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Preface

The world is continuous, but the mind is discrete.

David Mumford

We seek to bridge some critical gaps between various fields of mathematics by
studying the interplay between the continuous volume and the discrete vol-
ume of polytopes. Examples of polytopes in three dimensions include crystals,
boxes, tetrahedra, and any convex object whose faces are all flat. It is amusing
to see how many problems in combinatorics, number theory, and many other
mathematical areas can be recast in the language of polytopes that exist in
some Euclidean space. Conversely, the versatile structure of polytopes gives
us number-theoretic and combinatorial information that flows naturally from
their geometry.

Fig. 0.1. Continuous and discrete volume.

The discrete volume of a body P can be described intuitively as the number
of grid points that lie inside P, given a fixed grid in Euclidean space. The
continuous volume of P has the usual intuitive meaning of volume that we
attach to everyday objects we see in the real world.
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Indeed, the difference between the two realizations of volume can be
thought of in physical terms as follows. On the one hand, the quantum-
level grid imposed by the molecular structure of reality gives us a discrete
notion of space and hence discrete volume. On the other hand, the New-
tonian notion of continuous space gives us the continuous volume. We see
things continuously at the Newtonian level, but in practice we often compute
things discretely at the quantum level. Mathematically, the grid we impose
in space—corresponding to the grid formed by the atoms that make up an
object—helps us compute the usual continuous volume in very surprising and
charming ways, as we shall discover.

In order to see the continuous/discrete interplay come to life among the
three fields of combinatorics, number theory, and geometry, we begin our fo-
cus with the simple-to-state coin-exchange problem of Frobenius. The beauty
of this concrete problem is that it is easy to grasp, it provides a useful com-
putational tool, and yet it has most of the ingredients of the deeper theories
that are developed here.

In the first chapter, we give detailed formulas that arise naturally from
the Frobenius coin-exchange problem in order to demonstrate the intercon-
nections between the three fields mentioned above. The coin-exchange problem
provides a scaffold for identifying the connections between these fields. In the
ensuing chapters we shed this scaffolding and focus on the interconnections
themselves:

(1) Enumeration of integer points in polyhedra—combinatorics,
(2) Dedekind sums and finite Fourier series—number theory,
(3) Polygons and polytopes—geometry.

We place a strong emphasis on computational techniques, and on com-
puting volumes by counting integer points using various old and new ideas.
Thus, the formulas we get should not only be pretty (which they are!) but
should also allow us to efficiently compute volumes by using some nice func-
tions. In the very rare instances of mathematical exposition when we have a
formulation that is both “easy to write” and “quickly computable,” we have
found a mathematical nugget. We have endeavored to fill this book with such
mathematical nuggets.

Much of the material in this book is developed by the reader in the more
than 200 exercises. Most chapters contain warm-up exercises that do not de-
pend on the material in the chapter and can be assigned before the chapter
is read. Some exercises are central, in the sense that current or later material
depends on them. Those exercises are marked with ♣, and we give detailed
hints for them at the end of the book. Most chapters also contain lists of open
research problems.

It turns out that even a fifth grader can write an interesting paper on
integer-point enumeration [145], while the subject lends itself to deep inves-
tigations that attract the current efforts of leading researchers. Thus, it is an
area of mathematics that attracts our innocent childhood questions as well
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as our refined insight and deeper curiosity. The level of study is highly ap-
propriate for a junior/senior undergraduate course in mathematics. In fact,
this book is ideally suited to be used for a capstone course. Because the three
topics outlined above lend themselves to more sophisticated exploration, our
book has also been used effectively for an introductory graduate course.

To help the reader fully appreciate the scope of the connections between
the continuous volume and the discrete volume, we begin the discourse in two
dimensions, where we can easily draw pictures and quickly experiment. We
gently introduce the functions we need in higher dimensions (Dedekind sums)
by looking at the coin-exchange problem geometrically as the discrete volume
of a generalized triangle, called a simplex.

The initial techniques are quite simple, essentially nothing more than ex-
panding rational functions into partial fractions. Thus, the book is easily ac-
cessible to a student who has completed a standard college calculus and linear
algebra curriculum. It would be useful to have a basic understanding of par-
tial fraction expansions, infinite series, open and closed sets in Rd, complex
numbers (in particular, roots of unity), and modular arithmetic.

An important computational tool that is harnessed throughout the text is
the generating function f(x) =

∑∞
m=0 a(m)xm, where the a(m)’s form any

sequence of numbers that we are interested in analyzing. When the infinite
sequence of numbers a(m),m = 0, 1, 2, . . . , is embedded into a single generat-
ing function f(x), it is often true that for hitherto unforeseen reasons, we can
rewrite the whole sum f(x) in a surprisingly compact form. It is the rewriting
of these generating functions that allows us to understand the combinatorics
of the relevant sequence a(m). For us, the sequence of numbers might be the
number of ways to partition an integer into given coin denominations, or the
number of points in an increasingly large body, and so on. Here we find yet
another example of the interplay between the discrete and the continuous: we
are given a discrete set of numbers a(m), and we then carry out analysis on
the generating function f(x) in the continuous variable x.

What Is the Discrete Volume?

The physically intuitive description of the discrete volume given above rests
on a sound mathematical footing as soon as we introduce the notion of a
lattice. The grid is captured mathematically as the collection of all integer
points in Euclidean space, namely Zd = {(x1, . . . , xd) : all xk ∈ Z}. This
discrete collection of equally spaced points is called a lattice. If we are given
a geometric body P, its discrete volume is simply defined as the number of
lattice points inside P, that is, the number of elements in the set Zd ∩ P.

Intuitively, if we shrink the lattice by a factor k and count the number
of newly shrunken lattice points inside P, we obtain a better approximation
for the volume of P, relative to the volume of a single cell of the shrunken
lattice. It turns out that after the lattice is shrunk by an integer factor k, the
number #

(
P ∩ 1

kZd
)

of shrunken lattice points inside an integral polytope P
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is magically a polynomial in k. This counting function #
(
P ∩ 1

kZd
)

is known
as the Ehrhart polynomial of P. If we kept shrinking the lattice by taking a
limit, we would of course end up with the continuous volume that is given by
the usual Riemannian integral definition of calculus:

volP = lim
k→∞

#
(
P ∩ 1

k
Zd
)

1
kd

.

However, pausing at fixed dilations of the lattice gives surprising flexibility
for the computation of the volume of P and for the number of lattice points
that are contained in P.

Thus, when the body P is an integral polytope, the error terms that mea-
sure the discrepancy between the discrete volume and the usual continuous
volume are quite nice; they are given by Ehrhart polynomials, and these enu-
meration polynomials are the content of Chapter 3.

The Fourier–Dedekind Sums Are the Building Blocks: Number
Theory

Every polytope has a discrete volume that is expressible in terms of certain
finite sums that are known as Dedekind sums. Before giving their definition, we
first motivate these sums with some examples that illustrate their building-
block behavior for lattice-point enumeration. To be concrete, consider for
example a 1-dimensional polytope given by an interval P = [0, a], where a is
any positive real number. It is clear that we need the greatest integer function
bxc to help us enumerate the lattice points in P, and indeed the answer is
bac+ 1.

Next, consider a 1-dimensional line segment that is sitting in the 2-
dimensional plane. Let’s pick our segment P so that it begins at the origin
and ends at the lattice point (c, d). As becomes apparent after a moment’s
thought, the number of lattice points on this finite line segment involves an
old friend, namely the greatest common divisor of c and d. The exact number
of lattice points on the line segment is gcd(c, d) + 1.

To unify both of these examples, consider a triangle P in the plane whose
vertices have rational coordinates. It turns out that a certain finite sum is
completely natural because it simultaneously extends both the greatest integer
function and the greatest common divisor, although the latter is less obvious.
An example of a Dedekind sum in two dimensions that arises naturally in the
formula for the discrete volume of the rational triangle P is the following:

s(a, b) =
b−1∑
m=1

(
m

b
− 1

2

)(
ma

b
−
⌊ma
b

⌋
− 1

2

)
.

The definition makes use of the greatest integer function. Why do these sums
also resemble the greatest common divisor? Luckily, the Dedekind sums sat-
isfy a remarkable reciprocity law, quite similar to the Euclidean algorithm
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that computes the gcd. This reciprocity law allows the Dedekind sums to be
computed in roughly log(b) steps rather than the b steps that are implied by
the definition above. The reciprocity law for s(a, b) lies at the heart of some
amazing number theory that we treat in an elementary fashion, but that also
comes from the deeper subject of modular forms and other modern tools.

We find ourselves in the fortunate position of viewing an important tip of
an enormous mountain of ideas, submerged by the waters of geometry. As we
delve more deeply into these waters, more and more hidden beauty unfolds
for us, and the Dedekind sums are an indispensable tool that allow us to see
further as the waters get deeper.

The Relevant Solids Are Polytopes: Geometry

The examples we have used, namely line segments and polygons in the plane,
are special cases of polytopes in all dimensions. One way to define a polytope
is to consider the convex hull of a finite collection of points in Euclidean
space Rd. That is, suppose someone gives us a set of points v1, . . . ,vn in
Rd. The polytope determined by the given points vj is defined by all linear
combinations c1v1+c2v2+· · ·+cnvn, where the coefficients cj are nonnegative
real numbers that satisfy the relation c1 + c2 + · · ·+ cn = 1. This construction
is called the vertex description of the polytope.

There is another equivalent definition, called the hyperplane description
of the polytope. Namely, if someone hands us the linear inequalities that
define a finite collection of half-spaces in Rd, we can define the associated
polytope as the simultaneous intersection of the half-spaces defined by the
given inequalities.

There are some “obvious” facts about polytopes that are intuitively clear
to most students but are, in fact, subtle and often nontrivial to prove from first
principles. Two of these facts, namely that every polytope has both a vertex
and a hyperplane description, and that every polytope can be triangulated,
form a crucial basis to the material we will develop in this book. We carefully
prove both facts in the appendices. The two main statements in the appen-
dices are intuitively clear, so that novices can skip over their proofs without
any detriment to their ability to compute continuous and discrete volumes of
polytopes. All theorems in the text (including those in the appendices) are
proved from first principles, with the exception of the last chapter, where we
assume basic notions from complex analysis.

The text naturally flows into two parts, which we now explicate.

Part I

We have taken great care in making the content of the chapters flow seamlessly
from one to the next, over the span of the first six chapters.

• Chapters 1 and 2 introduce some basic notions of generating functions, in
the visually compelling context of discrete geometry, with an abundance
of detailed motivating examples.
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Chapter 10
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Summation in Rd

Chapter 11
Solid Angles

Fig. 0.2. The partially ordered set of chapter dependencies.

• Chapters 3, 4, and 5 develop the full Ehrhart theory of discrete volumes
of rational polytopes.

• Chapter 6 is a “dessert” chapter, in that it enables us to use the theory
developed to treat the enumeration of magic squares, an ancient topic that
enjoys active current research.

Part II

We now begin anew.

• Having attained experience with numerous examples and results about in-
teger polytopes, we are ready to learn about the Dedekind sums of Chap-
ter 8, which form the atomic pieces of the discrete volume polynomials. On



Preface XIII

the other hand, to fully understand Dedekind sums, we need to understand
finite Fourier analysis, which we therefore develop from first principles in
Chapter 7, using only partial fractions.

• Chapter 9 answers a simple yet tricky question: how does the finite ge-
ometric series in one dimension extend to higher-dimensional polytopes?
Brion’s theorem give the elegant and decisive answer to this question.

• Chapter 10 extends the interplay between the continuous volume and the
discrete volume of a polytope (already studied in detail in Part I) by
introducing Euler–Maclaurin summation formulas in all dimensions. These
formulas compare the continuous Fourier transform of a polytope to its
discrete Fourier transform, yet the material is completely self-contained.

• Chapter 11 develops an exciting extension of Ehrhart theory that defines
and studies the solid angles of a polytope; these are the natural extensions
of 2-dimensional angles to higher dimensions.

• Finally, we end with another “dessert” chapter that uses complex ana-
lytic methods to find an integral formula for the discrepancy between the
discrete and continuous areas enclosed by a closed curve in the plane.

Because polytopes are both theoretically useful (in triangulated manifolds,
for example) and practically essential (in computer graphics, for example) we
use them to link results in number theory and combinatorics. There are many
research papers being written on these interconnections, even as we speak,
and it is impossible to capture them all here; however, we hope that these
modest beginnings will give the reader who is unfamiliar with these fields a
good sense of their beauty, inexorable connectedness, and utility. We have
written a gentle invitation to what we consider a gorgeous world of counting
and of links between the fields of combinatorics, number theory, and geometry
for the general mathematical reader.

There are a number of excellent books that have a nontrivial intersec-
tion with ours and contain material that complements the topics discussed
here. We heartily recommend the monographs of Barvinok [12] (on general
convexity topics), Ehrhart [81] (the historic introduction to Ehrhart theory),
Ewald [82] (on connections to algebraic geometry), Hibi [96] (on the interplay
of algebraic combinatorics with polytopes), Miller–Sturmfels [132] (on com-
putational commutative algebra), and Stanley [172] (on general enumerative
problems in combinatorics).
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Part I

The Essentials of Discrete Volume
Computations





1

The Coin-Exchange Problem of Frobenius

The full beauty of the subject of generating functions emerges only from tuning in
on both channels: the discrete and the continuous.

Herbert Wilf [187]

Suppose we’re interested in an infinite sequence of numbers (ak)∞k=0 that arises
geometrically or recursively. Is there a “good formula” for ak as a function of
k? Are there identities involving various ak’s? Embedding this sequence into
the generating function

F (z) =
∑
k≥0

ak z
k

allows us to retrieve answers to the questions above in a surprisingly quick
and elegant way. We can think of F (z) as lifting our sequence ak from its
discrete setting into the continuous world of functions.

1.1 Why Use Generating Functions?

To illustrate these concepts, we warm up with the classic example of the
Fibonacci sequence fk, named after Leonardo Pisano Fibonacci (1170–
1250?)1 and defined by the recursion

f0 = 0, f1 = 1, and fk+2 = fk+1 + fk for k ≥ 0 .

This gives the sequence (fk)∞k=0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ) (see also
[165, Sequence A000045]). Now let’s see what generating functions can do for
us. Let
1 For more information about Fibonacci, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fibonacci.html.
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F (z) =
∑
k≥0

fk z
k.

We embed both sides of the recursion identity into their generating functions:∑
k≥0

fk+2 z
k =

∑
k≥0

(fk+1 + fk) zk =
∑
k≥0

fk+1 z
k +

∑
k≥0

fk z
k. (1.1)

The left–hand side of (1.1) is∑
k≥0

fk+2 z
k =

1
z2

∑
k≥0

fk+2 z
k+2 =

1
z2

∑
k≥2

fk z
k =

1
z2

(F (z)− z) ,

while the right–hand side of (1.1) is∑
k≥0

fk+1 z
k +

∑
k≥0

fk z
k =

1
z
F (z) + F (z) .

So (1.1) can be restated as

1
z2

(F (z)− z) =
1
z
F (z) + F (z) ,

or
F (z) =

z

1− z − z2
.

It’s fun to check (e.g., with a computer) that when we expand the function F
into a power series, we indeed obtain the Fibonacci numbers as coefficients:

z

1− z − z2
= z + z2 + 2 z3 + 3 z4 + 5 z5 + 8 z6 + 13 z7 + 21 z8 + 34 z9 + · · · .

Now we use our favorite method of handling rational functions: the par-
tial fraction expansion. In our case, the denominator factors as 1 − z − z2 =(

1− 1+
√

5
2 z

)(
1− 1−

√
5

2 z
)

, and the partial fraction expansion is (see Exer-
cise 1.1)

F (z) =
z

1− z − z2
=

1/
√

5

1− 1+
√

5
2 z

− 1/
√

5

1− 1−
√

5
2 z

. (1.2)

The two terms suggest the use of the geometric series∑
k≥0

xk =
1

1− x
(1.3)

(see Exercise 1.2) with x = 1+
√

5
2 z and x = 1−

√
5

2 z, respectively:

F (z) =
z

1− z − z2
=

1√
5

∑
k≥0

(
1 +
√

5
2

z

)k
− 1√

5

∑
k≥0

(
1−
√

5
2

z

)k

=
∑
k≥0

1√
5

(1 +
√

5
2

)k
−

(
1−
√

5
2

)k zk.
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Comparing the coefficients of zk in the definition of F (z) =
∑
k≥0 fk z

k and
the new expression above for F (z), we discover the closed form expression for
the Fibonacci sequence

fk =
1√
5

(
1 +
√

5
2

)k
− 1√

5

(
1−
√

5
2

)k
.

This method of decomposing a rational generating function into partial
fractions is one of our key tools. Because we will use partial fractions time
and again throughout this book, we record the result on which this method
is based.

Theorem 1.1 (Partial fraction expansion). Given any rational function

F (z) :=
p(z)∏m

k=1 (z − ak)ek
,

where p is a polynomial of degree less than e1 + e2 + · · ·+ em and the ak’s are
distinct, there exists a decomposition

F (z) =
m∑
k=1

(
ck,1
z − ak

+
ck,2

(z − ak)2 + · · ·+ ck,ek
(z − ak)ek

)
,

where ck,j ∈ C are unique.

One possible proof of this theorem is based on the fact that the polynomials
form a Euclidean domain. For readers who are acquainted with this notion,
we outline this proof in Exercise 1.35.

1.2 Two Coins

Let’s imagine that we introduce a new coin system. Instead of using pennies,
nickels, dimes, and quarters, let’s say we agree on using 4-cent, 7-cent, 9-cent,
and 34-cent coins. The reader might point out the following flaw of this new
system: certain amounts cannot be changed (that is, created with the available
coins), for example, 2 or 5 cents. On the other hand, this deficiency makes our
new coin system more interesting than the old one, because we can ask the
question, “which amounts can be changed?” In fact, we will prove in Exercise
1.20 that there are only finitely many integer amounts that cannot be changed
using our new coin system. A natural question, first tackled by Ferdinand
Georg Frobenius (1849–1917),2 and James Joseph Sylvester (1814–1897)3 is,
2 For more information about Frobenius, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Frobenius.html.

3 For more information about Sylvester, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Sylvester.html.
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“what is the largest amount that cannot be changed?” As mathematicians,
we like to keep questions as general as possible, and so we ask, given coins of
denominations a1, a2, . . . , ad, which are positive integers without any common
factor, can you give a formula for the largest amount that cannot be changed
using the coins a1, a2, . . . , ad? This problem is known as the Frobenius coin-
exchange problem.

To be precise, suppose we’re given a set of positive integers

A = {a1, a2, . . . , ad}

with gcd (a1, a2, . . . , ad) = 1 and we call an integer n representable if there
exist nonnegative integers m1,m2, . . . ,md such that

n = m1a1 + · · ·+mdad .

In the language of coins, this means that we can change the amount n us-
ing the coins a1, a2, . . . , ad. The Frobenius problem (often called the linear
Diophantine problem of Frobenius) asks us to find the largest integer that is
not representable. We call this largest integer the Frobenius number and
denote it by g(a1, . . . , ad). The following theorem gives us a pretty formula
for d = 2.

Theorem 1.2. If a1 and a2 are relatively prime positive integers, then

g (a1, a2) = a1a2 − a1 − a2 .

This simple-looking formula for g inspired a great deal of research into
formulas for g (a1, a2, . . . , ad) with only limited success; see the notes at the
end of this chapter. For d = 2, Sylvester gave the following result.

Theorem 1.3 (Sylvester’s theorem). Let a1 and a2 be relatively prime
positive integers. Exactly half of the integers between 1 and (a1 − 1) (a2 − 1)
are representable.

Our goal in this chapter is to prove these two theorems (and a little more)
using the machinery of partial fractions. We approach the Frobenius problem
through the study of the restricted partition function

pA(n) := #
{

(m1, . . . ,md) ∈ Zd : all mj ≥ 0, m1a1 + · · ·+mdad = n
}
,

the number of partitions of n using only the elements of A as parts.4 In
view of this partition function, g(a1, . . . , ad) is the largest integer n for which
pA(n) = 0.

