the special case n = 3.
The network I'y is shown in Figure 1; its essential edges
have the weights a, b, . . ., i. The weight matrix 2(To, w) is
given in (1). Its initial minors are given by the monomials

Ay =d, Az = dh, Arz = dhi,
Aoy = bd, A 12 = de, Ayp03 = degh,
A3 = abd, Ags 12 = bede, Ayo3123 = def,

where for each minor A, the “leading entry” w(e(A)) is un-
derlined.

To complete the proof of Theorem 5, it remains to show
that every totally positive matrix x has the form x(I'y, @) for
some essential positive weighting w. By Lemma 6, such an
w can be chosen so that x and z(T'y, @) will have the same
initial minors. Thus, our claim will follow from Lemma 7.

LEMMA 7. A square matrix x is uniquely determined by
its initial minors, provided all these minors are nonzero.

Proof. Let us show that each matrix entry x;; of x is uniquely
determined by the initial minors. If ¢ = 1 or j = 1, there is
nothing to prove, since x;; is itself an initial minor. Assume
that min(¢, 7) > L. Let A be the initial minor whose last row
is ¢ and last column is 7, and let A’ be the initial minor ob-
tained from A by deleting this row and this column. Then,
A = A'x;; + P, where P is a polynomial in the matrix en-
tries x;- ;- with (¢',5") # (¢,7) and 4" <4 and j' =j. Using
induction on ¢ + j, we can assume that each x; ;- that oc-
curs in P is uniquely determined by the initial minors, so
the same is true for x; = (A — P)/A’. This completes the
proofs of Lemma 7 and Theorem 5. O

Theorem 5 describes a parametrization of totally pos-
itive matrices by n-tuples of positive reals, providing a par-
tial answer (one of the many possible, as we will see) to
the first problem stated in the Introduction. The second
problem—that of testing total positivity of a matrix—can
also be solved using this theorem, as we will now explain.

An n X n matrix has altogether (¥*) — 1 minors. This
makes it impractical to test positivity of every single mi-
nor. It is desirable to find efficient criteria for total posi-
tivity that would only check a small fraction of all minors.

EXAMPLE 8. A 2 X 2 matrix

[o ]

has (3) — 1 = 5 minors: four matrix entries and the deter-
minant A = ad — be. To test that x is totally positive, it is
enough to check the positivity of a, b, ¢, and A; then, d =
(A + bcYa > 0.

The following theorem generalizes this example to ma-
trices of arbitrary size; it is a direct corollary of Theorem
5 and Lemmas 6 and 7.

THEOREM 9. A square matrix is totally positive if and
only if all its initial minors (see Fig. 3) are positive.

This criterion involves 72 minors, and it can be shown
that this number cannot be lessened. Theorem 9 was
proved by M. Gasca and Pefia [23, Theorem 4.1] (for rec-
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tangular matrices); it also follows from Cryer’s results in
[9]. Theorem 9 is an enhancement of the 1912 criterion by
M. Fekete [14], who proved that the positivity of all solid
minors of a matrix implies its total positivity.

Theorems of Whitney and Loewner

In this article, we shall only consider invertibie totally non-
negative n X n matrices. Although these matrices have real
entries, it is convenient to view them as elements of the
general linear group G = GL,(C). We denote by G- (resp.
G=g) the set of all totally non-negative (resp. totally posi-
tive) matrices in G. The structural theory of these matri-
ces begins with the following basic observation, which is
an immediate corollary of the Binet-Cauchy formula.

PROPOSITION 10. Boith G=o and G~ are closed under
matrix multiplication. Furthermore, if x € G=¢g and y €
G=q, then both xy and yx belong to G-,

Combining this proposition with the foregoing results,
we will prove the following theorem of Whitney [46].

THEOREM 11. (Whitney's theorem). Every invertible to-
tally non-negative matrizx is the limit of a sequence of to-
tally positive matrices.

Thus, G~ is the closure of G~ in G. (The condition of
invertibility in Theorem 11 can, in fact, be lifted.)

