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(1) a) Show directly from the group axioms that the unit ofaugris unique and that there
are the cancellation rules

ab=ac=b=c and ac=bc= a=0.

@)
b) Show that the symmetry group of the regular tetrahedragoimorphic tod,. (2)
c) Show that the alternating groufy, for n > 3 is generated by th&cycles

(123),(234),...,(n—2n—1n).
2

SOLUTION

a). Lete ande’ be units in a grougs. Then we have thate’ = ¢’ sincee is a (left) unit,
but alsoee’ = e sincee’ is a (right) unit. Hence = ¢’ and the unit is unique.
Since there is an inverse & we have that

ab=ac = a '(ab) = a '(ac) = (a ta)b=(a"ta)b=>eb=ec=>b=rc

where we used associativity, that'a = e and thate is a unit.
We do similarily with the inverse to and get

ac =bc = (ac)c™t = (be)e ™t = alcc™!) =blecc™!) = ae =be = a=1b

b). Let G be the symmetry group of the tetrahedron. Number the faces3, 4. Each
symmetry will give a permutation ity in this way. The composition of symmetries
corresponds to compositions of the permutations. Henceave & homomorphisnd :

G — S,. Since only the identity symmetry preserves all the fadeskernel is trivial
and we deduce that the homomorphism is injective.

No transpositions can be in the image, since there is nooot#tat fixes two faces
but interchanges the remaining two. On the other han@&-&jicles occur in the image,
since we have the rotations that fixes one of the verticesetdtrahedron. Thus the
image, which is a subgroup, has to be the alternating grbu®ince an injective homo-
morphism is an isomorphism onto its image, we have estaaifiat’s is isomorphic to
Ay.
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c). We know thats,, is generated by the adjacent transpositions,= (12),s, =
(23),...,8,-1 = (n— 1n). (We can see this by sorting lists.)

A, are all the even permutations i, which means all the permutations that can be
written as a product of an even number of adjacent transpositHence4,, is generated
by all the products;s;, wherei # j.

We can write the givef-cycles as products of transpositions in the following way:

(li+1i+2)= Qi+ )i+ 1i+2) = s;8i11
Hence we can write
sisj = (SiSi1)(Siv18i42) - -+ (85-155)
=(i+1i+2)(i+1i+2i+3)---(J—1jj+2)
if ¢ < j and fori < j we haves;s; = (s;s;)~".
Thus any even permutation is a product of the giyaycles.

(2) a) Define what it means for a grodpto act on a sek and show that such an action
gives a group homomorphisi : G — Sy, whereSy is the group of bijective
functions fromX to X under composition. (2

b) Recall that the dihedral group),,,, can be presented as a factor group of the free
groupF'[{r, s}] with the relations™ = s?> = rsrs = 1. Let X be the set of quadratic
complex polynomialg(x) in one variable and let = >/, Show that

rq(z) = §%q(E%r) and s.q(z) = 2%q(1/x)
defines a well-defined action éf,, on X. (4)

SOLUTION

a). An action of a groug> on a setX is a function
GxX — X

(a,x) +— g

satisfying
i) ex =z, foralz e X.
i1) (ab).x = a.(b.x), foralla,b € G and allz € X.
When we have such an action, we get a homomorpdisnty — S, by

®(a)(x) = x.qa, Va € G,Vx € X.

The function®(a) : X — X is bijective, since it has an inversd@r(a™!). In fact, we
have that

P(a N (®(a)(z)) =a '.(a.2) = (a ta)r =ecx =2, Vo e X.
We have thatb is a homomorphism since
®(ab).x = (ab).x = a.(b.x) = P(a)(b.zx) = P(a)(P(b)(2)),
foralla,b € Gandallr € X.
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b). The action ofr ands defines a homomorphism from the free grddgdr, s} to S,
since the funtions given by

q(x) — £ 2q(¢r) and g(z) — a?q(1/z)
are invertible with inverses

g(z) = q(¢7'x) and g(x) — 2¢(1/x).
We check that the relations are in the kernel of this map by

rhq(z) ="l (rg(e) =T g(En)) = R (e g(E7)
= =Eq(8"r) = q(a),

and
s%.q(z) = s.(s.q(x)) = s.(¢q(1/2)) = 2°((1/x)*q(x)) = q().
Furthermore, we have that
(rs).q(z) = r.(aq(1/2)) = € 2((€x)?q(€ /) = E2a%q(¢ /)
and hence
(rs)?.q(z) = €2 (x ™" [2)?q(¢71/ (€7 ) = 2?20 %q(x) = q(a).

Hence we have that the kernel of the homomorphisi{r, s}|] — Sx contains the
relations and thus we have a well defined homomorphism

D2n — SX

accoding to problem 3.

(3) a) Showthatifb : G — H is a group homomorphism andif is a normal subgroup
of G contained irker ®, then® factors through the natural quotient homomorphism

U : G — G/ K, which sends an element 6fto the coset containing it. 2

b) Use the resultin a) to show that the sign homomorphigm; S, — {41}, factors

via Sy — S3. (Hint: useK = {Id, (12)(34),(13)(24),(14)(23)}.) 4)
SOLUTION

a). Define the mapl : G/K — H by V(aK) = ®(a). This is well-defined since
aK = bK is equivalenttd—'a € K, which implies that(b'a) = ey sinceK C ker .
Hence we get thab(b) ' ®(a) = ey, i.e.,P(b) = ®(a).

It is a homomorphism since

U(aK % bK) = W(abK) = ®(ab) = ®(a)®(b) = V(aK )V (bK),

for all « K, 0K € G/K. Now we have thatPhi(a) = V(aK) = ¥(Z(a), where= :
G — G/K is the homomorphism given i§(a) = oK, for a € G. This means that
® = ¥ o = and® factors througle
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b). Let K = {Id, (12)(34),(13)(24),(14)(23)}. SinceK consists of all permutations
of type[1?] = 1+ 1+ 1+1and[2?] = 2+ 2itis closed under conjugation. Furthermore,
it is closed under composition and under taking inversestiey all satisfyr> = Id and
we have that

and

(13)(24)0(14)(23) =(12)(34).
Thus K is a normal subgroup and since it consists of only even petious, it is con-
tained in the kernel, of the sign-homomorphism. Thus by the previous problem,
factors througtb, — S,/ K. Now S,/ K is a group of ordefS,|/| K| = 24/4 = 6. Sin-
ce S, does not contain any element of order greater thahe factor grougs,/ K cannot
do that either. Hencg,/ K is not cyclic and the only possibility is tha&t,/ K = S5 since
there is only one non-cyclic group of ordgup to isomorphism. We have thus concluded
that the sign homomorphism factors through