There is a beautiful geometric interpretation of the restricted partition
function. The geometric description begins with the set
4 A partition of a positive integer n is a multiset (i.e., a set in which we allow

repetition) {n1, n2, . . . , nk} of positive integers such that n = n1 + n2 + · · ·+ nk.
The numbers n1, n2, . . . , nk are called the parts of the partition.
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P =
{

(x1, . . . , xd) ∈ Rd : all xj ≥ 0, x1a1 + · · ·+ xdad = 1
}
. (1.4)

The nth dilate of any set S ⊆ Rd is

{(nx1, nx2, . . . , nxd) : (x1, . . . , xd) ∈ S} .

The function pA(n) counts precisely those integer points that lie in the nth

integer dilate of the body P. The dilation process in this context is tantamount
to replacing x1a1+· · ·+xdad = 1 in the definition of P by x1a1+· · ·+xdad = n.
The set P turns out to be a polytope. We can easily picture P and its dilates
for dimension d ≤ 3; Figure 1.1 shows the three-dimensional case.

x

y

z

1

a

1

b

1

c

n

a

n

b

n

c

Fig. 1.1. d = 3.

1.3 Partial Fractions and a Surprising Formula

We first concentrate on the case d = 2 and study
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p{a,b}(n) = #
{

(k, l) ∈ Z2 : k, l ≥ 0, ak + bl = n
}
.

Recall that we require a and b to be relatively prime. To begin our discus-
sion, we start playing with generating functions. Consider the product of the
following two geometric series:(

1
1− za

)(
1

1− zb

)
=
(
1 + za + z2a + · · ·

) (
1 + zb + z2b + · · ·

)
(see Exercise 1.2). If we multiply out all the terms we’ll get a power series all
of whose exponents are linear combinations of a and b. In fact, the coefficient
of zn in this power series counts the number of ways that n can be written as
a nonnegative linear combination of a and b. In other words, these coefficients
are precisely evaluations of our counting function p{a,b}:(

1
1− za

)(
1

1− zb

)
=
∑
k≥0

∑
l≥0

zakzbl =
∑
n≥0

p{a,b}(n) zn.

So this function is the generating function for the sequence of integers(
p{a,b}(n)

)∞
n=0

. The idea is now to study the compact function on the left.
We would like to uncover an interesting formula for p{a,b}(n) by looking at

the generating function on the left more closely. To make our computational
life easier, we study the constant term of a related series; namely, p{a,b}(n) is
the constant term of

f(z) :=
1

(1− za) (1− zb) zn
=
∑
k≥0

p{a,b}(k) zk−n.

The latter series is not quite a power series, since it includes terms with neg-
ative exponents. These series are called Laurent series, after Pierre Alphonse
Laurent (1813–1854). For a power series (centered at 0), we could simply eval-
uate the corresponding function at z = 0 to obtain the constant term; once
we have negative exponents, such an evaluation is not possible. However, if
we first subtract all terms with negative exponents, we’ll get a power series
whose constant term (which remains unchanged) can now be computed by
evaluating this remaining function at z = 0.

To be able to compute this constant term, we will expand f into partial
fractions. As a warm-up to partial fraction decompositions, we first work out
a one-dimensional example. Let’s denote the first ath root of unity by

ξa := e2πi/a = cos
2π
a

+ i sin
2π
a

;

then all the ath roots of unity are 1, ξa, ξ2
a, ξ

3
a, . . . , ξ

a−1
a .

Example 1.4. Let’s find the partial fraction expansion of 1
1−za . The poles of

this function are located at all ath roots of unity ξka for k = 0, 1, . . . , a− 1. So
we expand
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1
1− za

=
a−1∑
k=0

Ck
z − ξka

.

How do we find the coefficients Ck? Well,

Ck = lim
z→ξka

(
z − ξka

)( 1
1− za

)
= lim
z→ξka

1
−a za−1

= −ξ
k
a

a
,

where we have used L’Hôpital’s rule in the penultimate equality. Therefore,
we arrive at the expansion

1
1− za

= −1
a

a−1∑
k=0

ξka
z − ξka

. ut

Returning to restricted partitions, the poles of f are located at z = 0 with
multiplicity n, at z = 1 with multiplicity 2, and at all the other ath and bth

roots of unity with multiplicity 1 because a and b are relatively prime. Hence
our partial fraction expansion looks like

f(z) =
A1

z
+
A2

z2
+· · ·+An

zn
+

B1

z − 1
+

B2

(z − 1)2
+
a−1∑
k=1

Ck
z − ξka

+
b−1∑
j=1

Dj

z − ξjb
. (1.5)

We invite the reader to compute the coefficients (Exercise 1.21)

Ck = − 1

a (1− ξkba ) ξk(n−1)
a

, (1.6)

Dj = − 1

b
(

1− ξjab
)
ξ
j(n−1)
b

.

To compute B2, we multiply both sides of (1.5) by (z−1)2 and take the limit
as z → 1 to obtain

B2 = lim
z→1

(z − 1)2

(1− za) (1− zb) zn
=

1
ab
,

by applying L’Hôpital’s rule twice, for example. For the more interesting con-
stant B1, we compute

B1 = lim
z→1

(z − 1)

(
1

(1− za) (1− zb) zn
−

1
ab

(z − 1)2

)
=

1
ab
− 1

2a
− 1

2b
− n

ab
,

again by applying L’Hôpital’s rule.
We don’t need to compute the coefficients A1, . . . , An, since they con-

tribute only to the terms with negative exponents, which we can safely ne-
glect; these terms do not contribute to the constant term of f . Once we have
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the other coefficients, the constant term of the Laurent series of f is—as we
said above—the following function evaluated at 0:

p{a,b}(n) =

 B1

z − 1
+

B2

(z − 1)2
+
a−1∑
k=1

Ck
z − ξka

+
b−1∑
j=1

Dj

z − ξjb

∣∣∣∣∣∣
z=0

= −B1 +B2 −
a−1∑
k=1

Ck
ξka
−
b−1∑
j=1

Dj

ξjb
.

With (1.6) in hand, this simplifies to

p{a,b}(n) =
1
2a

+
1
2b

+
n

ab
+

1
a

a−1∑
k=1

1
(1− ξkba )ξkna

+
1
b

b−1∑
j=1

1
(1− ξjab )ξjnb

. (1.7)

Encouraged by this initial success, we now proceed to analyze each sum in
(1.7) with the hope of recognizing them as more familiar objects.

For the next step we need to define the greatest-integer function bxc,
which denotes the greatest integer less than or equal to x. A close sibling
to this function is the fractional-part function {x} = x − bxc. To readers
not familiar with the functions bxc and {x} we recommend working through
Exercises 1.3–1.5.

What we’ll do next is studying a special case, namely b = 1. This is
appealing because p{a,1}(n) simply counts integer points in an interval:

p{a,1}(n) = #
{

(k, l) ∈ Z2 : k, l ≥ 0, ak + l = n
}

= # {k ∈ Z : k ≥ 0, ak ≤ n}

= #
{
k ∈ Z : 0 ≤ k ≤ n

a

}
=
⌊n
a

⌋
+ 1 .

(See Exercise 1.3.) On the other hand, in (1.7) we just computed a different
expression for this function, so that

1
2a

+
1
2

+
n

a
+

1
a

a−1∑
k=1

1
(1− ξka) ξkna

= p{a,1}(n) =
⌊n
a

⌋
+ 1 .

With the help of the fractional-part function {x} = x− bxc, we have derived
a formula for the following sum over ath roots of unity:

1
a

a−1∑
k=1

1
(1− ξka) ξkna

= −
{n
a

}
+

1
2
− 1

2a
. (1.8)

We’re almost there: we invite the reader (Exercise 1.22) to show that
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1
a

a−1∑
k=1

1
(1− ξbka ) ξkna

=
1
a

a−1∑
k=1

1
(1− ξka) ξb−1kn

a

, (1.9)

where b−1 is an integer such that b−1b ≡ 1 mod a, and to conclude that

1
a

a−1∑
k=1

1
(1− ξbka ) ξkna

= −
{
b−1n

a

}
+

1
2
− 1

2a
. (1.10)

Now all that’s left to do is to substitute this expression back into (1.7), which
yields the following beautiful formula due to Tiberiu Popoviciu (1906–1975).

Theorem 1.5 (Popoviciu’s theorem). If a and b are relatively prime, then

p{a,b}(n) =
n

ab
−
{
b−1n

a

}
−
{
a−1n

b

}
+ 1 ,

where b−1b ≡ 1 mod a and a−1a ≡ 1 mod b. ut

1.4 Sylvester’s Result

Before we apply Theorem 1.5 to obtain the classical Theorems 1.2 and 1.3, we
return for a moment to the geometry behind the restricted partition function
p{a,b}(n). In the two-dimensional case (which is the setting of Theorem 1.5),
we are counting integer points (x, y) ∈ Z2 on the line segments defined by the
constraints

ax+ by = n , x, y ≥ 0 .

As n increases, the line segment gets dilated. It is not too far-fetched (al-
though Exercise 1.13 teaches us to be careful with such statements) to expect
that the likelihood for an integer point to lie on the line segment increases
with n. In fact, one might even guess that the number of points on the line
segment increases linearly with n, since the line segment is a one-dimensional
object. Theorem 1.5 quantifies the previous statement in a very precise form:
p{a,b}(n) has the “leading term” n/ab, and the remaining terms are bounded
as functions in n. Figure 1.2 shows the geometry behind the counting func-
tion p{4,7}(n) for the first few values of n. Note that the thick line segment
for n = 17 = 4 · 7 − 4 − 7 is the last one that does not contain any integer
point.

Lemma 1.6. If a and b are relatively prime positive integers and n ∈ [1, ab−1]
is not a multiple of a or b, then

p{a,b}(n) + p{a,b}(ab− n) = 1 .

In other words, for n between 1 and ab− 1 and not divisible by a or b, exactly
one of the two integers n and ab− n is representable in terms of a and b.
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x0 1 2 3 4 5 6 7 8 9

y

0

1

2

3

4

5

Fig. 1.2. 4x+ 7y = n, n = 1, 2, . . .

Proof. This identity follows directly from Theorem 1.5:

p{a,b}(ab− n) =
ab− n
ab

−
{
b−1(ab− n)

a

}
−
{
a−1(ab− n)

b

}
+ 1

= 2− n

ab
−
{
−b−1n

a

}
−
{
−a−1n

b

}
(?)
= − n

ab
+
{
b−1n

a

}
+
{
a−1n

b

}
= 1− p{a,b}(n) .

Here, (?) follows from the fact that {−x} = 1−{x} if x 6∈ Z (see Exercise 1.5).
ut

Proof of Theorem 1.2. We have to show that p{a,b}(ab− a− b) = 0 and that
p{a,b}(n) > 0 for every n > ab − a − b. The first assertion follows with Exer-
cise 1.24, which states that p{a,b}(a + b) = 1, and Lemma 1.6. To prove the
second assertion, we note that for any integer m,

{
m
a

}
≤ 1− 1

a . Hence for any
positive integer n,

p{a,b}(ab− a− b+ n) ≥ ab− a− b+ n

ab
−
(

1− 1
a

)
−
(

1− 1
b

)
+ 1 =

n

ab
> 0 .

ut

Proof of Theorem 1.3. Recall that Lemma 1.6 states that for n between 1 and
ab−1 and not divisible by a or b, exactly one of n and ab−n is representable.
There are

ab− a− b+ 1 = (a− 1)(b− 1)
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integers between 1 and ab − 1 that are not divisible by a or b. Finally, we
note that p{a,b}(n) > 0 if n is a multiple of a or b, by the very definition of
p{a,b}(n). Hence the number of nonrepresentable integers is 1

2 (a−1)(b−1). ut

Note that we have proved even more. Essentially by Lemma 1.6, every
positive integer less than ab has at most one representation. Hence, the rep-
resentable integers less than ab are uniquely representable (see also Exer-
cise 1.25).

1.5 Three and More Coins

What happens to the complexity of the Frobenius problem if we have more
than two coins? Let’s go back to our restricted partition function

pA(n) = #
{

(m1, . . . ,md) ∈ Zd : all mj ≥ 0, m1a1 + · · ·+mdad = n
}
,

where A = {a1, . . . , ad}. By the very same reasoning as in Section 1.3, we can
easily write down the generating function for pA(n):∑

n≥0

pA(n) zn =
(

1
1− za1

)(
1

1− za2

)
· · ·
(

1
1− zad

)
.

We use the same methods that were exploited in Section 1.3 to recover our
function pA(n) as the constant term of a useful generating function. Namely,

pA(n) = const
(

1
(1− za1) (1− za2) · · · (1− zad) zn

)
.

We now expand the function on the right into partial fractions. For reasons
of simplicity we assume in the following that a1, . . . , ad are pairwise relatively
prime; that is, no two of the integers a1, a2, . . . , ad have a common factor.
Then our partial fraction expansion looks like

f(z) =
1

(1− za1) · · · (1− zad) zn

=
A1

z
+
A2

z2
+ · · ·+ An

zn
+

B1

z − 1
+

B2

(z − 1)2
+ · · ·+ Bd

(z − 1)d
(1.11)

+
a1−1∑
k=1

C1k

z − ξka1

+
a2−1∑
k=1

C2k

z − ξka2

+ · · ·+
ad−1∑
k=1

Cdk
z − ξkad

.

By now we’re experienced in computing partial fraction coefficients, so that
the reader will easily verify that (Exercise 1.29)

C1k = − 1

a1

(
1− ξka2

a1

)(
1− ξka3

a1

)
· · ·
(

1− ξkada1

)
ξ
k(n−1)
a1

. (1.12)
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As before, we don’t have to compute the coefficients A1, . . . , An, because they
don’t contribute to the constant term of f . For the computation of B1, . . . , Bd,
we may use a symbolic manipulation program such as Maple or Mathematica.
Again, once we have calculated these coefficients, we can compute the constant
term of f by dropping all negative exponents and evaluating the remaining
function at 0:

pA(n) =

(
B1

z − 1
+ · · ·+ Bd

(z − 1)d
+
a1−1∑
k=1

C1k

z − ξka1

+ · · ·+
ad−1∑
k=1

Cdk
z − ξkad

)∣∣∣∣∣
z=0

= −B1 +B2 − · · ·+ (−1)dBd −
a1−1∑
k=1

C1k

ξka1

−
a2−1∑
k=1

C2k

ξka2

− · · · −
ad−1∑
k=1

Cdk
ξkad

.

Substituting the expression we found for C1k into the latter sum over the
nontrivial ath

1 roots of unity, for example, gives rise to

1
a1

a1−1∑
k=1

1(
1− ξka2

a1

)(
1− ξka3

a1

)
· · ·
(

1− ξkada1

)
ξkna1

.

This motivates the definition of the Fourier–Dedekind sum

sn (a1, a2, . . . , am; b) :=
1
b

b−1∑
k=1

ξknb(
1− ξka1

b

)(
1− ξka2

b

)
· · ·
(

1− ξkamb

) . (1.13)

We will study these sums in detail in Chapter 8. With this definition, we have
arrived at the following result.

Theorem 1.7. The restricted partition function for A = {a1, a2, . . . , ad},
where the ak’s are pairwise relatively prime, can be computed as

pA(n) = −B1 +B2 − · · ·+ (−1)dBd + s−n (a2, a3, . . . , ad; a1)
+ s−n (a1, a3, a4, . . . , ad; a2) + · · ·+ s−n (a1, a2, . . . , ad−1; ad) .

Here B1, B2, . . . , Bd are the partial fraction coefficients in the expansion
(1.11). ut

Example 1.8. We give the restricted partition functions for d = 3 and 4.
These closed-form formulas have proven useful in the refined analysis of the
periodicity that is inherent in the restricted partition function pA(n). For
example, one can visualize the graph of p{a,b,c}(n) as a “wavy parabola,” as
its formula plainly shows.
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p{a,b,c}(n) =
n2

2abc
+
n

2

(
1
ab

+
1
ac

+
1
bc

)
+

1
12

(
3
a

+
3
b

+
3
c

+
a

bc
+

b

ac
+

c

ab

)
+

1
a

a−1∑
k=1

1
(1− ξkba ) (1− ξkca ) ξkna

+
1
b

b−1∑
k=1

1(
1− ξkcb

) (
1− ξkab

)
ξknb

+
1
c

c−1∑
k=1

1
(1− ξkac ) (1− ξkbc ) ξknc

,

p{a,b,c,d}(n) =
n3

6abcd
+
n2

4

(
1
abc

+
1
abd

+
1
acd

+
1
bcd

)
+

n

12

(
3
ab

+
3
ac

+
3
ad

+
3
bc

+
3
bd

+
3
cd

+
a

bcd
+

b

acd
+

c

abd
+

d

abc

)
+

1
24

(
a

bc
+

a

bd
+

a

cd
+

b

ad
+

b

ac
+

b

cd
+

c

ab
+

c

ad
+

c

bd

+
d

ab
+

d

ac
+
d

bc

)
− 1

8

(
1
a

+
1
b

+
1
c

+
1
d

)
+

1
a

a−1∑
k=1

1
(1− ξkba ) (1− ξkca ) (1− ξkda ) ξkna

+
1
b

b−1∑
k=1

1(
1− ξkcb

) (
1− ξkdb

) (
1− ξkab

)
ξknb

+
1
c

c−1∑
k=1

1
(1− ξkdc ) (1− ξkac ) (1− ξkbc ) ξknc

+
1
d

d−1∑
k=1

1(
1− ξkad

) (
1− ξkbd

) (
1− ξkcd

)
ξknd

. ut

Notes

1. The theory of generating functions has a long and powerful tradition. We
only touch on its utility. For those readers who would like to dig a little
deeper into the vast generating-function garden, we strongly recommend Herb
Wilf’s generatingfunctionology [187] and László Lovász’s Combinatorial Prob-
lems and Exercises [122]. The reader might wonder why we do not stress
convergence aspects of the generating functions we play with. Almost all of
our series are geometric series and have trivial convergence properties. In the
spirit of not muddying the waters of lucid mathematical exposition, we omit
such convergence details.

2. The Frobenius problem is named after Georg Frobenius, who apparently
liked to raise this problem in his lectures [41]. Theorem 1.2 is one of the
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famous folklore results and might be one of the most misquoted theorems
in all of mathematics. People usually cite James J. Sylvester’s problem in
[177], but his paper contains Theorem 1.3 rather than 1.2. In fact, Sylvester’s
problem had previously appeared as a theorem in [176]. It is not known who
first discovered or proved Theorem 1.2. It is very conceivable that Sylvester
knew about it when he came up with Theorem 1.3.

3. The linear Diophantine problem of Frobenius should not be confused with
the postage-stamp problem. The latter problem asks for a similar determina-
tion, but adds an additional independent bound on the size of the integer
solutions to the linear equation.

4. Theorem 1.5 has an interesting history. The earliest appearance of this
result that we are aware of is in a paper by Tiberiu Popoviciu [148]. Popoviciu’s
formula has since been resurrected at least twice [161, 183].

5. Fourier–Dedekind sums first surfaced implicitly in Sylvester’s work (see,
e.g., [175]) and explicitly in connection with restricted partition functions
in [104]. They were rediscovered in [25], in connection with the Frobenius
problem. The papers [83, 157] contain interesting connections to Bernoulli
and Euler polynomials. We will resume the study of the Fourier–Dedekind
sums in Chapter 8.

6. As we already mentioned above, the Frobenius problem for d ≥ 3 is much
harder than the case d = 2 that we have discussed. Certainly beyond d = 3,
the Frobenius problem is wide open, though much effort has been put into its
study. The literature on the Frobenius problem is vast, and there is still much
room for improvement. The interested reader might consult the comprehensive
monograph [153], which surveys the references to almost all articles dealing
with the Frobenius problem and gives about 40 open problems and conjectures
related to the Frobenius problem. To give a flavor, we mention two landmark
results that go beyond d = 2.