Proof. First, let us show that the identity matrix 7 lies in
the closure of G~ By Corollary 4, it suffices to show that
I = limy_,. x(T'y, wx) for some sequence of positive weight-
ings wy of the network I'y. Note that the map o +— (I, w)
is continuous and choose any sequence of positive weight-
ings that converges to the weighting wy defined by wy(e) =
1 (resp. 0) for all horizontal (resp. slanted) edges e. Clearly,
x(Ty, wp) = I, as desired.

To complete the proof, write any matrix x € G-pasx =
limp_, & - 2(To, wy), and note that all matrices x - x(T'g, wy)
are totally positive by Proposition 10. O

The following description of the multiplicative monoid
G=o was first given by Loewner [32] under the name
“Whitney’s Theorem”; it can indeed be deduced from [46].

THEOREM 12 (Loewner-Whitney theorem). Any invert-
ible totally non-negative matrix is a product of elemen-
tary Jacobi mairices with non-negative matrix entries.

Here, an “elementary Jacobi matrix” is a matrix x € G
that differs from I in a single entry located either on the
main diagonal or immediately above or below it.

Proof. We start with an inventory of elementary Jacobi ma-
trices. Let E;; denote the n X n matrix whose (4, j)-entry is 1
and all other entriesare 0. Fort ECandi=1,...,n — 1, let

1 s O 0 s O
1 ¢
) =1+ 1E; ;41 =
0 0 1 0
L0 0 0 1
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and
xi(t) =1+ tEi1; = (@:(0))7
(the transpose of x;(%)). Also, fori=1,...,nand t # 0, let
xp®) =1+ (¢t - DE;;;

the diagonal matrix with the 7th diagonal entry equal to ¢
and all other diagonal entries equal to 1. Thus, elementary
Jacobi matrices are precisely the matrices of the form x ;(1),
x;(1), and xp(t). An easy check shows that they are totally
non-negative for any ¢ > 0.

For any word i = (44, . . ., ;) in the alphabet

d={, ...,n-10,...,@,L,...,n—1}, (3
we define the product map x; : (C\{0})) — G by
i1, - - -, ) = 25, (1) -y (B @

(Actually, x;(ty, . . ., £ is well defined as long as the right-
hand side of (4) does not involve any factors of the
form xgy(0).) To illustrate, the word i = (D 1 @) 1 gives rise
to

t1 0 10 1 6 1 4
Zi(ty, Lo, ts, 4) =
(toy t t) = t2 1] (02| |01

1 th

ty totg + t3 |

We will interpret each matrix x(¢y, . . . , £;) as the weight
matrix of a planar network. First, note that any elemen-
tary Jacobi matrix is the weight matrix of a “chip” of one
of the three kinds shown in Figure 4. In each “chip,” all
edges but one have weight 1; the distinguished edge has
weight ¢. Slanted edges connect horizontal levels 7 and
i + 1, counting from the bottom; in all examples in Figure
4,1=2.

The weighted planar network (I'(Q), w(ty, . . -, t;)) is then
constructed by concatenating the “chips” corresponding to
consecutive factors x;, (f), as shown in Figure 5. It is easy
to see that concatenation of planar networks corresponds
to multiplying their weight matrices. We conclude that the
product x;(ty, . . ., t;) of elementary Jacobi matrices equals
the weight matrix x(I'R), w(ty, . . ., &)).

In particular, the network (I'y, w) appearing in Figure
2 and Theorem 5 (more precisely, its equivalent defor-
mation) corresponds to some special word i,y Of length
n?; instead of defining i,, formally, we just write it for
n =4

nax=03231,2300,0,0,0,323,123)

In view of this, Theorem 5 can be reformulated as follows.

THEOREM 13. The product map x;,,, restricts to a bi-
Jection between n3-tuples of positive real numbers and to-
tally positive n X n matrices.

We will prove the following refinement of Theorem 12,
which is a reformulation of its original version [32].

THEOREM 14. Every matrix x € G=¢ can be written as
X = Dig(l1, - - -, ty2), for some ty, . .., t,z2= 0.



(Since x is invertible, we must in fact have ¢, > 0 for
n(n — 1)2 <k=mn(n+ 1)/2 (ie, for those indices k for
which the corresponding entry of iy.x is of the form (2)).)

Proof. The following key lemma is due to Cryer [9].

LEMMA 15. The leading principal minors Ap gye) of @
matrix x € G = g are positive fork =1, ..., n.

