ENUMERATIVE COMBINATORICS (SF2708) 2012

To be handed in no later than March 20. You may cooperate but you must write your solutions by yourselves. Please write full proofs!

- (1) Exercise 1.122 of Stanley,
- (2) Exercise 1.184 a of Stanley,
- (3) Let $m, n \ge 1$ be integers. Prove the identity

$$\sum_{k=0}^{n} \binom{n}{k} k^{n-k} |\{\pi \in \mathfrak{S}_k \mid \pi^m = id\}| = |\{f : [n] \to [n] \mid f^{m+1} = f\}|.$$

Here $f^i = f \circ f \circ \cdots \circ f$, *i* times. I suggest you try the case m = 1 first and then generalize.

(4) Define the *drop set* of a permutation $\pi \in \mathfrak{S}_n$ to be $\operatorname{Dr}(\pi) = \{i : \pi(i) < i\}$. Let $\gamma_n : 2^{[n]} \to \mathbb{N}$ be defined by $\gamma_n(S) = |\{\pi \in \mathfrak{S}_n : \operatorname{Dr}(\pi) = S\}|$. For $S = \{s_1 < \cdots < s_k\} \subseteq [n]$, let $\eta_n(S) = (n-k)!(s_1-1)\cdots(s_k-k)$. Prove that

$$\gamma_n(S) = \sum_{T \supseteq S} (-1)^{|T \setminus S|} \eta_n(T).$$

(5) Let k and n be positive integers. Prove that all minors of the matrix (with binomial numbers)

$$\left(\binom{k+i}{k+j-i}\right)_{0\leq i,j\leq n}$$

are nonnegative. Here $\binom{k+i}{k+j-i} = 0$ if k+j-i < 0.

(6) Let $B(n,k,\ell)$ be the number of $k \times \ell$ matrices with entries from $\{0,1,\ldots,n\}$ and such that each column and each row is weakly increasing. Express $B(n,k,\ell)$ as a determinant. *Hint:*

$$\left(\begin{array}{rrrr}1 & 2 & 3\\1 & 1 & 3\\0 & 1 & 2\end{array}\right) \qquad \overbrace{s_{1}}^{2\cdot 5} \\ \overbrace{$$

(7) Exercise 2.25 a,b of Stanley.