The first one concerns the generating function r(z) :=
∑
k∈R z

k, where
R is the set of all integers representable by a given set of relatively prime
positive integers a1, a2, . . . , ad. It is not hard to see (Exercise 1.34) that
r(z) = p(z)/ (1− za1) (1− za2) · · · (1− zad) for some polynomial p. This ra-
tional generating function contains all the information about the Frobenius
problem; for example, the Frobenius number is the total degree of the function

1
1−z − r(z). Hence the Frobenius problem reduces to finding the polynomial
p, the numerator of r. Marcel Morales [134, 135] and Graham Denham [73]
discovered the remarkable fact that for d = 3, the polynomial p has either 4
or 6 terms. Moreover, they gave semi-explicit formulas for p. The Morales–
Denham theorem implies that the Frobenius number in the case d = 3 is
quickly computable, a result that is originally due, in various disguises, to
Jürgen Herzog [95], Harold Greenberg [89], and J. Leslie Davison [65]. As
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much as there seems to be a well-defined border between the cases d = 2
and d = 3, there also seems to be such a border between the cases d = 3
and d = 4: Henrik Bresinsky [43] proved that for d ≥ 4, there is no absolute
bound for the number of terms in the numerator p, in sharp contrast to the
Morales–Denham theorem.

On the other hand, Alexander Barvinok and Kevin Woods [14] proved
that for fixed d, the rational generating function r(z) can be written as a
“short” sum of rational functions; in particular, r can be efficiently computed
when d is fixed. A corollary of this fact is that the Frobenius number can
be efficiently computed when d is fixed; this theorem is due to Ravi Kannan
[105]. On the other hand, Jorge Ramı́rez-Alfonśın [152] proved that trying to
efficiently compute the Frobenius number is hopeless if d is left as a variable.

While the above results settle the theoretical complexity of the computa-
tion of the Frobenius number, practical algorithms are a completely different
matter. Both Kannan’s and Barvinok–Woods’s ideas seem complex enough
that nobody has yet tried to implement them. Currently, the fastest algo-
rithm is presented in [32].

Exercises

1.1. ♣ Check the partial fraction expansion (1.2):

z

1− z − z2
=

1/
√

5

1− 1+
√

5
2 z

− 1/
√

5

1− 1−
√

5
2 z

.

1.2. ♣ Suppose z is a complex number, and n is a positive integer. Show that

(1− z)
(
1 + z + z2 + · · ·+ zn

)
= 1− zn+1,

and use this to prove that if |z| < 1,∑
k≥0

zk =
1

1− z
.

1.3. ♣ Find a formula for the number of lattice points in [a, b] for arbitrary
real numbers a and b.

1.4. Prove the following. Unless stated differently, n ∈ Z and x, y ∈ R.

(a) bx+ nc = bxc+ n.
(b) bxc+ byc ≤ bx+ yc ≤ bxc+ byc+ 1.

(c) bxc+ b−xc =
{

0 if x ∈ Z,
−1 otherwise.

(d) For n ∈ Z>0,
⌊
bxc
n

⌋
=
⌊
x
n

⌋
.

(e) −b−xc is the least integer greater than or equal to x, denoted by dxe.
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(f) bx+ 1/2c is the nearest integer to x (and if two integers are equally near
to x, it is the larger of the two).

(g) bxc+ bx+ 1/2c = b2xc.
(h) If m and n are positive integers,

⌊
m
n

⌋
is the number of integers among

1, . . . ,m that are divisible by n.
(i) ♣ If m ∈ Z>0, n ∈ Z, then

⌊
n−1
m

⌋
= −

⌊−n
m

⌋
− 1.

(j) ♣ If m ∈ Z>0, n ∈ Z, then
⌊
n−1
m

⌋
+ 1 is the least integer greater than or

equal to n/m.

1.5. Rewrite in terms of the fractional-part function as many of the above
identities as you can make sense of.

1.6. Suppose m and n are relatively prime positive integers. Prove that

m−1∑
k=0

⌊
kn

m

⌋
=
n−1∑
j=0

⌊
jm

n

⌋
=

1
2

(m− 1)(n− 1) .

1.7. Prove the following identities. They will become handy at least twice:
when we study partial fractions, and when we discuss finite Fourier series. For
φ, ψ ∈ R, n ∈ Z>0,m ∈ Z,

(a) ei0 = 1,
(b) eiφ eiψ = ei(φ+ψ),
(c) 1/eiφ = e−iφ,
(d) ei(φ+2π) = eiφ,
(e) e2πi = 1,
(f)
∣∣eiφ∣∣ = 1,

(g) d
dφ e

iφ = i eiφ,

(h)
∑n−1
k=0 e

2πikm/n =
{
n if n|m,
0 otherwise,

(i)
∑n−1
k=1 k e

2πik/n = n
e2πi/n−1

.

1.8. Suppose m,n ∈ Z and n > 0. Find a closed form for
∑n−1
k=0

{
k
n

}
e2πikm/n

(as a function of m and n).

1.9. ♣ Suppose m and n are relatively prime integers, and n is positive. Show
that {

e2πimk/n : 0 ≤ k < n
}

=
{
e2πij/n : 0 ≤ j < n

}
and {

e2πimk/n : 0 < k < n
}

=
{
e2πij/n : 0 < j < n

}
.

Conclude that if f is any complex-valued function, then

n−1∑
k=0

f
(
e2πimk/n

)
=
n−1∑
j=0

f
(
e2πij/n

)
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and
n−1∑
k=1

f
(
e2πimk/n

)
=
n−1∑
j=1

f
(
e2πij/n

)
.

1.10. Suppose n is a positive integer. If you know what a group is, prove
that the set

{
e2πik/n : 0 ≤ k < n

}
forms a cyclic group of order n (under

multiplication in C).

1.11. Fix n ∈ Z>0. For an integer m, let (m mod n) denote the least nonneg-
ative integer in G1 := Zn to which m is congruent. Let’s denote by ? addition
modulo n, and by ◦ the following composition:{m1

n

}
◦
{m2

n

}
=
{
m1 +m2

n

}
,

defined on the set G2 :=
{{

m
n

}
: m ∈ Z

}
. Define the following functions:

φ ((m mod n)) = e2πim/n,

ψ
(
e2πim/n

)
=
{m
n

}
,

χ
({m

n

})
= (m mod n) .

Prove the following:

φ ((m1 mod n) ? (m2 mod n)) = φ ((m1 mod n))φ ((m2 mod n)) ,

ψ
(
e2πim1/ne2πim2/n

)
= ψ

(
e2πim1/n

)
◦ ψ
(
e2πim2/n

)
,

χ
({m1

n

}
◦
{m2

n

})
= χ

({m1

n

})
? χ
({m2

n

})
.

Prove that the three maps defined above, namely φ, ψ, and χ, are one-to-one.
Again, for the reader who is familiar with the notion of a group, let G3 be
the group of nth roots of unity. What we have shown is that the three groups
G1, G2, and G3 are all isomorphic. It is very useful to cycle among these three
isomorphic groups.

1.12. ♣ Given integers a, b, c, d, form the line segment in R2 joining the point
(a, b) to (c, d). Show that the number of integer points on this line segment is
gcd(a− c, b− d) + 1.

1.13. Give an example of a line with

(a) no lattice point;
(b) one lattice point;
(c) an infinite number of lattice points.

In each case, state—if appropriate—necessary conditions about the (ir)rationa-
lity of the slope.
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1.14. Suppose a line y = mx+ b passes through the lattice points (p1, q1) and
(p2, q2). Prove that it also passes through the lattice points(

p1 + k(p2 − p1), q1 + k(q2 − q1)
)
, k ∈ Z .

1.15. Given positive irrational numbers p and q with 1
p + 1

q = 1, show that
Z>0 is the disjoint union of the two integer sequences {bpnc : n ∈ Z>0} and
{bqnc : n ∈ Z>0}. This theorem from 1894 is due to Lord Rayleigh and was
rediscovered in 1926 by Sam Beatty. Sequences of the form {bpnc : n ∈ Z>0}
are often called Beatty sequences.

1.16. Let a, b, c, d ∈ Z. We say that {(a, b) , (c, d)} is a lattice basis of Z2 if
any lattice point (m,n) ∈ Z2 can be written as

(m,n) = p (a, b) + q (c, d)

for some p, q ∈ Z. Prove that if {(a, b) , (c, d)} and {(e, f) , (g, h)} are lattice
bases of Z2 then there exists an integer matrix M with determinant ±1 such
that (

a b
c d

)
= M

(
e f
g h

)
.

Conclude that the determinant of
(
a b
c d

)
is ±1.

1.17. ♣ Prove that a triangle with vertices on the integer lattice has no other
interior/boundary lattice points if and only if it has area 1

2 . (Hint: You may
begin by “doubling” the triangle to form a parallelogram.)

1.18. Let’s define a northeast lattice path as a path through lattice points that
uses only the steps (1, 0) and (0, 1). Let Ln be the line defined by x+ 2y = n.
Prove that the number of northeast lattice paths from the origin to a lattice
point on Ln is the (n+ 1)th Fibonacci number fn+1.

1.19. Compute the coefficients of the Taylor series of 1/(1− z)2 expanded at
z = 0

(a) by a counting argument,
(b) by differentiating the geometric series.

Generalize.

1.20. ♣ Prove that if a1, a2, . . . , ad ∈ Z>0 do not have a common factor then
the Frobenius number g(a1, . . . , ad) is well defined.

1.21. ♣ Compute the partial fraction coefficients (1.6).
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1.22. ♣ Prove (1.9): For relatively prime positive integers a and b,

1
a

a−1∑
k=1

1
(1− ξbka ) ξkna

=
1
a

a−1∑
k=1

1
(1− ξka) ξb−1kn

a

,

where b−1b ≡ 1 mod a, and deduce from this (1.10), namely,

1
a

a−1∑
k=1

1
(1− ξbka ) ξkna

= −
{
b−1n

a

}
+

1
2
− 1

2a
.

(Hint: Use Exercise 1.9.)

1.23. Prove that for relatively prime positive integers a and b,

p{a,b}(n+ ab) = p{a,b}(n) + 1 .

1.24. ♣ Show that if a and b are relatively prime positive integers, then

p{a,b}(a+ b) = 1 .

1.25. To extend the Frobenius problem, let us call an integer n k-representable
if pA(n) = k; that is, n can be represented in exactly k ways using the integers
in the set A. Define gk = gk(a1, . . . , ad) to be the largest k-representable
integer. Prove:

(a) Let d = 2. For any k ∈ Z≥0 there is an N such that all integers larger than
N have at least k representations (and hence gk(a, b) is well defined).

(b) gk(a, b) = (k + 1)ab− a− b.
(c) Given k ≥ 2, the smallest k-representable integer is ab(k − 1).
(d) The smallest interval containing all uniquely representable integers is

[min(a, b), g1(a, b)].
(e) Given k ≥ 2, the smallest interval containing all k-representable integers

is [gk−2(a, b) + a+ b, gk(a, b)].
(f) There are exactly ab − 1 integers that are uniquely representable. Given

k ≥ 2, there are exactly ab k-representable integers.
(g) Extend all of this to d ≥ 3 (see open problems).

1.26. Find a formula for p{a}(n).

1.27. Prove the following recursion formula:

p{a1,...,ad}(n) =
∑
m≥0

p{a1,...,ad−1}(n−mad) .

(Here we use the convention that pA(n) = 0 if n < 0.) Use it in the case d = 2
to give an alternative proof of Theorem 1.2.
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1.28. Prove the following extension of Theorem 1.5: Suppose gcd(a, b) = d.
Then

p{a,b}(n) =

{
nd
ab −

{
βn
a

}
−
{
αn
b

}
+ 1 if d|n,

0 otherwise,

where β b
d ≡ 1 mod a

d , and α a
d ≡ 1 mod b

d .

1.29. ♣ Compute the partial fraction coefficient (1.12).

1.30. Find a formula for p{a,b,c}(n) for the case gcd(a, b, c) 6= 1.

1.31. ♣ With A = {a1, a2, . . . , ad} ⊂ Z>0, let

p◦A(n) := #
{

(m1, . . . ,md) ∈ Zd : all mj > 0, m1a1 + · · ·+mdad = n
}

;

that is, p◦A(n) counts the number of partitions of n using only the elements
of A as parts, where each part is used at least once. Find formulas for p◦A for
A = {a} , A = {a, b} , A = {a, b, c} , A = {a, b, c, d}, where a, b, c, d are pairwise
relatively prime positive integers. Observe that in all examples, the counting
functions pA and p◦A satisfy the algebraic relation

p◦A(−n) = (−1)d−1pA(n) .

1.32. Prove that p◦A(n) = pA (n− a1 − a2 − · · · − ad). (Here, as usual, A =
{a1, a2, . . . , ad}.) Conclude that in the examples of Exercise 1.31 the algebraic
relation

pA(−t) = (−1)d−1 pA (t− a1 − a2 − · · · − ad)
holds.

1.33. For relatively prime positive integers a, b, let

R := {am+ bn : m,n ∈ Z≥0} ,

the set of all integers representable by a and b. Prove that∑
k∈R

zk =
1− zab

(1− za) (1− zb)
.

Use this rational generating function to give alternative proofs of Theorems 1.2
and 1.3.

1.34. For relatively prime positive integers a1, a2, . . . , ad, let

R := {m1a1 +m2a2 + · · ·+mdad : m1,m2, . . . ,md ∈ Z≥0} ,

the set of all integers representable by a1, a2, . . . , ad. Prove that

r(z) :=
∑
k∈R

zk =
p(z)

(1− za1) (1− za2) · · · (1− zad)

for some polynomial p.
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1.35. Prove Theorem 1.1: Given any rational function p(z)Qm
k=1(z−ak)ek , where p

is a polynomial of degree less than e1 + e2 + · · ·+ em and the ak’s are distinct,
there exists a decomposition

m∑
k=1

(
ck,1
z − ak

+
ck,2

(z − ak)2 + · · ·+ ck,ek
(z − ak)ek

)
,

where the ck,j ∈ C are unique.
Here is an outline of one possible proof. Recall that the set of polynomials

(over R or C) forms a Euclidean domain, that is, given any two polynomials
a(z), b(z), there exist polynomials q(z), r(z) with deg(r) < deg(b), such that

a(z) = b(z)q(z) + r(z) .

Applying this procedure repeatedly (the Euclidean algorithm) gives the great-
est common divisor of a(z) and b(z) as a linear combination of them, that
is, there exist polynomials c(z) and d(z) such that a(z)c(z) + b(z)d(z) =
gcd (a(z), b(z)).

Step 1: Apply the Euclidean algorithm to show that there exist polynomials
u1, u2 such that

u1(z) (z − a1)e1 + u2(z) (z − a2)e2 = 1 .

Step 2: Deduce that there exist polynomials v1, v2 with deg (vk) < ek such
that

p(z)
(z − a1)e1 (z − a2)e2

=
v1(z)

(z − a1)e1
+

v2(z)
(z − a2)e2

.

(Hint: Long division.)
Step 3: Repeat this procedure to obtain a partial fraction decomposition for

p(z)
(z − a1)e1 (z − a2)e2 (z − a3)e3

.

Open Problems

1.36. Come up with a new approach or a new algorithm for the Frobenius
problem in the d = 4 case.

1.37. There are a very good lower [65] and several upper bounds [153, Chap-
ter 3] for the Frobenius number. Come up with improved upper bounds.

1.38. Solve Vladimir I. Arnold’s Problems 1999-8 through 1999-11 [7]. To give
a flavor, we mention two of the problems explicitly:
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(a) Explore the statistics of g (a1, a2, . . . , ad) for typical large a1, a2, . . . , ad. It
is conjectured that g (a1, a2, . . . , ad) grows asymptotically like a constant
times d−1

√
a1a2 · · · ad.

(b) Determine what fraction of the integers in the interval [0, g (a1, a2, . . . , ad)]
is representable, for typical large a1, a2, . . . , ad. It is conjectured that this
fraction is asymptotically equal to 1

d . (Theorem 1.3 implies that this con-
jecture is true in the case d = 2.)

1.39. Study vector generalizations of the Frobenius problem [155, 164].

1.40. There are several special cases of A = {a1, a2, . . . , ad} for which the
Frobenius problem is solved, for example, arithmetic sequences [153, Chap-
ter 3]. Study these special cases in light of the generating function r(x), defined
in the Notes and in Exercise 1.34.

1.41. Study the generalized Frobenius number gk (defined in Exercise 1.25),
e.g., in light of the Morales–Denham theorem mentioned in the Notes. Derive
formulas for special cases, e.g., arithmetic sequences.

1.42. For which 0 ≤ n ≤ b− 1 is sn (a1, a2, . . . , ad; b) = 0?
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A Gallery of Discrete Volumes

Few things are harder to put up with than a good example.

Mark Twain (1835–1910)

A unifying theme of this book is the study of the number of integer points
in polytopes, where the polytopes lives in a real Euclidean space Rd. The
integer points Zd form a lattice in Rd, and we often call the integer points lat-
tice points. This chapter carries us through concrete instances of lattice-point
enumeration in various integral and rational polytopes. There is a tremendous
amount of research taking place along these lines, even as the reader is looking
at these pages.

2.1 The Language of Polytopes

A polytope in dimension 1 is a closed interval; the number of integer points in[
a
b ,

c
d

]
is easily seen to be

⌊
c
d

⌋
−
⌊
a−1
b

⌋
(Exercise 2.1). A 2-dimensional convex

polytope is a convex polygon: a compact convex subset of R2 bounded by
a simple, closed curve that is made up of finitely many line segments.

In general dimension d, a convex polytope is the convex hull of finitely
many points in Rd. To be precise, given any finite point set {v1,v2, . . . ,vn} ⊂
Rd, the polytope P is the smallest convex set containing those points; that is,

P = {λ1v1 + λ2v2 + · · ·+ λnvn : all λk ≥ 0 and λ1 + λ2 + · · ·+ λn = 1} .

This definition is called the vertex description of P, and we use the notation

P = conv {v1,v2, . . . ,vn} ,

the convex hull of v1,v2, . . . ,vn. In particular, a polytope is a closed sub-
set of Rd. Many polytopes we will study, however, are not defined this way,
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but rather as bounded intersections of finitely many half-spaces and hyper-
planes. One example is the polytope P defined by (1.4) in Chapter 1. This
hyperplane description of a polytope is, in fact, equivalent to the vertex
description. The fact that every polytope has both a vertex and a hyperplane
description is highly nontrivial, both algorithmically and conceptually. We
carefully work out a proof in Appendix A.

The dimension of a polytope P is the dimension of the affine space

spanP := {x + λ(y − x) : x,y ∈ P, λ ∈ R}

spanned by P. If P has dimension d, we use the notation dimP = d and call
P a d-polytope. Note that P ⊂ Rd does not necessarily have dimension d. For
example, the polytope P defined by (1.4) has dimension d− 1.

Given a convex polytope P ⊂ Rd, we say that the hyperplane H ={
x ∈ Rd : a · x = b

}
is a supporting hyperplane of P if P lies entirely on

one side of H, that is, P ⊂
{
x ∈ Rd : a · x ≤ b

}
or P ⊂

{
x ∈ Rd : a · x ≥ b

}
.

A face of P is a set of the form P ∩H, where H is a supporting hyperplane
of P. Note that P itself is a face of P, corresponding to the degenerate hyper-
plane Rd,1 and the empty set ∅ is a face of P, corresponding to a hyperplane
that does not meet P. The (d− 1)-dimensional faces are called facets, the 1-
dimensional faces edges, and the 0-dimensional faces vertices of P. Vertices
are the “extreme points” of a polytope.

A convex d-polytope has at least d+ 1 vertices. A convex d-polytope with
exactly d+1 vertices is called a d-simplex. Every 1-dimensional convex poly-
tope is a 1-simplex, namely, a line segment. The 2-dimensional simplices are
the triangles, the 3-dimensional simplices the tetrahedra.

A convex polytope P is called integral if all of its vertices have inte-
ger coordinates, and P is called rational if all of its vertices have rational
coordinates.

2.2 The Unit Cube

As a warm-up example, we begin with the unit d-cube 2 := [0, 1]d, which
simultaneously offers simple geometry and an endless fountain of research
questions. The vertex description of 2 is given by the set of 2d vertices
{(x1, x2, . . . , xd) : all xk = 0 or 1}. The hyperplane description is

2 =
{

(x1, x2, . . . , xd) ∈ Rd : 0 ≤ xk ≤ 1 for all k = 1, 2, . . . , d
}
.

Thus, there are the 2d bounding hyperplanes x1 = 0, x1 = 1, x2 = 0, x2 =
1, . . . , xd = 0, xd = 1.