Proof. Using induction on 7, it suffices to show that
A[Ln_”,[lyn_l](x) > (. Let AU(.Z') [resp. Aii"ii'(x)] denote the
minor of x obtained by deleting the row ¢ and the column
7 (resp. rows 1 and ¢’, and columns j and j'). Then, for any
l1=i<i =nand1=j<j =n, one has

AT () AbI() — API()AW (%) = det(®)AT T () (5)

as an immediate consequence of Jacobi's formula for mi-
nors of the inverse matrix (see, e.g., [7, Lemma 9.2.10]).
The determinantal identity (5) was proved by Desnanot as
early as in 1819 (see [37, pp. 140-142)]); it is sometimes
called “Lewis Carroll’s identity,” due to the role it plays in
C. L. Dodgson’s condensation method [12, pp. 170-180].

Now suppose that A%"(x) =0 for some x & G=.
Because x is invertible, we have A**(x) > 0 and A™¥(x) >
0 for some indices %, § < n. Using (5) with ¢’ = j' = n, we
arrive at a desired contradiction by

0 > —AmJI(@)AY™(x) = det(x)A™I"(x) = 0. O

We are now ready to complete the proof of Theorem 14.
Any matrix x € G is by Theorem 11 a limit of totally pos-
itive matrices xy, each of which can, by Theorem 13, be
factored as Xn = X,y (tEN), ce, t,(g)) with all tﬁN) positive.
It suffices to show that the sequence sy = 3r; 4 con-
verges; then, the standard compactness argument will im-

ply that the sequence of vectors (t(lN), RN tﬂ%’)) contains a
converging subsequence, whose limit (¢, . . ., ¢,2) will pro-
vide the desired factorization x = x;,,.(t1, . . . , tz2). To see

that (sy) converges, we use the explicit formula

s _Z”: Api1,6(EN)
N Ari-1g11,i-10N)

b Api- o+ ma@a) + Apa - gup+ @)

= Apran,n,5(N)

(to prove this, compute the minors on the right with the
help of Lindstrom’s lemma and simplify). Thus, sy is ex-
pressed as a Laurent polynomial in the minors of xy whose
denominators only involve leading principal minors
A1k),11,%- By Lemma 15, as xx converges to x, this Laurent
polynomial converges to its value at x. This completes the
proofs of Theorems 12 and 14. O

Double Wiring Diagrams and Total

Positivity Criteria

We will now give another proof of Theorem 9, which will
include it into a family of “optimal” total positivity criteria
that correspond to combinatorial objects called double
wiring diagrams. This notion is best explained by an ex-
ample, such as the one given in Figure 6. A double wiring

diagram consists of two families of n piecewise-straight
lines (each family colored with one of the two colors), the
crucial requirement being that each pair of lines of like
color intersect exactly once.

The lines in a double wiring diagram are numbered sep-
arately within each color. We then assign to every chamber
of a diagram a pair of subsets of the set [1,n] = {1,...,n}):
each subset indicates which lines of the corresponding
color pass below that chamber; see Figure 7.

Thus, every chamber is naturally associated with a mi-
nor Ay ;of an n X n matrix x = (x;) (we call it a chamber
minor) that occupies the rows and columns specified by
the sets I and J written inside that chamber. In our run-
ning example, there are nine chamber minors (the total
number is always n?), namely X3y, Z32, 12, £13, A3 12, A13.12,
A1393, A12,23, and Ajez 123 = det(x).

THEOREM 16. Every double wiring diagram gives rise
to the following criterion: an n X n matrix is totally pos-
itive if and only if all its n® chamber minors are positive.

The criterion in Theorem 9 is a special case of Theorem
16 and arises from the “lexicographically minimal” double
wiring diagram, shown in Figure 8 for n = 3.

Proof. We will actually prove the following statement that
implies Theorem 16.

THEOREM 17. Every minor of a generic square matrix
can be written as a rational expression in the chamber
minors of a given double wiring diagram, and, moreover,
this rational expression is subtraction-free (t.e., all coef-
ficients in the numerator and denominator are positive).

Two double wiring diagrams are called isotopic if they
have the same collections of chamber minors. The termi-
nology suggests what is really going on here: two isotopic
diagrams have the same “topology.” From now on, we will
treat such diagrams as indistinguishable from each other.