1 In the remainder of the book, we will reserve the term hyperplane for non-
degenerate hyperplanes, i.e., sets of the form

˘
x ∈ Rd : a · x = b

¯
, where not all

of the entries of a are zero.
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We now compute the discrete volume of any integer dilate of 2. That is,
we seek the number of integer points t2∩Zd for all t ∈ Z>0. Here tP denotes
the dilated polytope

{(tx1, tx2, . . . , txd) : (x1, x2, . . . , xd) ∈ P} ,

for any polytope P. What is the discrete volume of 2? We dilate by the
positive integer t, as depicted in Figure 2.1, and count:

#
(
t2 ∩ Zd

)
= #

(
[0, t]d ∩ Zd

)
= (t+ 1)d.

x1

x2

6

6

Fig. 2.1. The sixth dilate of 2 in dimension 2.

We generally denote the lattice-point enumerator for the tth dilates of
P ⊂ Rd by

LP(t) := #
(
tP ∩ Zd

)
,

a useful object that we also call the discrete volume of P. We may also
think of leaving P fixed and shrinking the integer lattice:

LP(t) = #
(
P ∩ 1

t
Zd
)
.

With this convention, L2(t) = (t+ 1)d, a polynomial in the integer variable t.
Notice that the coefficients of this polynomial are the binomial coefficients(
d
k

)
, defined through(

m

n

)
:=

m(m− 1)(m− 2) · · · (m− n+ 1)
n!

(2.1)

for m ∈ C, n ∈ Z>0.
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What about the interior 2◦ of the cube? The number of interior integer
points in t2◦ is

L2◦(t) = #
(
t2◦ ∩ Zd

)
= #

(
(0, t)d ∩ Zd

)
= (t− 1)d.

Notice that this polynomial equals (−1)dL2(−t), the evaluation of the poly-
nomial L2(t) at negative integers, up to a sign.

We now introduce another important tool for analyzing any polytope P,
namely the generating function of LP :

EhrP(z) := 1 +
∑
t≥1

LP(t) zt.

This generating function is also called the Ehrhart series of P.
In our case, the Ehrhart series of P = 2 takes on a special form. To

illustrate, we define the Eulerian number A (d, k) through

∑
j≥0

jd zj =
∑d
k=0A (d, k) zk

(1− z)d+1
. (2.2)

It is not hard to prove that the polynomial
∑d
k=1A (d, k) zk is the numerator

of the rational function(
z
d

dz

)d( 1
1− z

)
= z

d

dz
· · · z d

dz︸ ︷︷ ︸
d times

(
1

1− z

)
.

The Eulerian numbers have many fascinating properties, including

A (d, k) = A (d, d+ 1− k) ,
A (d, k) = (d− k + 1)A (d− 1, k − 1) + k A (d− 1, k) ,

d∑
k=0

A (d, k) = d! , (2.3)

A (d, k) =
k∑
j=0

(−1)j
(
d+ 1
j

)
(k − j)d.

The first few Eulerian numbers A (d, k) for 0 ≤ k ≤ d are

d = 0: 1
d = 1: 0 1
d = 2: 0 1 1
d = 3: 0 1 4 1
d = 4: 0 1 11 11 1
d = 5: 0 1 26 66 26 1
d = 6: 0 1 57 302 302 57 1 .
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(See also [165, Sequence A008292].)
With this definition, we can now express the Ehrhart series of 2 in terms

of Eulerian numbers:

Ehr2(z) = 1 +
∑
t≥1

(t+ 1)d zt =
∑
t≥0

(t+ 1)d zt =
1
z

∑
t≥1

td zt

=
∑d
k=1A (d, k) zk−1

(1− z)d+1
.

To summarize, we have proved the following theorem.

Theorem 2.1. Let 2 be the unit d-cube.

(a) The lattice-point enumerator of 2 is the polynomial

L2(t) = (t+ 1)d =
d∑
k=0

(
d

k

)
tk.

(b) Its evaluation at negative integers yields the relation

(−1)dL2(−t) = L2◦(t) .

(c) The Ehrhart series of 2 is Ehr2(z) =
Pd
k=1 A(d,k)zk−1

(1−z)d+1 . ut

2.3 The Standard Simplex

The standard simplex ∆ in dimension d is the convex hull of the d + 1
points e1, e2, . . . , ed and the origin; here ej is the unit vector (0, . . . , 1, . . . , 0),
with a 1 in the jth position. Figure 2.2 shows ∆ for d = 3. On the other hand,
∆ can also be realized by its hyperplane description, namely

∆ =
{

(x1, x2 . . . , xd) ∈ Rd : x1 + x2 + · · ·+ xd ≤ 1 and all xk ≥ 0
}
.

In the case of the standard simplex, the dilate t∆ is now given by

t∆ =
{

(x1, x2, . . . , xd) ∈ Rd : x1 + x2 + · · ·+ xd ≤ t and all xk ≥ 0
}
.

To compute the discrete volume of ∆, we would like to use the methods devel-
oped in Chapter 1, but there’s an extra twist. The counting functions in Chap-
ter 1 were defined by equalities, whereas the standard simplex is defined by an
inequality. We are trying to count all integer solutions (m1,m2, . . . ,md) ∈ Zd≥0

to
m1 +m2 + · · ·+md ≤ t . (2.4)

To translate this inequality in d variables into an equality in d + 1 vari-
ables, we introduce a slack variable md+1 ∈ Z≥0, which picks up the dif-
ference between the right-hand and left-hand sides of (2.4). So the number
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x1

x2

x3

0

1

1

1

Fig. 2.2. The standard simplex ∆ in dimension 3.

of solutions (m1,m2, . . . ,md) ∈ Zd≥0 to (2.4) equals the number of solutions
(m1,m2, . . . ,md+1) ∈ Zd+1

≥0 to

m1 +m2 + · · ·+md+1 = t .

Now the methods of Chapter 1 apply:

#
(
t∆ ∩ Zd

)
= const

∑
m1≥0

zm1

∑
m2≥0

zm2

 · · ·
 ∑
md+1≥0

zmd+1

 z−t


= const

(
1

(1− z)d+1zt

)
. (2.5)

In contrast with Chapter 1, we do not require a partial fraction expansion but
simply use the binomial series

1
(1− z)d+1

=
∑
k≥0

(
d+ k

d

)
zk (2.6)

for d ≥ 0. The constant-term identity (2.5) requires us to find the coefficient
of zt in the binomial series (2.6), which is

(
d+t
d

)
. Hence the discrete volume

of ∆ is given by L∆(t) =
(
d+t
d

)
, a polynomial in the integer variable t of

degree d. Incidentally, the coefficients of this polynomial function in t have an
alternative life in traditional combinatorics:

L∆(t) =
1
d!

d∑
k=0

(−1)d−k stirl(d+ 1, k + 1) tk,
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where stirl(n, j) is the Stirling number of the first kind (see Exercise 2.11). We
also notice that (2.6) is, by definition, the Ehrhart series of ∆.

Let us repeat this computation for the interior ∆◦ of the standard d-
simplex. Now we introduce a slack variable md+1 > 0, so that strict inequality
is forced:

L∆◦(t) = #
{

(m1,m2, . . . ,md) ∈ Zd>0 : m1 +m2 + · · ·+md < t
}

= #
{

(m1,m2, . . . ,md+1) ∈ Zd+1
>0 : m1 +m2 + · · ·+md+1 = t

}
.

Now

L∆◦(t) = const

(∑
m1>0

zm1

)( ∑
m2>0

zm2

)
· · ·

 ∑
md+1>0

zmd+1

 z−t


= const

((
z

1− z

)d+1

z−t

)

= const

zd+1−t
∑
k≥0

(
d+ k

d

)
zk


=
(
t− 1
d

)
.

It is a fun exercise to prove that

(−1)d
(
d− t
d

)
=
(
t− 1
d

)
(2.7)

(see Exercise 2.10). We have arrived at our destination:

Theorem 2.2. Let ∆ be the standard d-simplex.

(a) The lattice-point enumerator of ∆ is the polynomial L∆(t) =
(
d+t
d

)
.

(b) Its evaluation at negative integers yields (−1)dL∆(−t) = L∆◦(t).
(c) The Ehrhart series of ∆ is Ehr∆(z) = 1

(1−z)d+1 . ut

2.4 The Bernoulli Polynomials as Lattice-Point
Enumerators of Pyramids

There is a fascinating connection between the Bernoulli polynomials and cer-
tain pyramids over unit cubes. The Bernoulli polynomials Bk(x) are de-
fined through the generating function

z exz

ez − 1
=
∑
k≥0

Bk(x)
k!

zk (2.8)
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and are ubiquitous in the study of the Riemann zeta function, among other
objects; they are named after Jacob Bernoulli (1654–1705).2 The Bernoulli
polynomials will play a prominent role in Chapter 10 in the context of Euler–
Maclaurin summation. The first few Bernoulli polynomials are

B0(x) = 1 ,

B1(x) = x− 1
2
,

B2(x) = x2 − x+
1
6
,

B3(x) = x3 − 3
2
x2 +

1
2
x ,

B4(x) = x4 − 2x3 + x2 − 1
30
,

B5(x) = x5 − 5
2
x4 +

5
3
x3 − 1

6
x ,

B6(x) = x6 − 3x5 +
5
2
x4 +

1
2
x2 +

1
42
,

B7(x) = x7 − 7
2
x6 +

7
2
x5 +

7
6
x3 +

1
6
x .

The Bernoulli numbers are Bk := Bk(0) (see also [165, Sequences A000367
& A002445]) and have the generating function

z

ez − 1
=
∑
k≥0

Bk
k!

zk.

Lemma 2.3. For integers d ≥ 1 and n ≥ 2,

n−1∑
k=0

kd−1 =
1
d

(Bd(n)−Bd) .

Proof. We play with the generating function of Bd(n)−Bd
d! :

∑
d≥0

Bd(n)−Bd
d!

zd = z
enz − 1
ez − 1

= z

n−1∑
k=0

ekz = z

n−1∑
k=0

∑
j≥0

(kz)j

j!

=
∑
j≥0

(
n−1∑
k=0

kj

)
zj+1

j!
=
∑
j≥1

(
n−1∑
k=0

kj−1

)
zj

(j − 1)!
.

Now compare coefficients on both sides. ut

2 For more information about Bernoulli, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Bernoulli Jacob.html.
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Consider a (d − 1)-dimensional unit cube embedded into Rd and form
a d-dimensional pyramid by adjoining one more vertex at (0, 0, . . . , 0, 1), as
depicted in Figure 2.3. More precisely, this geometric object has the following
hyperplane description:

P =
{

(x1, x2, . . . , xd) ∈ Rd : 0 ≤ x1, x2, . . . , xd−1 ≤ 1− xd ≤ 1
}
. (2.9)

By definition, P is contained in the unit d-cube; in fact, its vertices are a
subset of the vertices of the d-cube.

x1

x3

x2

1

1

1

Fig. 2.3. The pyramid P in dimension 3.

We now count lattice points in integer dilates of P. This number equals

#
{

(m1,m2, . . . ,md) ∈ Zd : 0 ≤ mk ≤ t−md ≤ t for all k = 1, 2, . . . , d− 1
}
.

In this case we just count the solutions to 0 ≤ mk ≤ t−md ≤ t directly: once
we pick the integer md (between 0 and t), we have t −md + 1 independent
choices for each of the integers m1,m2, . . . ,md−1. Hence

LP(t) =
t∑

md=0

(t−md + 1)d−1 =
t+1∑
k=1

kd−1 =
1
d

(Bd(t+ 2)−Bd) , (2.10)

by Lemma 2.3. (Here we need to require d ≥ 2.) This is, naturally, a polyno-
mial in t.

We now turn our attention to the number of interior lattice points in P:

LP◦(t) = #
{

(m1,m2, . . . ,md) ∈ Zd :
0 < mk < t−md < t
for all k = 1, 2, . . . , d− 1

}
.
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By a similar counting argument,

LP◦(t) =
t−1∑
md=1

(t−md − 1)d−1 =
t−2∑
k=0

kd−1 =
1
d

(Bd(t− 1)−Bd) .

Incidentally, the Bernoulli polynomials are known (Exercise 2.15) to have the
symmetry

Bd(1− x) = (−1)dBd(x) . (2.11)

This identity coupled with the fact (Exercise 2.16) that

Bd = 0 for all odd d ≥ 3 (2.12)

gives the relation

LP(−t) =
1
d

(Bd(−t+ 2)−Bd) =
1
d

(Bd (1− (t− 1))−Bd)

= (−1)d
1
d

(Bd(t− 1)−Bd) = (−1)d LP◦(t) .

Next we compute the Ehrhart series of P. We can actually do this in
somewhat greater generality. Namely, for a (d − 1)-polytope Q with vertices
v1,v2, . . . ,vm, define Pyr(Q), the pyramid over Q, as the convex hull of
(v1, 0) , (v2, 0) , . . . , (vm, 0) , (0, . . . , 0, 1). In our example above, the d-polytope
P is equal to Pyr(2) for the unit (d−1)-cube 2. The number of integer points
in tPyr(Q) is, by construction,

LPyr(Q)(t) = 1 + LQ(1) + LQ(2) + · · ·+ LQ(t) = 1 +
t∑

j=1

LQ(j) ,

because in tPyr(Q), there is one lattice point with xd-coordinate t, LQ(1)
lattice points with xd-coordinate t−1, LQ(2) lattice points with xd-coordinate
t−2, etc., up to LQ(t) lattice points with xd = 0. Figure 2.4 shows the instance
t = 3 for a pyramid over a square.

This identity for LPyr(Q)(t) allows us to compute the Ehrhart series of
Pyr(Q) from the Ehrhart series of Q:

Theorem 2.4. EhrPyr(Q)(z) =
EhrQ(z)

1− z
.

Proof.

EhrPyr(Q)(z) = 1 +
∑
t≥1

LPyr(Q)(t) zt = 1 +
∑
t≥1

1 +
t∑

j=1

LQ(j)

 zt

=
∑
t≥0

zt +
∑
t≥1

t∑
j=1

LQ(j) zt =
1

1− z
+
∑
j≥1

LQ(j)
∑
t≥j

zt

=
1

1− z
+
∑
j≥1

LQ(j)
zj

1− z
=

1 +
∑
j≥1 LQ(j) zj

1− z
. ut



2.5 The Lattice-Point Enumerators of the Cross-Polytopes 35

x1

x3

x2

Fig. 2.4. Counting the lattice points in tPyr(Q).

Our pyramid P that started this section is a pyramid over the unit (d−1)-
cube, and so

EhrP(z) =
1

1− z

∑d−1
k=1A (d− 1, k) zk−1

(1− z)d
=
∑d−1
k=1A (d− 1, k) zk−1

(1− z)d+1
. (2.13)

Let’s summarize what we have proved for the pyramid over the unit cube.

Theorem 2.5. Given d ≥ 2, let P be the d-pyramid

P =
{

(x1, x2, . . . , xd) ∈ Rd : 0 ≤ x1, x2, . . . , xd−1 ≤ 1− xd ≤ 1
}
.

(a) The lattice-point enumerator of P is the polynomial

LP(t) =
1
d

(Bd(t+ 2)−Bd) .

(b) Its evaluation at negative integers yields (−1)dLP(−t) = LP◦(t).

(c) The Ehrhart series of P is EhrP(z) =
Pd−1
k=1 A(d−1,k)zk−1

(1−z)d+1 . ut

Patterns are emerging...

2.5 The Lattice-Point Enumerators of the
Cross-Polytopes

Consider the cross-polytope 3 in Rd given by the hyperplane description
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3 :=
{

(x1, x2, . . . , xd) ∈ Rd : |x1|+ |x2|+ · · ·+ |xd| ≤ 1
}
. (2.14)

Figure 2.5 shows the 3-dimensional instance of 3, an octahedron. The vertices
of 3 are (±1, 0, . . . , 0) , (0,±1, 0, . . . , 0) , . . . , (0, . . . , 0,±1).

x1

x2

x3

Fig. 2.5. The cross-polytope 3 in dimension 3.

To compute the discrete volume of 3, we use a process similar to that of
Section 2.4. Namely, for a (d − 1)-polytope Q with vertices v1,v2, . . . ,vm,
such that the origin is in Q, define BiPyr(Q), the bipyramid over Q, as the
convex hull of

(v1, 0) , (v2, 0) , . . . , (vm, 0) , (0, . . . , 0, 1) , and (0, . . . , 0,−1) .

In our example above, the d-dimensional cross-polytope is the bipyramid
over the (d− 1)-dimensional cross-polytope. The number of integer points in
tBiPyr(Q) is, by construction,

LBiPyr(Q)(t) = 2 + 2LQ(1) + 2LQ(2) + · · ·+ 2LQ(t− 1) + LQ(t)

= 2 + 2
t−1∑
j=1

LQ(j) + LQ(t) .

This identity allows us to compute the Ehrhart series of BiPyr(Q) from the
Ehrhart series of Q, in a manner similar to the proof of Theorem 2.4. We leave
the proof of the following result as Exercise 2.23.

Theorem 2.6. If Q contains the origin, then EhrBiPyr(Q)(z) = 1+z
1−z EhrQ(z).

ut
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This theorem allows us to compute the Ehrhart series of 3 effortlessly:
The cross-polytope 3 in dimension 0 is the origin, with Ehrhart series 1

1−z .
The higher-dimensional cross-polytopes can be computed recursively through
Theorem 2.6 as

Ehr3(z) =
(1 + z)d

(1− z)d+1
.

Since Ehr3(z) = 1 +
∑
t≥1 L3(t) zt, we can retrieve L3(t) by expanding

Ehr3(z) into its power series at z = 0:

Ehr3(z) =
(1 + z)d

(1− z)d+1
=
∑d
k=0

(
d
k

)
zk

(1− z)d+1

=
d∑
k=0

(
d

k

)
zk
∑
t≥0

(
t+ d

d

)
zt =

d∑
k=0

(
d

k

)∑
t≥k

(
t− k + d

d

)
zt

=
d∑
k=0

(
d

k

)∑
t≥0

(
t− k + d

d

)
zt.

In the last step we used the fact that
(
t−k+d
d

)
= 0 for 0 ≤ t < k. But then

1 +
∑
t≥1

L3(t) zt =
∑
t≥0

d∑
k=0

(
d

k

)(
t− k + d

d

)
zt,

and hence L3(t) =
∑d
k=0

(
d
k

)(
t−k+d
d

)
for all t ≥ 1.

We finish this section by counting the interior lattice points in t3. We
start by noticing, since t is an integer, that

L3◦(t) = #
{

(m1,m2, . . . ,md) ∈ Zd : |m1|+ |m2|+ · · ·+ |md| < t
}

= #
{

(m1,m2, . . . ,md) ∈ Zd : |m1|+ |m2|+ · · ·+ |md| ≤ t− 1
}

= L3(t− 1) .

On the other hand, we can use (2.7):

L3(−t) =
d∑
k=0

(
d

k

)(
−t− k + d

d

)

=
d∑
k=0

(
d

k

)
(−1)d

(
t− 1 + k

d

)

= (−1)d
d∑
k=0

(
d

d− k

)(
t− 1 + d− k

d

)
= (−1)dL3(t− 1) .

Comparing the last two computations, we see that (−1)dL3(−t) = L3◦(t).
Let us summarize:
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Theorem 2.7. Let 3 be the cross-polytope in Rd.

(a) The lattice-point enumerator of 3 is the polynomial

L3(t) =
d∑
k=0

(
d

k

)(
t− k + d

d

)
.

(b) Its evaluation at negative integers yields (−1)dL3(−t) = L3◦(t).
(c) The Ehrhart series of P is Ehr3(z) = (1+z)d

(1−z)d+1 . ut

2.6 Pick’s Theorem

Going back to basic concepts, we now give a complete account of LP for all
integral convex polygons P in R2. Denote the number of integer points inside
the polygon P by I, and the number of integer points on the boundary of P by
B. The following result, called Pick’s theorem in honor of its discoverer Georg
Alexander Pick (1859–1942), presents the astonishing fact that the area A of
P can be computed simply by counting lattice points:

Theorem 2.8 (Pick’s theorem). For an integral convex polygon,

A = I +
1
2
B − 1 .

Proof. We start by proving that Pick’s identity has an additive character: we
can decompose P into the union of two integral polygons P1 and P2 by joining
two vertices of P with a line segment, as shown in Figure 2.6.

P1

P2

Fig. 2.6. Decomposition of a polygon into two.

We claim that the validity of Pick’s identity for P follows from the validity
of Pick’s identity for P1 and P2. Denote the area, number of interior lattice
points, and number of boundary lattice points of Pk by Ak, Ik, and Bk,
respectively, for k = 1, 2. Clearly,
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A = A1 +A2 .

Furthermore, if we denote the number of lattice points on the edge common
to P1 and P2 by L, then

I = I1 + I2 + L− 2 and B = B1 +B2 − 2L+ 2 .

Thus

I +
1
2
B − 1 = I1 + I2 + L− 2 +

1
2
B1 +

1
2
B2 − L+ 1− 1

= I1 +
1
2
B1 − 1 + I2 +

1
2
B2 − 1 .

This proves the claim. Note that our proof also shows that the validity of
Pick’s identity for P1 follows from the validity of Pick’s identity for P and P2.

Fig. 2.7. Triangulation of a polygon.

Now, any convex polygon can be decomposed into triangles that share a
common vertex, as illustrated in Figure 2.7. Hence it suffices to prove Pick’s
theorem for triangles. Further simplifying the picture, we can embed any
integral triangle into an integral rectangle as suggested by Figure 2.8.
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��
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Fig. 2.8. Embedding a triangle in a rectangle.

This reduces the proof of Pick’s theorem to proving the theorem for integral
rectangles whose edges are parallel to the coordinate axes, and for rectangular
triangles two of whose edges are parallel to the coordinate axes. These two
cases are left to the reader as Exercise 2.24. ut
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Pick’s theorem allows us not only to count the lattice points strictly inside
the polygon P but also the total number of lattice points contained in P,
because this number is

I +B = A− 1
2
B + 1 +B = A+

1
2
B + 1 . (2.15)

From this identity, it is now easy to describe the lattice-point enumerator LP :

Theorem 2.9. Suppose P is an integral convex polygon with area A and B
lattice points on its boundary.

(a) The lattice-point enumerator of P is the polynomial

LP(t) = A t2 +
1
2
B t+ 1 .

(b) Its evaluation at negative integers yields the relation

LP(−t) = LP◦(t) .

(c) The Ehrhart series of P is

EhrP(z) =

(
A− B

2 + 1
)
z2 +

(
A+ B

2 − 2
)
z + 1

(1− z)3
.

Note that in the numerator of the Ehrhart series, the coefficient of z2 is LP◦(1),
and the coefficient of z is LP(1)− 3.

Proof. Statement (a) follows from (2.15) if we can prove that the area of tP
is At2, and the number of boundary points on tP is Bt, which is the content
of Exercise 2.25. Statement (b) follows with LP◦(t) = LP(t)−Bt. Finally, the
Ehrhart series is

EhrP(z) = 1 +
∑
t≥1

LP(t) zt

=
∑
t≥0

(
A t2 +

B

2
t+ 1

)
zt

= A
z2 + z

(1− z)3
+
B

2
z

(1− z)2
+

1
1− z

=

(
A− B

2 + 1
)
z2 +

(
A+ B

2 − 2
)
z + 1

(1− z)3
. ut

2.7 Polygons with Rational Vertices

In this section we will establish formulas for the number of integer points in
any rational convex polygon and its integral dilates.
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A natural first step is to fix a triangulation of the polygon P, which reduces
our problem to that of counting integer points in rational triangles. However,
this procedure merits some remarks. After counting lattice points in the tri-
angles, we need to put those back together to form the polygon. But then we
need to take care of the overcounting on line segments (where the triangles
meet). Computing the number of lattice points on rational line segments is
considerably easier than enumerating lattice points in 2-dimensional regions;
however, it is still nontrivial (see Popoviciu’s Theorem 1.5).

After triangulating P, we can further simplify the picture by embedding an
arbitrary rational triangle in a rational rectangle as in Figure 2.8. To compute
lattice points in a triangle, we can first count the points in a rectangle with
edges parallel to the coordinate axes, and then subtract the number of points
in three right triangles, each with two edges are parallel to the axes, and
possibly another rectangle, as shown in Figure 2.8. Since rectangles are easy
to deal with (see Exercise 2.2), the problem reduces to finding a formula for
a right triangle two of whose edges are parallel to the coordinate axes.

We now adjust and expand our generating-function machinery to these
right triangles. Such a triangle T is a subset of R2 consisting of all points
(x, y) satisfying

x ≥ a

d
, y ≥ b

d
, ex+ fy ≤ r

for some integers a, b, d, e, f, r (with ea+fb ≤ rd; otherwise, the triangle would
be empty). Because the lattice point count is invariant under horizontal and
vertical integer translations and under flipping about the x- or y-axis, we may
assume that a, b, d, e, f, r ≥ 0 and a, b < d. (One should meditate about this
fact for a minute.) Thus we arrive at the triangle T depicted in Figure 2.9.

x

y

„
r − fb/d

e
,
b

d

«„
a

d
,
b

d

«

„
a

d
,
r − ea/d

f

«

Fig. 2.9. A right rational triangle.
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To make our life a little easier, let’s assume for the moment that e and f
are relatively prime; we will deal with the general case in the exercises. So let

T =
{

(x, y) ∈ R2 : x ≥ a

d
, y ≥ b

d
, ex+ fy ≤ r

}
. (2.16)

To derive a formula for

LT (t) = #
{

(m,n) ∈ Z2 : m ≥ ta

d
, n ≥ tb

d
, em+ fn ≤ tr

}
we want to use methods similar to those in Chapter 1. As in Section 2.3, we
introduce a slack variable s:

LT (t) = #
{

(m,n) ∈ Z2 : m ≥ ta

d
, n ≥ tb

d
, em+ fn ≤ tr

}
= #

{
(m,n, s) ∈ Z3 : m ≥ ta

d
, n ≥ tb

d
, s ≥ 0, em+ fn+ s = tr

}
.

This counting function can now, as earlier, be interpreted as the coefficient of
ztr in the function  ∑

m≥ tad

zem

∑
n≥ tbd

zfn

∑
s≥0

zs

 .

Here the subscript (e.g., m ≥ ta
d ) under a summation sign means “sum over

all integers satisfying this condition.” For example, in the first sum we start
with the least integer greater than or equal to ta

d , which is denoted by
⌈
ta
d

⌉
(and is equal to

⌊
ta−1
d

⌋
+ 1 by Exercise 1.4 (j)). Hence the above generating

function can be rewritten as ∑
m≥d tad e

zem


 ∑
n≥d tbd e

zfn


∑
s≥0

zs

 =
zd

ta
d ee

1− ze
zd

tb
d ef

1− zf
1

1− z

=
zu+v

(1− ze) (1− zf ) (1− z)
, (2.17)

where we have introduced, for ease of notation,

u :=
⌈
ta

d

⌉
e and v :=

⌈
tb

d

⌉
f . (2.18)

To extract the coefficient of ztr of our generating function (2.17), we use
familiar methods. As usual, we shift this coefficient to a constant term:

LT (t) = const
(

zu+v−tr

(1− ze) (1− zf ) (1− z)

)
= const

(
1

(1− ze) (1− zf ) (1− z)ztr−u−v

)
.
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Before we apply the partial fraction machinery to this function, we should
make sure that it is indeed a proper rational function, that is, that the total
degree satisfies

u+ v − tr − e− f − 1 < 0 (2.19)

(see Exercise 2.31). Then we expand into partial fractions (here we’re using
our assumption that e and f do not have any common factors!):

1
(1− ze) (1− zf ) (1− z)ztr−u−v

=
e−1∑
j=1

Aj

z − ξje
+
f−1∑
j=1

Bj

z − ξjf
+

3∑
k=1

Ck
(z − 1)k

+
tr−u−v∑
k=1

Dk

zk
. (2.20)

As numerous times before, the coefficients Dk do not contribute to the con-
stant term, so that we obtain

LT (t) = −
e−1∑
j=1

Aj

ξje
−
f−1∑
l=1

Bl
ξlf
− C1 + C2 − C3 . (2.21)

We invite the reader to compute the coefficients appearing in this formula
(Exercise 2.32):

Aj = − ξ
j(v−tr+1)
e

e
(

1− ξjfe
)

(1− ξje)
,

Bl = −
ξ
l(u−tr+1)
f

f
(

1− ξlef
)

(1− ξlf )
,

C1 = − (u+ v − tr)2

2ef
+
u+ v − tr

2

(
− 1
ef

+
1
e

+
1
f

)
+

1
4

(
1
e

+
1
f
− 1
)

− 1
12

(
e

f
+

1
ef

+
f

e

)
, (2.22)

C2 = −u+ v − tr + 1
ef

+
1
2e

+
1

2f
,

C3 = − 1
ef

.

Putting these ingredients into (2.21) yields the following formula for our
lattice-point count.

Theorem 2.10. For the rectangular rational triangle T given by (2.16), where
e and f are relatively prime,
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LT (t) =
1

2ef
(tr − u− v)2 +

1
2

(tr − u− v)
(

1
e

+
1
f

+
1
ef

)
+

1
4

(
1 +

1
e

+
1
f

)
+

1
12

(
e

f
+
f

e
+

1
ef

)
+

1
e

e−1∑
j=1

ξ
j(v−tr)
e(

1− ξjfe
)(

1− ξje
) +

1
f

f−1∑
l=1

ξ
l(u−tr)
f(

1− ξlef
)(

1− ξlf
) . ut

This identity can be rephrased in terms of the Fourier–Dedekind sum that
we introduced in (1.13):

LT (t) =
1

2ef
(tr − u− v)2 +

1
2

(tr − u− v)
(

1
e

+
1
f

+
1
ef

)
+

1
4

(
1 +

1
e

+
1
f

)
+

1
12

(
e

f
+
f

e
+

1
ef

)
+ sv−tr(f, 1; e) + su−tr(e, 1; f) .

The general formula for LT—not assuming that e and f are relatively
prime—is the content of Exercise 2.34.

Let us pause for a moment and study the nature of LT as a function
of t. Aside from the last two finite sums (which will be put in the spotlight
in Chapter 8) and the appearance of u and v, LT is a quadratic polynomial
in t. And in those two sums, t appears only in the exponent of roots of unity,
namely as the exponent of ξe and ξf . As a function of t, ξte is periodic with
period e, and similarly ξtf is periodic with period f . We should also remember
that u and v are functions of t; but they can be easily written in terms of
the fractional-part function, which again gives rise to periodic functions in t.
So LT (t) is a (quadratic) “polynomial” in t, whose coefficients are periodic
functions in t. This is reminiscent of the counting functions of Chapter 1, which
showed a similar periodic-polynomial behavior. Inspired by both examples, we
define a quasipolynomial Q as an expression of the form Q(t) = cn(t) tn +
· · ·+ c1(t) t+ c0(t), where c0, . . . , cn are periodic functions in t. The degree
of Q is n,3 and the least common period of c0, . . . , cn is the period of Q.
Alternatively, for a quasipolynomial Q, there exist a positive integer k and
polynomials p0, p1, . . . , pk−1 such that

Q(t) =


p0(t) if t ≡ 0 mod k,

p1(t) if t ≡ 1 mod k,
...

pk−1(t) if t ≡ k − 1 mod k.

The minimal such k is the period of Q, and for this minimal k, the polynomials
p0, p1, . . . , pk−1 are the constituents of Q.
3 Here we tacitly assume that cn is not the zero function.
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By the triangulation and embedding-in-a-box arguments that started this
section, we can now state a general structural result for rational polygons.

Theorem 2.11. Let P be any rational polygon. Then LP(t) is a quasipolyno-
mial of degree 2. Its leading coefficient is the area of P (in particular, it is a
constant).

We have the technology at this point to also study the period of LP ; we
let the reader enjoy the ensuing details (see Exercise 2.35).

Proof. By Exercises 2.2 and 2.34 (the general form of Theorem 2.10), the the-
orem holds for rational rectangles and right triangles whose edges are parallel
to the axes. Now use the additivity of both degree-2 quasipolynomials and
areas, and Popoviciu’s theorem (Theorem 1.5). ut

2.8 Euler’s Generating Function for General Rational
Polytopes

By now we have computed several instances of counting functions by set-
ting up a generating function that fits the particular problem we’re interested
in. In this section, we set up such a generating function for the lattice-point
enumerator of any rational polytope. Such a polytope is given by its hyper-
plane description as an intersection of half-spaces and hyperplanes. The half-
spaces are algebraically given by linear inequalities, the hyperplanes by linear
equations. If the polytope is rational, we can choose the coefficients of these
inequalities and equations to be integers (Exercise 2.7). To unify both de-
scriptions, we can introduce slack variables to turn the half-space inequalities
into equalities. Furthermore, by translating our polytope into the nonnegative
orthant (we can always shift a polytope by an integer vector without changing
the lattice-point count), we may assume that all points in the polytope have
nonnegative coordinates. In summary, after a harmless integer translation, we
can describe any rational polytope P as

P =
{
x ∈ Rd≥0 : A x = b

}
(2.23)

for some integral matrix A ∈ Zm×d and some integer vector b ∈ Zm. (Note
that d is not necessarily the dimension of P.) To describe the tth dilate of P,
we simply scale a point x ∈ P by 1

t , or alternatively, multiply b by t:

tP =
{

x ∈ Rd≥0 : A
x
t

= b
}

=
{
x ∈ Rd≥0 : A x = tb

}
.

Hence the lattice-point enumerator of P is the counting function

LP(t) = #
{
x ∈ Zd≥0 : A x = tb

}
. (2.24)
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Example 2.12. Suppose P is the quadrilateral with vertices (0, 0), (2, 0),
(1, 1), and

(
0, 3

2

)
:

@
@
@
@
@
@
@
@
@
@
@
@

HHH
HHH

HHH
HHH

HHH
HH

t(
0, 3

2

)

t
(2, 0)

t(1, 1)

t
(0, 0)

The half-space-inequality description of P is

P =
{

(x1, x2) ∈ R2 : x1, x2 ≥ 0,
x1 + 2x2 ≤ 3,
x1 + x2 ≤ 2

}
.

Thus,

LP(t) = #
{

(x1, x2) ∈ Z2 : x1, x2 ≥ 0,
x1 + 2x2 ≤ 3t,
x1 + x2 ≤ 2t

}
= #

{
(x1, x2, x3, x4) ∈ Z4 : x1, x2, x3, x4 ≥ 0,

x1 + 2x2 + x3 = 3t,
x1 + x2 + x4 = 2t

}
= #

{
x ∈ Z4

≥0 :
(

1 2 1 0
1 1 0 1

)
x =

(
3t
2t

)}
.

Using the ideas from Sections 1.3, 1.5, 2.3, and 2.7, we now construct a gen-
erating function for this counting function. In these previous sections, the
lattice-point enumerator could be described with only one nontrivial linear
equation, whereas now we have a system of such linear constraints. However,
we can use the same approach of encoding the linear equation into geometric
series; we just need more than one variable. When we expand the function

f (z1, z2) :=
1

(1− z1z2) (1− z2
1z2) (1− z1) (1− z2) z3t

1 z
2t
2

into geometric series, we have

f (z1, z2) =

( ∑
n1≥0

(z1z2)n1

)( ∑
n2≥0

(
z2

1z2

)n2

)( ∑
n3≥0

zn3
1

)( ∑
n4≥0

zn4
2

)
1

z3t
1 z

2t
2

=
∑

n1,...,n4≥0

zn1+2n2+n3−3t
1 zn1+n2+n4−2t

2 .

When we compute the constant term (in both z1 and z2), we are counting
solutions (n1, n2, n3, n4) ∈ Z4

≥0 to
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(
1 2 1 0
1 1 0 1

)
n1

n2

n3

n4

 =
(

3t
2t

)
,

that is, the constant term of f (z1, z2) counts the integer points in P:

LP(t) = const
1

(1− z1z2) (1− z2
1z2) (1− z1) (1− z2) z3t

1 z
2t
2

.

We invite the reader to actually compute this constant term (Exercise 2.36).
It turns out to be

7
4
t2 +

5
2
t+

7 + (−1)t

8
. ut

Returning to the general case of a polytope P given by (2.23), we denote
the columns of A by c1, c2, . . . , cd. Let z = (z1, z2, . . . , zm) and expand the
function

1
(1− zc1) (1− zc2) · · · (1− zcd) ztb

(2.25)

in terms of geometric series:∑
n1≥0

zn1c1

∑
n2≥0

zn2c2

 · · ·
∑
nd≥0

zndcd

 1
ztb

.

Here we use the abbreviating notation zc := zc11 z
c2
2 · · · zcmm for the vectors

z = (z1, z2, . . . , zm) ∈ Cm and c = (c1, c2, . . . , cm) ∈ Zm. When multiplying
out everything, a typical exponent will look like

n1c1 + n2c2 + · · ·+ ndcd − tb = An− tb ,

where n = (n1, n2, . . . , nd) ∈ Zd≥0. That is, if we take the constant term of our
generating function (2.25), we’re counting integer vectors n ∈ Zd≥0 satisfying

An− tb = 0 , that is, An = tb .

So this constant term will pick up exactly the number of lattice points n ∈ Zd≥0

in tP:

Theorem 2.13 (Euler’s generating function). Suppose the rational poly-
tope P is given by (2.23). Then the the lattice-point enumerator of P can be
computed as follows:

LP(t) = const
(

1
(1− zc1) (1− zc2) · · · (1− zcd) ztb

)
. ut

We finish this section with rephrasing this constant-term identity in terms
of Ehrhart series.
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Corollary 2.14. Suppose the rational polytope P is given by (2.23). Then the
Ehrhart series of P can be computed as

EhrP(x) = const

(
1

(1− zc1) (1− zc2) · · · (1− zcd)
(
1− x

zb

)) .
Proof. By Theorem 2.13,

EhrP(x) =
∑
t≥0

const
(

1
(1− zc1) (1− zc2) · · · (1− zcd) ztb

)
xt

= const

 1
(1− zc1) (1− zc2) · · · (1− zcd)

∑
t≥0

xt

ztb


= const

(
1

(1− zc1) (1− zc2) · · · (1− zcd)
1

1− x
zb

)
. ut

Notes

1. Convex polytopes are beautiful objects with a rich history and interest-
ing theory, which we have only glimpsed here. For a good introduction to
polytopes, we recommend [47, 90, 193]. Polytopes appear in a vast range
of current research areas, including Gröbner bases and commutative algebra
[174], combinatorial optimization [159], integral geometry [110], and geometry
of numbers [163].

2. The distinction between the vertex and hyperplane description of a convex
polytope leads to an interesting algorithmic question; namely, how quickly can
we retrieve the first piece of data from the second and vice versa [159, 193]?

3. Ehrhart series are named after Eugène Ehrhart (1906–2000),4 in antici-
pation of the theorems we will prove in Chapter 3. The Ehrhart series of a
polytope belonging to the special class of normal polytopes equals another
rational generating function, the Hilbert–Poincaré series. These series appear
in the study of graded algebras (see, for example, [96, 171]). Ehrhart series also
appear in the context of toric varieties, a vast and fruitful subject [64, 84].

4. The Eulerian numbers A (d, k) are named after Leonhard Euler (1707–
1783)5 and arise naturally in the statistics of permutations: A (d, k) counts
permutations of {1, 2, . . . , d} with k− 1 ascents. For more on A (d, k), see [62,
Section 6.5].
4 For more information about Ehrhart, see
http://icps.u-strasbg.fr/∼clauss/Ehrhart.html.

5 For more information about Euler, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Euler.html.
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5. The pyramids of Section 2.4 have an interpretation as order polytopes [172].
A curious fact about the lattice-point enumerators of these pyramids is that
they have arbitrarily large real roots as the dimension grows [24].

6. The counting function L3 for the cross-polytope can, incidentally, also be
written as

min(d,t)∑
k=0

2k
(
d

k

)(
t

k

)
.