We will deduce Theorem 17 from the following fact: any
two double wiring diagrams can be transformed into each
other by a sequence of local “moves” of three different
kinds, shown in Figure 9. (This is a direct corollary of a
theorem of G. Ringel [39]. It can also be derived from the
Tits theorem on reduced words in the symmetric group; cf.
(7) and (8) below.)

Note that each local move exchanges a single chamber
minor Y with another chamber minor Z and keeps all other
chamber minors in place.

LEMMA 18. Whenever two double wiring diagrams dif-
Jfer by a single local move of one of the three types shown
in Figure 9, the chamber minors appearing there satisfy
the identity AC + BD = YZ.

The three-term determinantal identities of Lemma 18 are
well known, although not in this disguised form. The last of
these identities is nothing but the identity (5), applied to var-
ious submatrices of an n X n matrix. The identities corre-
sponding to the top two “moves” in Figure 9 are special in-
stances of the classical Grassmann-Pliicker relations (see,
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Figure 4. Elementary “chips.”

e.g., [18, (15.53)]), and were obtained by Desnanot alongside
(5) in the same 1819 publication we mentioned earlier.
Theorem 17 is now proved as follows. We first note that
any minor appears as a chamber minor in some double
wiring diagram. Therefore, it suffices to show that the
chamber minors of one diagram can be written as sub-
traction-free rational expressions in the chamber minors
of any other diagram. This is a direct corollary of Lemma
18 combined with the fact that any two diagrams are re-
lated by a sequence of local moves: indeed, each local move
replaces Y by (AC + BD)/Z, or Z by (AC + BD)/Y. O

Implicit in the above proof is an important combinato-
rial structure lying behind Theorems 16 and 17: the graph
@,, whose vertices are the (isotopy classes of) double
wiring diagrams and whose edges correspond to local
moves. The study of @, is an interesting problem in itself.
The first nontrivial example is the graph ®; shown in
Figure 10. It has 34 vertices, corresponding to 34 different
total positivity criteria. Each of these criteria tests nine mi-
nors of a 3 X 3 matrix. Five of these minors [viz., x31, 713,
Asz 12, Ajo23, and det(x)] correspond to the “unbounded”
chambers that lie on the periphery of every double wiring
diagram; they are common to all 34 criteria. The other four
minors correspond to the bounded chambers and depend
on the choice of a diagram. For example, the criterion de-
rived from Figure 7 involves “bounded” chamber minors
Aso, Apg, Agg 1z, and A13’23~ In Figure 10, each vertex of @3
is labeled by the quadruple of “bounded” minors that ap-
pear in the corresponding total positivity criterion.

We suggest the following refinement of Theorem 17.

CONJECTURE 19. Every minor of a generic square ma-
trix can be written as a Laurent polynomial with non-
negative integer coefficients in the chamber minors of an
arbitrary double wiring diagram.

Perhaps more important than proving this conjecture
would be to give explicit combinatorial expressions for the

NN
LN

Figure 5. Planar network I'(i).
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Figure 6. Double wiring diagram.

Laurent polynomials in question. We note a case in which
the conjecture is true and the desired expressions can be
given: the “lexicographically minimal” double wiring dia-
gram whose chamber minors are the initial minors. Indeed,
a generic matrix x can be uniquely written as the product
Xy, (L1, . . ., y2) of elementary Jacobi matrices (cf. Theorem
13); then, each minor of x can be written as a polynomial in
the #; with non-negative integer coefficients (with the help
of Lindstréom’s lemma), whereas each #; is a Laurent mono-
mial in the initial minors of x, by Lemma, 6.

It is proved in [15, Theorem 1.13] that every minor can
be written as a Laurent polynomial with integer (possibly
negative) coefficients in the chamber minors of a given di-
agram. Note, however, that this result combined with
Theorem 17, does not imply Conjecture 19, because there
do exist subtraction-free rational expressions that are
Laurent polynomials, although not with non-negative coef-
ficients (e.g., think of (p® + ¢®/(p + q) = p* — pq + ¢?).

The following special case of Conjecture 19 can be de-
rived from [3, Theorem 3.7.4].