In particular, L3 is symmetric in d and t. The cross-polytope counting func-
tions bear a connection to Laguerre polynomials, the d-dimensional harmonic
oscillator, and the Riemann hypothesis. This connection appeared in [51],
where Daniel Bump, Kwok-Kwong Choi, Pär Kurlberg, and Jeffrey Vaaler
also found a curious fact about the roots of the polynomials L3: they all have
real part − 1

2 (an instance of a local Riemann hypothesis). This fact was proved
independently by Peter Kirschenhofer, Attila Pethő, and Robert Tichy [109];
see also the Notes in Chapter 4.

7. Theorem 2.8 marks the beginning of the general study of lattice-point
enumeration in polytopes. Its amazingly simple statement was discovered by
Georg Alexander Pick (1859–1942)6 in 1899 [143]. Pick’s theorem holds also
for a nonconvex polygon, provided its boundary forms a simple curve. In Chap-
ter 12, we prove a generalization of Pick’s theorem that includes nonconvex
curves.

8. The results of Section 2.7 appeared in [29]. We will see in Chapter 8 that
the finite sums over roots of unity can be rephrased in terms of Dedekind–
Rademacher sums, which—as we will see in Chapter 8—can be computed very
quickly. The theorems of Section 2.7 will then imply that the discrete volume
of any rational polygon can be computed efficiently.

9. If we replace tb in (2.24) by a variable integer vector v, the counting
function

f(v) = #
{
x ∈ Zd≥0 : A x = v

}
is called a vector partition function: it counts partitions of the vector v in terms
of the columns of A. Vector partition functions are the multivariate analogues
of our lattice-point enumerators LP(t), have many interesting properties, and
give rise to intriguing open questions [20, 40, 63, 173, 178].

10. While Leonhard Euler most likely did not think of lattice-point enumer-
ation in the sense of Ehrhart, we attribute Theorem 2.13 to him, since he
certainly worked with generating functions of this type, probably thinking of

6 For more information about Pick, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Pick.html.
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them as vector partition functions. The potential of Euler’s generating func-
tion for Ehrhart polynomials was already realized by Ehrhart [79, 81]. Several
modern approaches to computing Ehrhart polynomials are based on Theo-
rem 2.13 (see, for example, [19, 46, 119]).

Exercises

2.1. ♣ Fix positive integers a, b, c, d such that a/b < c/d, and let P be the
interval

[
a
b ,

c
d

]
(so P is a 1-dimensional rational convex polytope). Compute

LP(t) = # (tP ∩ Z) and LP◦(t) and show directly that LP(t) and LP◦(t) are
quasipolynomials with period lcm(b, d) that satisfy

LP◦(−t) = −LP(t) .

(Hint: Exercise 1.4 (i).)

2.2. ♣ Fix positive rational numbers a1, b1, a2, b2 and let R be the rectan-
gle with vertices (a1, b1), (a2, b1), (a2, b2), and (a1, b2). Compute LR(t) and
EhrR(z).

2.3. Fix positive integers a and b, and let T be a triangle with vertices (0, 0),
(a, 0), and (0, b).

(a) Compute LT (t) and EhrT (z).
(b) Use (a) to derive the following formula for the greatest common divisor of

a and b:

gcd(a, b) = 2
b−1∑
k=1

⌊
ka

b

⌋
+ a+ b− ab .

(Hint: Exercise 1.12.)

2.4. Prove that for two polytopes P ⊂ Rm and Q ⊂ Rn,

#
(
(P ×Q) ∩ Zm+n

)
= # (P ∩ Zm) ·# (Q∩ Zn) .

Hence, LP×Q(t) = LP(t)LQ(t).

2.5. Prove that if F is a face of P and G is a face of F , then G is also a face
of P. (That is, the face relation is transitive.)

2.6. ♣ Suppose ∆ is a d-simplex with vertices V = {v1,v2, . . . ,vd+1}. Prove
that for any nonempty subset W ⊆ V , convW is a face of ∆, and conversely,
that any face of ∆ is of the form convW for some W ⊆ V . Conclude the
following corollaries from this characterization of the faces of a simplex:

(a) A face of any simplex is again a simplex.
(b) The intersection of two faces of a simplex ∆ is again a face of ∆.
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2.7. ♣ Prove that a rational convex polytope can be described by a system
of linear inequalities and equations with integral coefficients.

2.8. ♣ Prove the properties (2.3) of the Eulerian numbers for all integers
1 ≤ k ≤ d, namely:

(a) A (d, k) = A (d, d+ 1− k) ;
(b) A (d, k) = (d− k + 1)A (d− 1, k − 1) + k A (d− 1, k) ;

(c)
d∑
k=0

A (d, k) = d! ;

(d) A (d, k) =
k∑
j=0

(−1)j
(
d+ 1
j

)
(k − j)d.

2.9. ♣ Prove (2.6); namely, for d ≥ 0, 1
(1−z)d+1 =

∑
k≥0

(
d+k
d

)
zk.

2.10. ♣ Prove (2.7): For t, k ∈ Z and d ∈ Z>0,

(−1)d
(
−t+ k

d

)
=
(
t+ d− 1− k

d

)
.

2.11. The Stirling numbers of the first kind, stirl(n,m), are defined through
the finite generating function

x(x− 1) · · · (x− n+ 1) =
n∑

m=0

stirl(n,m)xm.

(See also [165, Sequence A008275].) Prove that

1
d!

d∑
k=0

(−1)d−k stirl(d+ 1, k + 1) tk =
(
d+ t

d

)
,

the lattice-point enumerator for the standard d-simplex.

2.12. Give a direct proof that the number of solutions (m1,m2, . . . ,md+1) ∈
Zd+1
≥0 to m1 +m2 + · · ·+md+1 = t equals

(
d+t
d

)
. (Hint: think of t objects lined

up and separated by d walls.)

2.13. Compute LP(t), where P is the regular tetrahedron with vertices
(0, 0, 0) , (1, 1, 0) , (1, 0, 1) , (0, 1, 1).

2.14. ♣ Prove that the power series∑
k≥0

Bk
k!

zk

that defines the Bernoulli numbers has radius of convergence 2π.
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2.15. ♣ Prove (2.11); namely, Bd(1− x) = (−1)dBd(x).

2.16. ♣ Prove (2.12); namely, Bd = 0 for all odd d ≥ 3.

2.17. Show that for each positive integer n,

nxn−1 =
n∑
k=1

(
n

k

)
Bn−k(x) .

This gives us a change of basis for the polynomials of degree ≤ n, allowing us
to represent any polynomial as a sum of Bernoulli polynomials.

2.18. As a complement to the previous exercise, show that we also have a
change of basis in the other direction. Namely, we can represent a single
Bernoulli polynomial in terms of the monomials as follows:

Bn(x) =
n∑
k=0

(
n

k

)
Bk x

n−k.

2.19. Show that for all positive integers m,n, and any x ∈ R,

1
m

m−1∑
k=0

Bn

(
x+

k

m

)
= m−nBn(mx) .

(This is a Hecke-operator -type identity, originally found by Joseph Ludwig
Raabe in 1851.)

2.20. Show that Bn(x+ 1)−Bn(x) = nxn−1.

2.21. An alternative way to define the Bernoulli polynomials is to give ele-
mentary properties that uniquely characterize them. Show that the following
three properties uniquely determine the Bernoulli polynomials, as defined in
the text by (2.8):

(a) B0(x) = 1.
(b) dBn(x)

dx = nBn−1(x), for all n ≥ 1.
(c)
∫ 1

0
Bn(x) dx = 0, for all n ≥ 1.

2.22. Use (2.13) to derive the following identity, which expresses a Bernoulli
polynomial in terms of Eulerian numbers and binomial coefficients:

1
d

(Bd(t+ 2)−Bd) = A (d− 1, d− 1)
(
t+ d− 2

d

)
+A (d− 1, d− 2)

(
t+ d− 3

d

)
+ · · ·+A (d− 1, 1)

(
t

d

)
.

2.23. ♣ Prove Theorem 2.6: EhrBiPyr(Q)(z) = 1+z
1−z EhrQ(z).
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2.24. ♣ Let R be an integral rectangle whose edges are parallel to the coordi-
nate axes, and let T be a rectangular triangle two of whose edges are parallel
to the coordinate axes. Show that Pick’s theorem holds for R and T .

2.25. ♣ Suppose P is an integral polygon with area A and B lattice points on
its boundary. Show that the area of tP is At2, and the number of boundary
points on tP is Bt. (Hint: Exercise 1.12.)

2.26. Let P be the self-intersecting polygon defined by the line segments
[(0, 0), (4, 2)], [(4, 2), (4, 0)], [(4, 0), (0, 2)], and [(0, 2), (0, 0)]. Show that Pick’s
theorem does not hold for P.

2.27. Suppose that P and Q are integral polygons, and that Q lies entirely
inside P. Then the area bounded by the boundaries of P and Q, denoted
by P −Q, is a “doubly connected polygon.” Find and prove the analogue of
Pick’s theorem for P−Q. Generalize your formula to a polygon with n “holes”
(instead of one).

2.28. Consider the rhombus

R = {(x, y) : a|x|+ b|y| ≤ ab} ,

where a and b are fixed positive integers. Find a formula for LR(t).

2.29. We define the nth Farey sequence as all the rational numbers a
b in the

interval [0, 1] when a and b are coprime and b ≤ n. For instance, the sixth
Farey sequence is 0

1 ,
1
6 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

5
6 ,

1
1 .

(a) For two consecutive fractions a
b and c

d in a Farey sequence, prove that
bc− ad = 1.

(b) For three consecutive fractions a
b , cd , and e

f in a Farey sequence, show that
c
d = a+e

b+f .

2.30. Let dxe denote the smallest integer larger than or equal to x. Prove that
for all positive integers a and b,

a+ (−1)b
a∑

m=0

(−1)d
bm
a e ≡ b+ (−1)a

b∑
n=0

(−1)d
an
b e mod 4 .

(Hint: This is a variation of Exercise 1.6. One way to obtain this identity is by
counting lattice points in a certain triangle, keeping track only of the parity.)

2.31. ♣ Verify (2.19).

2.32. ♣ Compute the partial fraction coefficients (2.22).

2.33. Let a, b be positive integers. Show that

1
1− zab

= −ξ
k
a

ab

(
z − ξka

)−1
+
ab− 1

2ab
+ terms with positive powers of

(
z − ξka

)
.
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2.34. ♣ Let T be given by (2.16), and let c = gcd(e, f). Prove that

LT (t) =
1

2ef
(tr − u− v)2 +

1
2

(tr − u− v)
(

1
e

+
1
f

+
1
ef

)
+

1
4

(
1 +

1
e

+
1
f

)
+

1
12

(
e

f
+
f

e
+

1
ef

)
+
(

1
2e

+
1

2f
− u+ v − tr

ef

) c−1∑
k=1

ξ−ktrc

1− ξkc
− 1
ef

c−1∑
k=1

ξ
k(−tr+1)
c

(1− ξc)2

+
1
e

e−1∑
j=1
e
c
6 | j

ξ
j(v−tr)
e(

1− ξjfe
)(

1− ξje
) +

1
f

f−1∑
l=1
f
c
6 | l

ξ
l(u−tr)
f(

1− ξlef
)(

1− ξlf
) .

2.35. Let P be a rational polygon, and let d be the least common multiple
of the denominators of the vertices of P. Prove directly (using Exercise 2.34)
that the period of LP divides d.

2.36. ♣ Finish the calculation in Example 2.12, that is, compute

const
1

(1− z1z2) (1− z2
1z2) (1− z1) (1− z2) z3t

1 z
2t
2

.

2.37. Compute the vector partition function of the quadrilateral given in Ex-
ample 2.12, that is, compute the counting function

f (v1, v2) := #
{

x ∈ Z4
≥0 :

(
1 2 1 0
1 1 0 1

)
x =

(
v1

v2

)}
for v1, v2 ∈ Z. (This function depends on the relationship between v1 and v2.)

2.38. Search on the Internet for the program polymake [86]. You can download
it for free. Experiment.

Open Problems

2.39. Pick d + 1 of the 2d vertices of the unit d-cube 2, and let ∆ be the
simplex defined by their convex hull.

(a) Which choice of vertices maximizes vol ∆?
(b) What is the maximum volume of such a ∆?

2.40. Find classes of integer d-polytopes (Pd)d≥1 for which LPd(t) is symmet-
ric in d and t. (The standard simplices ∆ and the cross-polytopes 3 form two
such classes.)

2.41. We mentioned already in the Notes that all the roots of the polynomials
L3 have real part − 1

2 [51, 109]. Find other classes of polytopes whose lattice-
point enumerator exhibits such a special behavior.



3

Counting Lattice Points in Polytopes: The
Ehrhart Theory

Ubi materia, ibi geometria.

Johannes Kepler (1571–1630)

Given the profusion of examples that gave rise to the polynomial behavior of
the integer-point counting function LP(t) for special polytopes P, we now ask
whether there is a general structure theorem. As the ideas unfold, the reader
is invited to look back at Chapters 1 and 2 as appetizers and indeed as special
cases of the theorems developed below.

3.1 Triangulations and Pointed Cones

Because most of the proofs that follow work like a charm for a simplex, we first
dissect a polytope into simplices. This dissection is captured by the following
definition.

A triangulation of a convex d-polytope P is a finite collection T of d-
simplices with the following properties:

• P =
⋃

∆∈T
∆ .

• For any ∆1,∆2 ∈ T , ∆1 ∩∆2 is a face common to both ∆1 and ∆2.

We say that P can be triangulated using no new vertices if there exists
a triangulation T such that the vertices of any ∆ ∈ T are vertices of P.

Theorem 3.1 (Existence of triangulations). Every convex polytope can
be triangulated using no new vertices.

This theorem seems intuitively obvious but is not entirely trivial to prove.
We carefully work out a proof in Appendix B.
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Fig. 3.1. Two (very different) triangulations of the 3-cube.

A pointed cone K ⊆ Rd is a set of the form

K = {v + λ1w1 + λ2w2 + · · ·+ λmwm : λ1, λ2, . . . , λm ≥ 0} ,

where v,w1,w2, . . . ,wm ∈ Rd are such that there exists a hyperplane H for
which H ∩ K = {v}; that is, K \ {v} lies strictly on one side of H. The
vector v is called the apex of K, and the wk’s are the generators of K.
The cone is rational if v,w1,w2, . . . ,wm ∈ Qd, in which case we may choose
w1,w2, . . . ,wm ∈ Zd by clearing denominators. The dimension of K is the
dimension of the affine space spanned by K; if K is of dimension d, we call it a
d-cone. The d-cone K is simplicial if K has precisely d linearly independent
generators.

Just as polytopes have a description as an intersection of half-spaces, so
do pointed cones: A rational pointed d-cone is the d-dimensional intersection
of finitely many half-spaces of the form{

x ∈ Rd : a1x1 + a2x2 + · · ·+ adxd ≤ b
}

with integral parameters a1, a2, . . . , ad, b ∈ Z such that the corresponding
hyperplanes of the form{

x ∈ Rd : a1x1 + a2x2 + · · ·+ adxd = b
}

meet in exactly one point.
Cones are important for many reasons. The most practical for us is a

process called coning over a polytope. Given a convex polytope P ⊂ Rd with
vertices v1,v2, . . . ,vn, we lift these vertices into Rd+1 by adding a 1 as their
last coordinate. So, let

w1 = (v1, 1) , w2 = (v2, 1) , . . . , wn = (vn, 1) .

Now we define the cone over P as

cone(P) = {λ1w1 + λ2w2 + · · ·+ λnwn : λ1, λ2, . . . , λn ≥ 0} ⊂ Rd+1.

This pointed cone has the origin as apex, and we can recover our original
polytope P (strictly speaking, the translated set {(x, 1) : x ∈ P}) by cutting
cone(P) with the hyperplane xd+1 = 1, as shown in Figure 3.2.
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x3

x1

x2

Fig. 3.2. Coning over a polytope.

By analogy with the language of polytopes, we say that the hyperplane
H = {x ∈ Rd : a ·x = b} is a supporting hyperplane of the pointed d-cone
K if K lies entirely on one side of H, that is,

K ⊂
{
x ∈ Rd : a · x ≤ b

}
or K ⊂

{
x ∈ Rd : a · x ≥ b

}
.

A face of K is a set of the form K ∩H, where H is a supporting hyperplane
of K. The (d − 1)-dimensional faces are called facets and the 1-dimensional
faces edges of K. The apex of K is its unique 0-dimensional face.

Just as polytopes can be triangulated into simplices, pointed cones can be
triangulated into simplicial cones. So, a collection T of simplicial d-cones is a
triangulation of the d-cone K if it satisfies:

• K =
⋃
S∈T
S .

• For any S1,S2 ∈ T , S1 ∩ S2 is a face common to both S1 and S2.
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We say that K can be triangulated using no new generators if there
exists a triangulation T such that the generators of any S ∈ T are generators
of P.

Theorem 3.2. Any pointed cone can be triangulated into simplicial cones us-
ing no new generators.

Proof. This theorem is really a corollary to Theorem 3.1. Given a pointed d-
cone K, there exists a hyperplane H that intersects K only at the apex. Now
translate H “into” the cone, so that H∩K consists of more than just one point.
This intersection is a (d − 1)-polytope P, whose vertices are determined by
the generators of K. Now triangulate P using no new vertices. The cone over
each simplex of the triangulation is a simplicial cone. These simplicial cones,
by construction, triangulate K. ut

3.2 Integer-Point Transforms for Rational Cones

We want to encode the information contained by the lattice points in a set
S ⊂ Rd. It turns out that the following multivariate generating function allows
us to do this in an efficient way if S is a rational cone or polytope:

σS(z) = σS (z1, z2, . . . , zd) :=
∑

m∈S∩Zd
zm.

The generating function σS simply lists all integer points in S in a special
form: not as a list of vectors, but as a formal sum of monomials. We call σS
the integer-point transform of S; the function σS also goes by the name
moment generating function or simply generating function of S. The integer-
point transform σS opens the door to both algebraic and analytic techniques.

Example 3.3. As a warm-up example, consider the 1-dimensional cone K =
[0,∞). Its integer-point transform is our old friend

σK(z) =
∑

m∈[0,∞)∩Z

zm =
∑
m≥0

zm =
1

1− z
. ut

Example 3.4. Now we consider the two-dimensional cone

K := {λ1(1, 1) + λ2(−2, 3) : λ1, λ2 ≥ 0} ⊂ R2

depicted in Figure 3.3. To obtain the integer-point transform σK, we tile K
by copies of the fundamental parallelogram

Π := {λ1(1, 1) + λ2(−2, 3) : 0 ≤ λ1, λ2 < 1} ⊂ R2.

More precisely, we translate Π by nonnegative integer linear combinations
of the generators (1, 1) and (−2, 3), and these translates will exactly cover
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K. How can we list the integer points in K as monomials? Let’s first list all
vertices of the translates of Π. These are nonnegative integer combinations of
the generators (1, 1) and (−2, 3), so we can list them using geometric series:∑

m=j(1,1)+k(−2,3)
j,k≥0

zm =
∑
j≥0

∑
k≥0

zj(1,1)+k(−2,3) =
1

(1− z1z2)
(
1− z−2

1 z3
2

) .
We now use the integer points (m,n) ∈ Π to generate a subset of Z2 by adding
to (m,n) nonnegative linear integer combinations of the generators (1, 1) and
(−2, 3). Namely, we let

L(m,n) := {(m,n) + j(1, 1) + k(−2, 3) : j, k ∈ Z≥0} .

It is immediate that K∩Z2 is the disjoint union of the subsets L(m,n) as (m,n)
ranges over Π ∩ Z2 = {(0, 0), (0, 1), (0, 2), (−1, 2), (−1, 3)}. Hence

σK(z) =
(
1 + z2 + z2

2 + z−1
1 z2

2 + z−1
1 z3

2

) ∑
m=j(1,1)+k(−2,3)

j,k≥0

zm

=
1 + z2 + z2

2 + z−1
1 z2

2 + z−1
1 z3

2

(1− z1z2)
(
1− z−2

1 z3
2

) . ut

x2

x1

(1, 1)

(−2, 3)

Fig. 3.3. The cone K and its fundamental parallelogram.
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Similar geometric series suffice to describe integer-point transforms for
simplicial d-cones. The following result utilizes the geometric series in several
directions simultaneously.

Theorem 3.5. Suppose

K := {λ1w1 + λ2w2 + · · ·+ λdwd : λ1, λ2, . . . , λd ≥ 0}

is a simplicial d-cone, where w1,w2, . . . ,wd ∈ Zd. Then for v ∈ Rd, the
integer-point transform σv+K of the shifted cone v+K is the rational function

σv+K(z) =
σv+Π(z)

(1− zw1) (1− zw2) · · · (1− zwd)
,

where Π is the half-open parallelepiped

Π := {λ1w1 + λ2w2 + · · ·+ λdwd : 0 ≤ λ1, λ2, . . . , λd < 1} .

The half-open parallelepiped Π is called the fundamental parallelepiped
of K.

Proof. In σv+K(z) =
∑

m∈(v+K)∩Zd zm, we list each integer point m in v +K
as the monomial zm. Such a lattice point can, by definition, be written as

m = v + λ1w1 + λ2w2 + · · ·+ λdwd

for some numbers λ1, λ2, . . . , λd ≥ 0. Because the wk’s form a basis of Rd, this
representation is unique. Let’s write each of the λk’s in terms of their integer
and fractional part: λk = bλkc+ {λk}. So

m = v+
(
{λ1}w1+{λ2}w2+· · ·+{λd}wd

)
+bλ1cw1+bλ2cw2+· · ·+bλdcwd ,

and we should note that, since 0 ≤ {λk} < 1, the vector

p := v + {λ1}w1 + {λ2}w2 + · · ·+ {λd}wd

is in v+Π. In fact, p ∈ Zd, since m and bλkcwk are all integer vectors. Again
the representation of p in terms of the wk’s is unique. In summary, we have
proved that any m ∈ v +K ∩ Zd can be uniquely written as

m = p + k1w1 + k2w2 + · · ·+ kdwd (3.1)

for some p ∈ (v + Π) ∩ Zd and some integers k1, k2, . . . , kd ≥ 0. On the other
hand, let us write the rational function on the right-hand side of the theorem
as a product of series:

σv+Π(z)
(1− zw1) · · · (1− zwd)

=

 ∑
p∈(v+Π)∩Zd

zp

∑
k1≥0

zk1w1

 · · ·
∑
kd≥0

zkdwd

 .

If we multiply everything out, a typical exponent will look exactly like (3.1).
ut
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Our proof contains a crucial geometric idea. Namely, we tile the cone v+K
with translates of v + Π by nonnegative integral combinations of the wk’s. It
is this tiling that gives rise to the nice integer-point transform in Theorem 3.5.
Computationally, we therefore favor cones over polytopes due to our ability
to tile a simplicial cone with copies of the fundamental domain, as above.
Another reason for favoring cones over polytopes appears in Brion’s theorem
in Chapter 9.

Theorem 3.5 shows that the real complexity of computing the integer-
point transform σv+K is embedded in the location of the lattice points in the
parallelepiped v + Π.

By mildly strengthening the hypothesis of Theorem 3.5, we obtain a
slightly easier generating function, a result we shall need in Section 3.4 and
Chapter 4.

Corollary 3.6. Suppose

K := {λ1w1 + λ2w2 + · · ·+ λdwd : λ1, λ2, . . . , λd ≥ 0}

is a simplicial d-cone, where w1,w2, . . . ,wd ∈ Zd, and v ∈ Rd, such that the
boundary of v +K contains no integer point. Then

σv+K(z) =
σv+Π(z)

(1− zw1) (1− zw2) · · · (1− zwd)
,

where Π is the open parallelepiped

Π := {λ1w1 + λ2w2 + · · ·+ λdwd : 0 < λ1, λ2, . . . , λd < 1} .

Proof. The proof of Theorem 3.5 goes through almost verbatim, except that
v+Π now has no boundary lattice points, so that there is no harm in choosing
Π to be open. ut

Since a general pointed cone can always be triangulated into simplicial
cones, the integer-point transforms add up in an inclusion–exclusion manner
(note that the intersection of simplicial cones in a triangulation is again a
simplicial cone, by Exercise 3.2). Hence we have the following corollary.

Corollary 3.7. Given any pointed cone

K = {v + λ1w1 + λ2w2 + · · ·+ λmwm : λ1, λ2, . . . , λm ≥ 0}

with v ∈ Rd, w1,w2, . . . ,wm ∈ Zd, the integer-point transform σK(z) evalu-
ates to a rational function in the coordinates of z. ut

Philosophizing some more, one can show that the original infinite sum
σK(z) converges only for z in a subset of Cd, whereas the rational function
that represents σK gives us its meromorphic continuation. Later, in Chapters
4 and 9, we make use of this continuation.
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3.3 Expanding and Counting Using Ehrhart’s Original
Approach

Here is the fundamental theorem concerning the lattice-point count in an
integral convex polytope.

Theorem 3.8 (Ehrhart’s theorem). If P is an integral convex d-polytope,
then LP(t) is a polynomial in t of degree d.

This result is due to Eugène Ehrhart, in whose honor we call LP the
Ehrhart polynomial of P. Naturally, there is an extension of Ehrhart’s
theorem to rational polytopes, which we will discuss in Section 3.7.

Our proof of Ehrhart’s theorem uses generating functions of the form∑
t≥0 f(t) zt, similar in spirit to the ones discussed in the beginning of Chap-

ter 1. If f is a polynomial, this power series takes on a special form, which we
invite the reader to prove (Exercise 3.8):

Lemma 3.9. If ∑
t≥0

f(t) zt =
g(z)

(1− z)d+1
,

then f is a polynomial of degree d if and only if g is a polynomial of degree at
most d and g(1) 6= 0. ut

The reason we introduced generating functions of the form σS(z) =∑
m∈S∩Zd zm in Section 3.2 is that they are extremely handy for lattice-point

problems. The connection to lattice points is evident, since we are summing
over them. If we’re interested in the lattice-point count, we simply evaluate
σS at z = (1, 1, . . . , 1):

σS(1, 1, . . . , 1) =
∑

m∈S∩Zd
1m =

∑
m∈S∩Zd

1 = #
(
S ∩ Zd

)
.

(Here we denote by 1 a vector all of whose components are 1.) Naturally, we
should make this evaluation only if S is bounded; Theorem 3.5 already tells
us that it’s no fun evaluating σK(1) if K is a cone.

But the magic of the generating function σS does not stop there. To liter-
ally take it to the next level, we cone over a convex polytope P. If P ⊂ Rd has
the vertices v1,v2, . . . ,vn ∈ Zd, recall that we lift these vertices into Rd+1,
by adding a 1 as their last coordinate. So let

w1 = (v1, 1) , w2 = (v2, 1) , . . . , wn = (vn, 1) .

Then

cone(P) = {λ1w1 + λ2w2 + · · ·+ λnwn : λ1, λ2, . . . , λn ≥ 0} ⊂ Rd+1.
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Recall that we can recover our original polytope P by cutting cone(P) with
the hyperplane xd+1 = 1. We can recover more than just the original polytope
in cone(P): By cutting the cone with the hyperplane xd+1 = 2, we obtain a
copy of P dilated by a factor of 2. (The reader should meditate on why this cut
is a 2-dilate of P.) More generally, we can cut the cone with the hyperplane
xd+1 = t and obtain tP, as suggested by Figure 3.4.

Fig. 3.4. Recovering dilates of P in cone(P).

Now let’s form the integer-point transform σcone(P) of cone(P). By what we
just said, we should look at different powers of zd+1: there is one term (namely,
1), with z0

d+1, corresponding to the origin; the terms with z1
d+1 correspond to

lattice points in P (listed as monomials in z1, z2, . . . , zd), the terms with z2
d+1

correspond to points in 2P, etc. In short,
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σcone(P) (z1, z2, . . . , zd+1)

= 1 + σP (z1, . . . , zd) zd+1 + σ2P (z1, . . . , zd) z2
d+1 + · · ·

= 1 +
∑
t≥1

σtP (z1, . . . , zd) ztd+1 .

Specializing further for enumeration purposes, we recall that σP (1, 1, . . . , 1) =
#
(
P ∩ Zd

)
, and so

σcone(P) (1, 1, . . . , 1, zd+1) = 1 +
∑
t≥1

σtP (1, 1, . . . , 1) ztd+1

= 1 +
∑
t≥1

#
(
tP ∩ Zd

)
ztd+1 .

But by definition, the enumerators on the right-hand side are just evaluations
of Ehrhart’s counting function, that is, σcone(P) (1, 1, . . . , 1, zd+1) is nothing
but the Ehrhart series of P:

Lemma 3.10. σcone(P) (1, 1, . . . , 1, z) = 1 +
∑
t≥1

LP(t) zt = EhrP(z) . ut

With all this machinery at hand, we can prove Ehrhart’s theorem.

Proof of Theorem 3.8. It suffices to prove the theorem for simplices, because
we can triangulate any integral polytope into integral simplices, using no new
vertices. Note that these simplices will intersect in lower-dimensional integral
simplices.

By Lemma 3.9, it suffices to prove that for an integral d-simplex ∆,

Ehr∆(z) = 1 +
∑
t≥1

L∆(t) zt =
g(z)

(1− z)d+1

for some polynomial g of degree at most d with g(1) 6= 0. In Lemma 3.10
we showed that the Ehrhart series of ∆ equals σcone(∆) (1, 1, . . . , 1, z), so let’s
study the integer-point transform attached to cone(∆).

The simplex ∆ has d+ 1 vertices v1,v2, . . . ,vd+1, and so cone(∆) ⊂ Rd+1

is simplicial, with apex the origin and generators

w1 = (v1, 1) , w2 = (v2, 1) , . . . , wd+1 = (vd+1, 1) ∈ Zd+1.

Now we use Theorem 3.5:

σcone(∆) (z1, z2, . . . , zd+1) =
σΠ (z1, z2, . . . , zd+1)

(1− zw1) (1− zw2) · · · (1− zwd+1)
,

where Π = {λ1w1 + λ2w2 + · · ·+ λd+1wd+1 : 0 ≤ λ1, λ2, . . . , λd+1 < 1}. This
parallelepiped is bounded, so the attached generating function σΠ is a Laurent
polynomial in z1, z2, . . . , zd+1.
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We claim that the zd+1-degree of σΠ is at most d. In fact, since the xd+1-
coordinate of each wk is 1, the xd+1-coordinate of a point in Π is λ1+λ2+· · ·+
λd+1 for some 0 ≤ λ1, λ2, . . . , λd+1 < 1. But then λ1 +λ2 + · · ·+λd+1 < d+1,
so if this sum is an integer it is at most d, which implies that the zd+1-degree
of σΠ (z1, z2, . . . , zd+1) is at most d. Consequently, σΠ (1, 1, . . . , 1, zd+1) is a
polynomial in zd+1 of degree at most d. The evaluation σΠ (1, 1, 1, . . . , 1) of this
polynomial at zd+1 = 1 is not zero, because σΠ (1, 1, 1, . . . , 1) = #

(
Π ∩ Zd+1

)
and the origin is a lattice point in Π.

Finally, if we specialize zwk to z1 = z2 = · · · = zd = 1, we obtain z1
d+1, so

that

σcone(∆) (1, 1, . . . , 1, zd+1) =
σΠ (1, 1, . . . , 1, zd+1)

(1− zd+1)d+1
.

The left–hand side is Ehr∆ (zd+1) = 1 +
∑
t≥1 L∆(t) ztd+1 by Lemma 3.10. ut

3.4 The Ehrhart Series of an Integral Polytope

We can actually take our proof of Ehrhart’s theorem one step further by study-
ing the polynomial σΠ (1, 1, . . . , 1, zd+1). As mentioned above, the coefficient
of zkd+1 simply counts the integer points in the parallelepiped Π cut with the
hyperplane xd+1 = k. Let us record this.

Corollary 3.11. Suppose ∆ is an integral d-simplex with vertices v1,v2, . . . ,
vd+1, and let wj = (vj , 1). Then

Ehr∆(z) = 1 +
∑
t≥1

L∆(t) zt =
hd z

d + hd−1 z
d−1 + · · ·+ h1 z + h0

(1− z)d+1
,

where hk equals the number of integer points in

{λ1w1 + λ2w2 + · · ·+ λd+1wd+1 : 0 ≤ λ1, λ2, . . . , λd+1 < 1}

with last variable equal to k. ut

This result can actually be used to compute Ehr∆, and therefore the
Ehrhart polynomial, of an integral simplex ∆ in low dimensions very quickly
(a fact that the reader may discover in some of the exercises). We remark,
however, that things are not as simple for arbitrary integral polytopes. Not
only is triangulation a nontrivial task in general, but one would also have to
deal with overcounting where simplices of a triangulation meet.

Corollary 3.11 implies that the numerator of the Ehrhart series of an inte-
gral simplex has nonnegative coefficients, since those coefficients count some-
thing. Although the latter cannot be said of the coefficients of the Ehrhart
series of a general integral polytope, the nonnegativity property magically
survives.
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Theorem 3.12 (Stanley’s nonnegativity theorem). Suppose P is an in-
tegral convex d-polytope with Ehrhart series

EhrP(z) =
hd z

d + hd−1 z
d−1 + · · ·+ h0

(1− z)d+1
.

Then h0, h1, . . . , hd are nonnegative integers.

Proof. Triangulate cone(P) ⊂ Rd+1 into the simplicial cones K1,K2, . . . ,Km.
Now Exercise 3.14 ensures that there exists a vector v ∈ Rd+1 such that

cone(P) ∩ Zd+1 = (v + cone(P)) ∩ Zd+1

(that is, we neither lose nor gain any lattice points when shifting cone(P) by
v) and neither the facets of v + cone(P) nor the triangulation hyperplanes
contain any lattice points. This implies that every lattice point in v+cone(P)
belongs to exactly one simplicial cone v +Kj :

cone(P) ∩ Zd+1 = (v + cone(P)) ∩ Zd+1 =
m⋃
j=1

(
(v +Kj) ∩ Zd+1

)
, (3.2)

and this union is a disjoint union. If we translate the last identity into
generating-function language, it becomes

σcone(P) (z1, z2, . . . , zd+1) =
m∑
j=1

σv+Kj (z1, z2, . . . , zd+1) .

But now we recall that the Ehrhart series of P is just a special evaluation of
σcone(P) (Lemma 3.10):

EhrP(z) = σcone(P) (1, 1, . . . , 1, z) =
m∑
j=1

σv+Kj (1, 1, . . . , 1, z) . (3.3)

It suffices to show that the rational generating functions σv+Kj (1, 1, . . . , 1, z)
for the simplicial cones v + Kj have nonnegative integer numerator. But
this fact follows from evaluating the rational function in Corollary 3.6 at
(1, 1, . . . , 1, z). ut

This proof shows a little more: Since the origin is in precisely one simplicial
cone on the right-hand side of (3.2), we get on the right-hand side of (3.3)
precisely one term that contributes 1/(1 − z)d+1 to EhrP ; all other terms
contribute to higher powers of the numerator polynomial of EhrP . That is,
the constant term h0 equals 1. The reader might feel that we are chasing our
tail at this point, since we assumed from the very beginning that the constant
term of the infinite series EhrP is 1, and hence h0 has to be 1, as a quick look
at the expansion of the rational function representing EhrP shows. The above
argument shows merely that this convention is geometrically sound. Let us
record this:
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Lemma 3.13. Suppose P is an integral convex d-polytope with Ehrhart series

EhrP(z) =
hd z

d + hd−1 z
d−1 + · · ·+ h0

(1− z)d+1
.

Then h0 = 1. ut

For a general integral polytope P, the reader has probably already discov-
ered how to extract the Ehrhart polynomial of P from its Ehrhart series:

Lemma 3.14. Suppose P is an integral convex d-polytope with Ehrhart series

EhrP(z) = 1 +
∑
t≥1

LP(t) zt =
hd z

d + hd−1 z
d−1 + · · ·+ h1 z + 1

(1− z)d+1
.

Then

LP(t) =
(
t+ d

d

)
+ h1

(
t+ d− 1

d

)
+ · · ·+ hd−1

(
t+ 1
d

)
+ hd

(
t

d

)
.

Proof. Expand into a binomial series:

EhrP(z) =
hd z

d + hd−1 z
d−1 + · · ·+ h1 z + 1

(1− z)d+1

=
(
hd z

d + hd−1 z
d−1 + · · ·+ h1 z + 1

)∑
t≥0

(
t+ d

d

)
zt

= hd
∑
t≥0

(
t+ d

d

)
zt+d + hd−1

∑
t≥0

(
t+ d

d

)
zt+d−1 + · · ·

+ h1

∑
t≥0

(
t+ d

d

)
zt+1 +

∑
t≥0

(
t+ d

d

)
zt

= hd
∑
t≥d

(
t

d

)
zt + hd−1

∑
t≥d−1

(
t+ 1
d

)
zt + · · ·

+ h1

∑
t≥1

(
t+ d− 1

d

)
zt +

∑
t≥0

(
t+ d

d

)
zt.

In all infinite sums on the right-hand side, we can start the index t with 0
without changing the sums, by the definition (2.1) of the binomial coefficient.
Hence

EhrP(z)

=
∑
t≥0

(
hd

(
t

d

)
+ hd−1

(
t+ 1
d

)
+ · · ·+ h1

(
t+ d− 1

d

)
+
(
t+ d

d

))
zt.

ut
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The representation of the polynomial LP(t) in terms of the coefficients
of EhrP can be interpreted as the Ehrhart polynomial expressed in the basis(
t
d

)
,
(
t+1
d

)
, . . . ,

(
t+d
d

)
(see Exercise 3.9). This representation is very useful, as

the following results show.

Corollary 3.15. If P is an integral convex d-polytope, then the constant term
of the Ehrhart polynomial LP is 1.

Proof. Use the expansion of Lemma 3.14. The constant term is

LP(0) =
(
d

d

)
+ h1

(
d− 1
d

)
+ · · ·+ hd−1

(
1
d

)
+ hd

(
0
d

)
=
(
d

d

)
= 1 . ut

This proof is exciting, because it marks the first instance where we extend
the domain of an Ehrhart polynomial beyond the positive integers, for which
the lattice-point enumerator was initially defined. More precisely, Ehrhart’s
theorem (Theorem 3.8) implies that the counting function

LP(t) = #
(
tP ∩ Zd

)
,

originally defined for positive integers t, can be extended to all real or even
complex arguments t (as a polynomial). A natural question arises: are there
nice interpretations of LP(t) for arguments t that are not positive integers?
Corollary 3.15 gives such an interpretation for t = 0. In Chapter 4, we will
give interpretations of LP(t) for negative integers t.

Corollary 3.16. Suppose P is an integral convex d-polytope with Ehrhart se-
ries

EhrP(z) =
hd z

d + hd−1 z
d−1 + · · ·+ h1 z + 1

(1− z)d+1
.

Then h1 = LP(1)− d− 1 = #
(
P ∩ Zd

)
− d− 1.

Proof. Use the expansion of Lemma 3.14 with t = 1:

LP(1) =
(
d+ 1
d

)
+ h1

(
d

d

)
+ · · ·+ hd−1

(
2
d

)
+ hd

(
1
d

)
= d+ 1 + h1 . ut

The proof of Corollary 3.16 suggests that there are also formulas for
h2, h3, . . . in terms of the evaluations LP(1), LP(2), . . . , and we invite the
reader to find them (Exercise 3.10).

A final corollary to Theorem 3.12 and Lemma 3.14 states how large the
denominators of the Ehrhart coefficients can be:

Corollary 3.17. Suppose P is an integral polytope with Ehrhart polynomial
LP(t) = cd t

d+cd−1 t
d−1 + · · ·+c1 t+1. Then all coefficients satisfy d! ck ∈ Z.
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Proof. By Theorem 3.12 and Lemma 3.14,

LP(t) =
(
t+ d

d

)
+ h1

(
t+ d− 1

d

)
+ · · ·+ hd−1

(
t+ 1
d

)
+ hd

(
t

d

)
,

where the hk’s are integers. Hence multiplying out this expression yields a
polynomial in t whose coefficients can be written as rational numbers with
denominator d!. ut

We finish this section with a general result that gives relations between
negative integer roots of a polynomial and its generating function. This the-
orem will become handy in Chapter 4, in which we find an interpretation for
the evaluation of an Ehrhart polynomial at negative integers.