THEOREM 20. Conjecture 19 holds for all wiring dia-
grams in which all intersections of one color precede the
intersections of another color.

We do not know an elementary proof of this result; the
proof in [3] depends on the theory of canonical bases for
quantum general linear groups.

Digression: Somos sequences

The three-term relation AC + BD = YZ is surrounded by
some magic that eludes our comprehension. We cannot re-
sist mentioning the related problem involving the Somos-
5 sequences [19]. (We thank Richard Stanley for telling us

about them.) These are the sequences ay, ag, . . . in which
any six consecutive terms satisfy this relation:
Anln+5 = Qn+10n+4 T Qn+20n+3. (6)

Each term of a Somos-5 sequence is obviously a subtrac-
tion-free rational expression in the first five terms ay, . . .,
as. It can be shown by extending the arguments in [19, 35]

Figure 7. Chamber minors.



123,123
1 3
;o X X :
23,12 12,12 12,23
2 2
2 2
3,1 2,1 1,1 1,2 1,3

3 ) 1
1 ] o _ 3
Figure 8. Lexicographically minimal diagram.

that each a, is actually a Laurent polynomial in ay,
..., as. This property is truly remarkable, given the nature
of the recurrence, and the fact that, as n grows, these
Laurent polynomials become huge sums of monomials in-
volving large coefficients; still, each of these sums cancels
out from the denominator of the recurrence relation a,,.5 =
(@ +10n+4 + Qpt2Qp13)/tn.
We suggest the following analog of Conjecture 19,

CONJECTURE 21. Every term of a Somos-b sequence is
a Laurent polynomial with non-negative integer coeffi-
cients in the first five terms of the sequence.

Factorization Schemes

According to Theorem 16, every double wiring diagram
gives rise to an “optimal” total positivity criterion. We will
now show that double wiring diagrams can be used to ob-
tain a family of bijective parametrizations of the set G~ of
all totally positive matrices; this family will include the pa-
rametrization in Theorem 13 as a special case.

We encode a double wiring diagram by the word of
length n{n — 1) in the alphabet {1, . . ., -1 1, ...,
n — 1} obtained by recording the heights of intersections
of pseudolines of like color (traced left to right; barred dig-
its for red crossings, unbarred for blue). For example, the
diagram in Figure 6 is encoded by the word 212121.

The words that encode double wiring diagrams have an
alternative description in terms of reduced expressions in
the symmetric group S,,. Recall that by a famous theorem
of E. H. Moore [36], S,, is a Coxeter group of type A, _y;
that is, it is generated by the involutions sy, . . ., $5—1 (ad-
jacent transpositions) subject to the relations s;s; = §;8; for

B >< C
—
e

B X ¢ Xz Xe
+
axX v Xo = _4a X »
B B
— ¥
D D

Figure 9. Local “moves.”

i — j\ = 2, and s;555; = s;5;8; for \z ~ 4l = 1. A reduced word
for a permutation w € 8, is a word j = (Jy, . . ., Ji) of the
shortest possible length | = £(w) that satisfies w = s;,°**s;,
The number £(w) is called the length of w (it is the num-
ber of inversions in w). The group S, has a unique element
wg of maximal length: the order-reversing permutation of
1, ..., n; it gives £(wg) = (2).

It is straightforward to verify that the encodings of dou-
ble wiring diagrams are precisely the shuffles of two re-
duced words for wy, in the barred and unbarred entries, re-
spectively; equivalently, these are the reduced words for
the element (wy, wo) of the Coxeter group S,, X S,,.

DEFINITION 22. A word i in the alphabet 4 {(see (3)) is
called a factorization scheme if it contains each circled en-
try (2) exactly once, and the remaining entries encode the
heights of intersections in a double wiring diagram.

Equivalently, a factorization scheme i is a shuffle of two
reduced words for wy {one barred and one unbarred) and
an arbitrary permutation of the entries @), . . . , @. In par-
ticular, i consists of 2 entries.

To illustrate, the wordi=2 1®) 2 1 @ 2 1®),appear-
ing in Figure 5 is a factorization scheme.

An important example of a factorization scheme is the
word iy, introduced in Theorem 13. Thus, the following
result generalizes Theorem 13.

gABC

a =1,

b=x12 B = Auas
¢ = C=An2
d =1z D= A3.13
e = T3 E = Az
f =13 F=A213
g = Ta3 efg4 G=Ann

Figure 10. Total positivity criteria for GLa.
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THEOREM 23 [15]). For an arbitrary factorization
scheme i = (i, . . ., ix2), the product map x; given by (4)
restricts to a bijection between n’-tuples of positive real
numbers and totally positive n X n matrices.

Proof. We have already stated that any two double wiring
diagrams are connected by a succession of the local
“moves” shown in Figure 9. In the language of factoriza-
tion schemes, this translates into any two factorization
schemes being connected by a sequence of local transfor-
mations of the form

....”’ ._.:1’

or of the form
ces@her ~> baeee, (8)

where (a, b) is any pair of symbols in « different from (¢,
i = 1) or (4,4 = 1). (This statement is a special case of Tits's
theorem [45], for the Coxeter group S, X S, X (S2)".)

In view of Theorem 13, it suffices to show that if
Theorem 23 holds for some factorization scheme i, then it
also holds for any factorization scheme i’ obtained from i
by one of the transformations (7) and (8). To see this, it is
enough to demonstrate that the collections of parameters
{tz} and {t';} in the equality

X5, (01) % (Ln2) = 5, (81 Xz (En2)

are related to each other by (invertible) subtraction-free
rational transformations. The latter is a direct consequence
of the commutation relations between elementary Jacobi
matrices, which can be found in [15, Section 2.2 and (4.17)].
The most important of these relations are the following.
First,fori=1,...,n— landj=1i + 1, we have

xi(t) 2@ (t2) xp(ts) x3(ts) = 23t 2(8) 2(13) X:(14),

where

bts ,, il

, _ lata
e Ty ty = Ta

= T =T, t5= T =ts + litsly.
The proof of this relation (which is the only nontrivial re-

lation associated with (8)) amounts to verifying that

1 64][t 0][1 0 1 0][es 071 &2
0 1|0 t5|lea 1| |21 2]]O &5]|lO 1]

Also, for any 7 and j such that i — j| = 1, we have the
following relation associated with (7):

it (t3) = 2 (E D)X (E5)x;(t5),
xi(t)x;(t2)xi(ts) = x2;(tDx(t0)x;(25),

where

312

1232
t,_23 o

1= th=T, t5= T=1t+1s
One sees that in the commutation relations above, the for-
mulas expressing the #; in terms of the ¢; are indeed sub-

traction-free. O
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Theorem 23 suggests an alternative approach to total
positivity criteria via the following factorization problem.:
for a given factorization scheme i, find the genericity con-
ditions on a matrix x assuring that x can be factored as

C) th) = xil(tl)”'x@nz(tnz), (9)

and compute explicitly the factorization parameters {; as
functions of x. Then, the total positivity of  will be equiv-
alent to the positivity of all these functions. Note that the
criterion in Theorem 9 was essentially obtained in this way:
for the factorization scheme iy, the factorization para-
meters {; are Laurent monomials in the initial minors of x
(cf. Lemma 6).

A complete solution of the factorization problem for an
arbitrary factorization scheme was given in [15, Theorems
1.9 and 4.9]. An interesting (and unexpected) feature of this
solution is that, in general, the ¢, are not Laurent mono-
mials in the minors of x; the word i,,.x iS quite exceptional
in this respect. It turns out, however, that the #, are Laurent
monomials in the minors of another matrix ' obtained
from x by the following birational transformation:

x = xi(ty, . .

x" = [xTwol s wo(x?) ~ twolwoerT] - (10)

Here, 27 denotes the transpose of x, and wy is the permu-
tation matrix with 1’s on the antidiagonal; finally, y =
[y]-[¥loly]+ denotes the Gaussian (LDU) decomposition of
a square matrix y provided such a decomposition exists.

In the special cases n = 2 and n = 3, the transformation
x — x' is given by

-1,.—1 —1
X11¥12 X21 Xa1
xr = 1
212 X2z det(x) ™!

and
[ an A2 13 1 1
31 T13 231 A1223 Z31
A1z Z3sliziz — det(x) g
x'= | 213 Q312 Aoz 12 Arz23 Ass 1o
1 T3 Ass s
213 Agp3 det(x)

The following theorem provides an alternative explana-
tion for the family of total positivity criteria in Theorem 16.

THEOREM 24 [15]. The right-hand side of (10) is well
defined for any x € G=o, moreover, the “twist map” x — x’
restricts to a bijection of G-q with itself.

Let x be a totally positive n X n matriz, and i a fac-
torization scheme. Then, the parameters ty, . . ., L2 ap-
pearing in (9) are related by an invertible monomial
transformation to the n? chamber minors (for the double
wiring diagram associated with i) of the twisted matrix
x' given by (10).

In [15], we explicitly describe the monomial transfor-
mation in Theorem 24, as well as its inverse, in terms of
the combinatorics of the double wiring diagram.



Double Bruhat Cells
Our presentation in this section will be a bit sketchy; de-
tails can be found in [15].

Theorem 23 provides a family of bijective (and biregu-
lar) parametrizations of the totally positive variety G- by
n?-tuples of positive real numbers. The totally non-nega-
tive variety G~ is much more complicated (note that the
map in Theorem 14 is surjective but not injective). In this
section, we show that G- splits naturally into “simple
pieces” corresponding to pairs of permutations from S,,.

THEOREM 25 [15]. Let x € G=¢ be a totally non-negative
matrix. Suppose that a word i in the alphabet A is such
that x can be factored as x = xi(ty, . . . , ty) With positive
ty, ..., tn, and i has the smallest number of uncircled en-
tries among all words with this property. Then, the sub-
word of i formed by entries from {1, . . ., m} (resp.
Sfrom {1, ..., n — 1}) is a reduced word for some permu-
tation u (resp. v) in S, Furthermore, the pair (u, v) is
uniquely determined by x (%.e., does not depend on the
choice of i).

In the situation of Theorem 25, we say that x is of type
(u, v). Let G¥{ C G=( denote the subset of all totally non-
negative matrices of type (u, v); thus, G=¢ is the disjoint
union of these subsets.

Every subvariety G%; has a family of parametrizations
similar to those in Theorem 23. Generalizing Definition 22,
let us call a word i in the alphabet A a factorization scheme
of type (u, v) if it contains each circled entry @) exactly
once, and the barred (resp. unbarred) entries of i form a
reduced word for u (resp. v); in particular, i is of length
£u) + €(v) + n.

THEOREM 26 [15]. For an arbitrary factorizalion
scheme i of type (u, v), the product map x; restricts to a
bijection between (€(u) + €(v) + n)-tuples of positive real
numbers and totally non-negative matrices of type (u, v).

Comparing Theorems 26 and 23, we see that
Gi’g’wo = Q=g (11

that is, the totally positive matrices are exactly the totally
non-negative matrices of type (w, w).

We now show that the splitting of G~ into the union of
varieties G¥y is closely related to the well-known Bruhat
decompositions of the general linear group G = GL,,. Let
B (resp. B_) denote the subgroup of upper-triangular (resp.
lower-triangular) matrices in G. Recall (see, e.g,, [1, §4])
that each of the double coset spaces B\G/B and B_\G/B_
has cardinality »!, and one can choose the permutation ma-
trices w € S,, as their common representatives. To every
two permutations u and v we associate the double Bruhat
cell G** = BuB N B_vB_; thus, G is the disjoint union of
the double Bruhat cells.

Each set G%? can be described by equations and in-
equalities of the form A(x) = 0 and/or A(x) # 0, for some
collection of minors A. (See [15, Proposition 4.1] or [16].) In
particular, the open double Bruhat cell G¥**0 is given by

nonvanishing of all “antiprincipal” minors A ;) (n—s+1,2(%)
and A[n_i+1’n]’[1,i](x) fori=1,...,n—- 1.

THEOREM 27 (15]. A totally non-negative matrix is of
type (u, v) if and only if it belongs to the double Bruhat
cell G%¥ o -

In view of (11), Theorem 27 provides the following sim-
ple test for total positivity of a totally non-negative matrix.

COROLLARY 28 [23]. A totally non-negative matrix x is
totally positive if and only if Ay m—i+1m@) # 0 and
A[n_iﬂyn],[l,i](x) * OfO?" 1= 1, R (3

The results obtained above for GL3™0 = G~ (as well as
their proofs) extend to the variety G for an arbitrary pair
of permutations u, v € S,,. In particular, the factorization
schemes for (u, v) (or rather their uncircled parts) can be
visualized by double wiring diagrams of type (u, v) in the
same way as before, except now any two pseudolines in-
tersect at most once, and the lines are permuted “accord-
ing to » and ».” Every such diagram has €(u) + €(v) +
chamber minors, and their positivity provides a criterion
for a matrix x € G*? to belong to G%;. The factorization
problem and its solution provided by Theorem 24 extend
to any double Bruhat cell, with an appropriate modifica-
tion of the twist map x — x'. The details can be found in
[15].

If the double Bruhat cell containing a matrix x € G is
not specified, then testing x for total non-negativity be-
comes a much harder problem; in fact, every known crite-
rion involves exponentially many (in »n) minors. (See [8]
for related complexity results.) The following corollary of
a result by Cryer [10] was given by Gasca and Peiia [24].

THEOREM 29. An invertible square matrix is tolally
non-negative if and only if all its minors occupying sev-
eral initial rows or several initial columns are non-neg-
ative, and all its leading principal minors are positive.

This criterion involves 2**! —  — 2 minors, which is
roughly the square root of the total number of minors. We
do not know whether this criterion is optimal.

Oscillatory Matrices

We conclude the article by discussing the intermediate
class of oscillatory matrices that was introduced and in-
tensively studied by Gantmacher and Krein [20, 22]. A ma-
trix is oscillatory if it is totally non-negative while some
power of it is totally positive; thus, the set of oscillatory
matrices contains G- and is contained in G-(. The fol-
lowing theorem provides several equivalent characteriza-
tions of oscillatory matrices; the equivalence of (a)-(c) was
proved in [22], and the rest of the conditions were given in
[17].

THEOREM 30 [17,22]. For an invertible totally non-neg-
ative n X n matrix x, the following are equivalent:

(a) x is oscillatory;

®) 341> 0and 2,41, >0fori=1,...,n—1;
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(c) 21 is totally positive;
(d) x is not block-triangular (¢f. Figure 11);

* % 00 0 A I
= % 00 0 * ok ok ko
® k% ko 0 0 * % *
* % & kK 00 * % *
EE T Lo @ * * *J

Figure 11. Block-triangular matrices.

(e) x can be factored as x = xi(ty, . . . , ), for positive t;,
..., ty and a word i that contains every symbol of the
form i or i at least once;

() x lies in a double Bruhat cell G*°, where both u and
v do not fix any set {1,...,1),fori=1,...,n— 1.

Proof. Obviously, (c) = (a) = (d). Let us prove the equiv-
alence of (b), (d), and (e). By Theorem 12, x can be rep-
resented as the weight matrix of some planar network I'(i)
with positive edge weights. Then, (b) means that sink ¢ +
1 (resp. i) can be reached from source 7 (resp. 7 + 1), for
all 4; (d) means that for any i, at least one sink j > 1 is
reachable from a source h = 4, and at least one sink k < 4
is reachable from a source j > 7; and (e) means that I'(i)
contains positively and negatively sloped edges connecting

any two consecutive levels 7 and ¢ + 1. These three state-
ments are easily seen to be equivalent.

By Theorem 27, (e) < (f). It remains to show that (e) =
(). In view of Theorem 26 and (11), this can be restated
as follows: given any permutation j of the entries 1, . . . |
n — 1, prove that the concatenation j*~! of n — 1 copies of
j contains a reduced word for wy. Let j’ denote the subse-
quence of j*~! constructed as follows. First, j’ contains all
n — 1 entries of j*~! which are equal to » — 1. Second, j’
contains the n — 2 entries equal to n — 2 which interlace
the n — 1 entries chosen at the previous step. We then in-
clude n» — 3 interlacing entries equal to 7 — 3, and so forth.
The resulting word j’ of length (%) will be a reduced word
for wy, for it will be equivalent, under the transformations
(8), to the lexicographically maximal reduced word (n — 1,
n—2,n—1,n—-3n-2,n—-1,...) |
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