Theorem 3.18. Suppose p is a degree-d polynomial with the rational gener-
ating function∑

t≥0

p(t) zt =
hd z

d + hd−1 z
d−1 + · · ·+ h1 z + h0

(1− z)d+1
.

Then hd = hd−1 = · · · = hk+1 = 0 and hk 6= 0 if and only if p(−1) = p(−2) =
· · · = p (−(d− k)) = 0 and p (−(d− k + 1)) 6= 0.

Proof. Suppose hd = hd−1 = · · · = hk+1 = 0 and hk 6= 0. Then the proof of
Lemma 3.14 gives

p(t) = h0

(
t+ d

d

)
+ · · ·+ hk−1

(
t+ d− k + 1

d

)
+ hk

(
t+ d− k

d

)
.

All the binomial coefficients are zero for t = −1,−2, . . . ,−d+ k, so those are
roots of p. On the other hand, all binomial coefficients but the last one are
zero for t = −d+ k − 1, and since hk 6= 0, −d+ k − 1 is not a root of p.

Conversely, suppose p(−1) = p(−2) = · · · = p (−(d− k)) = 0 and
p (−(d− k + 1)) 6= 0. The first root −1 of p gives

0 = p(−1) = h0

(
d− 1
d

)
+h1

(
d− 2
d

)
+ · · ·+hd−1

(
0
d

)
+hd

(
−1
d

)
= hd

(
−1
d

)
,

so we must have hd = 0. The next root −2 forces hd−1 = 0, and so on, up to
the root −d+ k, which forces hk+1 = 0. It remains to show that hk 6= 0. But
if hk were zero then, by a similar line of reasoning as in the first part of the
proof, p(−d+ k − 1) = 0, a contradiction. ut

3.5 From the Discrete to the Continuous Volume of a
Polytope

Given a geometric object S ⊂ Rd, its volume, defined by the integral volS :=∫
S
dx, is one of the fundamental data of S. By the definition of the integral, say
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in the Riemannian sense, we can think of computing volS by approximating
S with d-dimensional boxes that get smaller and smaller. To be precise, if
we take the boxes with side length 1/t then they each have volume 1/td. We
might further think of the boxes as filling out the space between grid points in
the lattice

(
1
tZ
)d. This means that volume computation can be approximated

by counting boxes, or equivalently, lattice points in
(

1
tZ
)d:

volS = lim
t→∞

1
td
·#

(
S ∩

(
1
t
Z
)d)

.

It is a short step to counting integer points in dilates of S, because

#

(
S ∩

(
1
t
Z
)d)

= #
(
tS ∩ Zd

)
.

Let us summarize:

Lemma 3.19. Suppose S ⊂ Rd is d-dimensional. Then

volS = lim
t→∞

1
td
·#
(
tS ∩ Zd

)
. ut

We emphasize here that S is d-dimensional, because otherwise (since S could
be lower-dimensional although living in d-space), by our current definition
volS = 0. (We will extend our volume definition in Chapter 5 to give nonzero
relative volume to objects that are not full-dimensional.)

Part of the magic of Ehrhart’s theorem lies in the fact that for an integral
d-polytope P, we do not have to take a limit to compute volP; we need to
compute “only” the d+ 1 coefficients of a polynomial.

Corollary 3.20. Suppose P ⊂ Rd is an integral convex d-polytope with
Ehrhart polynomial cd td + cd−1 t

d−1 + · · ·+ c1 t+ 1. Then cd = volP.

Proof. By Lemma 3.19,

volP = lim
t→∞

cd t
d + cd−1 t

d−1 + · · ·+ c1 t+ 1
td

= cd . ut

On the one hand, this should not come as a surprise, because counting
integer points in some object should grow roughly like the volume of the
object as we make it bigger and bigger. On the other hand, the fact that we
can compute the volume as one term of a polynomial should be very surprising:
the polynomial is a counting function and as such is something discrete, yet by
computing it (and its leading term), we derive some continuous data. Even
more, we can—at least theoretically—compute this continuous datum (the
volume) of the object by calculating a few values of the polynomial and then
interpolating; this can be described as a completely discrete operation!

We finish this section by showing how to retrieve the continuous volume
of an integer polytope from its Ehrhart series.
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Corollary 3.21. Suppose P ⊂ Rd is an integral convex d-polytope, and

EhrP(z) =
hd z

d + hd−1 z
d−1 + · · ·+ h1 z + 1

(1− z)d+1
.

Then volP =
1
d!

(hd + hd−1 + · · ·+ h1 + 1) .

Proof. Use the expansion of Lemma 3.14. The leading coefficient is

1
d!

(hd + hd−1 + · · ·+ h1 + 1) . ut

3.6 Interpolation

We now use the polynomial behavior of the discrete volume LP of an integral
polytope P to compute the continuous volume volP and the discrete volume
LP from finite data.

Two points uniquely determine a line. There exists a unique quadratic
passing through any three given points. In general, a degree-d polynomial
p is determined by d + 1 points (x, p(x)) ∈ R2. Namely, evaluating p(x) =
cdx

d + cd−1x
d−1 + · · ·+ c0 at distinct inputs x1, x2, . . . , xd+1 gives

p (x1)
p (x2)

...
p (xd+1)

 = V


cd
cd−1

...
c0

 , (3.4)

where

V =


xd1 xd−1

1 · · · x1 1
xd2 xd−1

2 · · · x2 1
...

...
...

...
xdd+1 x

d−1
d+1 · · · xd+1 1

 ,

so that 
cd
cd−1

...
c0

 = V−1


p (x1)
p (x2)

...
p (xd+1)

 . (3.5)

(Exercise 3.16 makes sure that V is invertible.) The identity (3.5) gives the
famous Lagrange interpolation formula.

This gives us an efficient way to compute LP , at least when dimP is not
too large. The continuous volume of P will follow instantly, since it is the
leading coefficient cd of LP . In the case of an Ehrhart polynomial LP , we
know that LP(0) = 1, so that (3.4) simplifies to
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LP (x1)− 1
LP (x2)− 1

...
LP (xd)− 1

 =


xd1 x

d−1
1 · · · x1

xd2 x
d−1
2 · · · x2

...
...

...
xdd x

d−1
d · · · xd




cd
cd−1

...
c1

 .

Example 3.22 (Reeve’s tetrahedron). Let Th be the tetrahedron with
vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, h), where h is a positive integer
(see Figure 3.5).

2h

h

(2, 2, 2h)

(1, 1, h)

1

2

1 2

x

y

z

Fig. 3.5. Reeve’s tetrahedron Th (and 2Th).

To interpolate the Ehrhart polynomial LTh(t) from its values at various
points, we use Figure 3.5 to deduce the following:

4 = LTh(1) = vol (Th) + c2 + c1 + 1 ,

h+ 9 = LTh(2) = vol (Th) · 23 + c2 · 22 + c1 · 2 + 1 .

Using the volume formula for a pyramid, we know that
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vol (Th) =
1
3

(base area)(height) =
h

6
.

Thus h+ 1 = h+ 2c2 − 1, which gives us c2 = 1 and c1 = 2− h
6 . Therefore

LTh(t) =
h

6
t3 + t2 +

(
2− h

6

)
t+ 1 . ut

3.7 Rational Polytopes and Ehrhart Quasipolynomials

We do not have to change much to study lattice-point enumeration for rational
polytopes, and most of this section will consist of exercises for the reader. The
structural result paralleling Theorem 3.8 is as follows.

Theorem 3.23 (Ehrhart’s theorem for rational polytopes). If P is a
rational convex d-polytope, then LP(t) is a quasipolynomial in t of degree
d. Its period divides the least common multiple of the denominators of the
coordinates of the vertices of P.

We will call the least common multiple of the denominators of the co-
ordinates of the vertices of P the denominator of P. Theorem 3.23, also
due to Ehrhart, extends Theorem 3.8, because the denominator of an integral
polytope P is one. Exercises 3.21 and 3.22 show that the word “divides” in
Theorem 3.23 is far from being replaceable by “equals.”

We start the path toward a proof of Theorem 3.23 by stating the analogue
of Lemma 3.9 for quasipolynomials (see Exercise 3.19):

Lemma 3.24. If ∑
t≥0

f(t) zt =
g(z)
h(z)

,

then f is a quasipolynomial of degree d with period dividing p if and only if g
and h are polynomials such that deg(g) < deg(h), all roots of h are pth roots
of unity of multiplicity at most d+ 1, and there is a root of multiplicity equal
to d+1 (all of this assuming that g/h has been reduced to lowest terms). ut

Our goal is now evident: we will prove that if P is a rational convex d-
polytope with denominator p, then

EhrP(z) = 1 +
∑
t≥1

LP(t) zt =
g(z)

(1− zp)d+1
,

for some polynomial g of degree less than p(d+ 1). As in Section 3.3, we will
have to prove this only for the case of a rational simplex. So suppose the d-
simplex ∆ has vertices v1,v2, . . . ,vd+1 ∈ Qd, and the denominator of ∆ is p.
Again we will cone over ∆: let
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w1 = (v1, 1) ,w2 = (v2, 1) , . . . ,wd+1 = (vd+1, 1) ;

then

cone(∆) = {λ1w1 + λ2w2 + · · ·+ λd+1wd+1 : λ1, λ2, . . . , λd+1 ≥ 0} ⊂ Rd+1.

To be able to use Theorem 3.5, we first have to ensure that we have a descrip-
tion of cone(∆) with integral generators. But since the denominator of ∆ is p,
we can replace each generator wk by pwk ∈ Zd+1, and we’re ready to apply
Theorem 3.5. From this point, the proof of Theorem 3.23 proceeds exactly like
that of Theorem 3.8, and we invite the reader to finish it up (Exercise 3.20).

Although the proofs of Theorem 3.23 and Theorem 3.8 are almost identical,
the arithmetic structure of Ehrhart quasipolynomials is much more subtle and
less well known than that of Ehrhart polynomials.

3.8 Reflections on the Coin-Exchange Problem and the
Gallery of Chapter 2

At this point, we encourage the reader to look back at the first two chapters in
light of the basic Ehrhart-theory results. Popoviciu’s theorem (Theorem 1.5)
and its higher-dimensional analogue give a special set of Ehrhart quasipoly-
nomials. On the other hand, in Chapter 2 we encountered many integral poly-
topes. Ehrhart’s theorem (Theorem 3.8) explains why their lattice-point enu-
meration functions were all polynomials.

Notes

1. Triangulations of polytopes and manifolds are an active source of research
with many interesting open problems; see, e.g., [69].

2. Eugène Ehrhart laid the foundation for the central theme of this book in
the 1960s, starting with the proof of Theorem 3.8 in 1962 [79]. The proof we
give here follows Ehrhart’s original lines of thought. An interesting fact is that
he did his most beautiful work as a teacher at a lycée in Strasbourg (France),
receiving his doctorate at age 60 on the urging of some colleagues.

3. Given any d linearly independent vectors w1,w2, . . . ,wd ∈ Rd, the lat-
tice generated by them is the set of all integer linear combinations of
w1,w2, . . . ,wd. Alternatively, one can define a lattice as a discrete subgroup
of Rd, and these two notions can be shown to be equivalent. One might won-
der whether replacing the lattice Zd by an arbitrary lattice L throughout the
statements of the theorems—requiring now that the vertices of a polytope be
in L—gives us any different results. The fact that the theorems of this chapter
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remain the same follows from the observation that any lattice can be mapped
to Zd by an invertible linear transformation.

4. Richard Stanley developed much of the theory of Ehrhart (quasi-)polyno-
mials, initially from a commutative-algebra point of view. Theorem 3.12 is
due to him [170]. The proof we give here appeared in [30]. An extension of
Theorem 3.12 was found by Takayuki Hibi; he proved that if hd > 0 then
hk ≥ h1 for all 1 ≤ k ≤ d− 1 (using the notation of Theorem 3.12) [98].

5. The tetrahedron Th of Example 3.22 was used by John Reeve to show that
Pick’s theorem does not hold in R3 (see Exercise 3.18) [154]. Incidentally, the
formula for LTh also proves that the coefficients of an Ehrhart polynomial (of
a closed polytope) are not always positive.

6. There are several interesting questions (some of which are still open) regard-
ing the periods of Ehrhart quasipolynomials. Some particularly nice examples
about what can happen with periods were given by Tyrrell McAllister and
Kevin Woods [126].

7. Most of the results remain true if we replace “convex polytope” by “poly-
topal complex,” that is, a finite union of polytopes. One important exception
is Corollary 3.15: the constant term of an “Ehrhart polynomial” of an integral
polytopal complex C is the Euler characteristic of C.

8. The reader might wonder why we do not discuss polytopes with irrational
vertices. The answer is simple: nobody has yet found a theory that would par-
allel the results in this chapter, even in dimension two. One notable exception
is [11], in which irrational extensions of Brion’s theorem are given; we will
study the rational case of Brion’s theorem in Chapter 9. On the other hand,
Ehrhart theory has been extended to functions other than strict lattice-point
counting; one instance is described in Chapter 11.

Exercises

3.1. To any permutation π ∈ Sd on d elements, we associate the simplex

∆π := conv
{
0, eπ(1), eπ(1) + eπ(2), . . . , eπ(1) + eπ(2) + · · ·+ eπ(d)

}
,

where e1, e2, . . . , ed denote the unit vectors in Rd.

(a) Prove that {∆π : π ∈ Sd} is a triangulation of the unit d-cube [0, 1]d.
(b) Prove that all ∆π are congruent to each other, that is, each one can be

obtained from any other by reflections, translations, and rotations.
(c) Show that for all π ∈ Sd, L∆π

(t) =
(
d+t
d

)
.
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3.2. ♣ Suppose T is a triangulation of a pointed cone. Prove that the inter-
section of two simplicial cones in T is again a simplicial cone.

3.3. Find the generating function σK(z) for the following cones:

(a) K = {λ1(0, 1) + λ2(1, 0) : λ1, λ2 ≥ 0} ;
(b) K = {λ1(0, 1) + λ2(1, 1) : λ1, λ2 ≥ 0} ;
(c) K = {(3, 4) + λ1(0, 1) + λ2(2, 1) : λ1, λ2 ≥ 0} .

3.4. ♣ Let S ⊆ Rm and T ⊆ Rn. Show that σS×T (z1, z2, . . . , zm+n) =
σS (z1, z2, . . . , zm)σT (zm+1, zm+2, . . . , zm+n) .

3.5. ♣ Let K be a rational d-cone, and let m ∈ Zd. Show that σm+K(z) =
zmσK(z).

3.6. ♣ For a set S ⊂ Rd, let −S := {−x : x ∈ S}. Prove that

σ−S (z1, z2, . . . , zd) = σS

(
1
z1
,

1
z2
, . . . ,

1
zd

)
.

3.7. Given a pointed cone K ⊂ Rd with apex at the origin, let S := K ∩ Zd.
Show that if x,y ∈ S then x + y ∈ S. (In algebraic terms, S is a semi-
group, since 0 ∈ S and associativity of the addition in S follows trivially from
associativity in Rd.)

3.8. ♣ Prove Lemma 3.9: If∑
t≥0

f(t) zt =
g(z)

(1− z)d+1
,

then f is a polynomial of degree d if and only if g is a polynomial of degree
at most d and g(1) 6= 0.

3.9. Prove that
(
x+n
n

)
,
(
x+n−1
n

)
, . . . ,

(
x
n

)
is a basis for the vector space Poln of

polynomials (in the variable x) of degree less than or equal to n.

3.10. For a polynomial p(t) = cdt
d + cd−1t

d−1 + · · ·+ c0, let Hp(z) be defined
by ∑

t≥0

p(t) zt =
Hp(z)

(1− z)d+1
.

Consider the map φd : Pold → Pold, p 7→ Hp.

(a) Show that φd is a linear transformation.
(b) Compute the matrix describing φd for d = 0, 1, 2, . . . .
(c) Deduce formulas for h2, h3, . . . , similar to the one in Corollary 3.16.

3.11. Compute the Ehrhart polynomials and the Ehrhart series of the sim-
plices with the following vertices:
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(a) (0, 0, 0), (1, 0, 0), (0, 2, 0), and (0, 0, 3);
(b) (0, 0, 0, 0), (1, 0, 0, 0), (0, 2, 0, 0), (0, 0, 3, 0), and (0, 0, 0, 4).

3.12. Define the hypersimplex ∆(d, k) as the convex hull of

{ej1 + ej2 + · · ·+ ejk : 1 ≤ j1 < j2 < · · · < jk ≤ d} ,

where e1, e2, . . . , ed are the standard basis vectors in Rd. For example, ∆(d, 1)
and ∆(d, d−1) are regular (d−1)-simplices. Compute the Ehrhart polynomial
and the Ehrhart series of ∆(d, k).

3.13. ♣ Suppose H is the hyperplane given by

H =
{
x ∈ Rd : a1x1 + a2x2 + · · ·+ adxd = 0

}
for some a1, a2, . . . , ad ∈ Z, which we may assume to have no common factor.
Prove that there exists v ∈ Zd such that

⋃
n∈Z

(
(nv +H) ∩ Zd

)
= Zd. (This

implies, in particular, that the points in Zd \H are all at least some minimal
distance away from H; this minimal distance is essentially given by the dot
product of v with (a1, a2, . . . , ad).)

3.14. ♣ A hyperplane H is rational if it can be written in the form

H =
{
x ∈ Rd : a1x1 + a2x2 + · · ·+ adxd = b

}
for some a1, a2, . . . , ad, b ∈ Z. A hyperplane arrangement in Rd is a finite
set of hyperplanes in Rd. Prove that a rational hyperplane arrangement H
can be translated so that no hyperplane in H contains any integer points.

3.15. The conclusion of the previous exercise can be strengthened: Prove that
a rational hyperplane arrangement H can be translated such that no hyper-
plane in H contains any rational points.

3.16. Show that, given distinct numbers x1, x2, . . . , xd+1, the matrix

V =


xd1 xd−1

1 · · · x1 1
xd2 xd−1

2 · · · x2 1
...

...
...

...
xdd+1 x

d−1
d+1 · · · xd+1 1


is not singular. (V is known as the Vandermonde matrix.)

3.17. Let P be an integral d-polytope. Show that

volP =
1
d!

(
(−1)d +

d∑
k=1

(
d

k

)
(−1)d−kLP(k)

)
.
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3.18. As in Example 3.22, let Tn be the tetrahedron with vertices (0, 0, 0),
(1, 0, 0), (0, 1, 0), and (1, 1, n), where n is a positive integer. Show that the
volume of Tn is unbounded as n → ∞, yet for all n, Tn has no interior and
four boundary lattice points. This example proves that Pick’s theorem does
not hold for a three-dimensional integral polytope P, in the sense that there
is no linear relationship among volP, LP(1), and LP◦(1).

3.19. ♣ Prove Lemma 3.24: If∑
t≥0

f(t) zt =
g(z)
h(z)

,

then f is a quasipolynomial of degree d with period dividing p if and only if g
and h are polynomials such that deg(g) < deg(h), all roots of h are pth roots
of unity of multiplicity at most d+ 1, and there is a root of multiplicity equal
to d+ 1 (all of this assuming that g/h has been reduced to lowest terms).

3.20. ♣ Provide the details for the proof of Theorem 3.23: If P is a rational
convex d-polytope, then LP(t) is a quasipolynomial in t of degree d. Its period
divides the least common multiple of the coordinates of the vertices of P.

3.21. Let T be the rational triangle with vertices (0, 0),
(

1, p−1
p

)
, and (p, 0),

where p is a fixed integer ≥ 2. Show that LT (t) = p−1
2 t2 + p+1

2 t + 1; in
particular, LT is a polynomial.

3.22. Prove that for any d ≥ 2 and any p ≥ 1, there exists a d-polytope P
whose Ehrhart quasipolynomial is a polynomial (i.e., it has period 1), yet P
has a vertex with denominator p.

3.23. Prove that the period of the Ehrhart quasipolynomial of a 1-dimensional
polytope is always equal to the lcm of the denominators of its vertices.

3.24. Let T be the triangle with vertices
(
− 1

2 ,−
1
2

)
,
(

1
2 ,−

1
2

)
, and

(
0, 3

2

)
. Show

that LT (t) = t2 + c(t) t+ 1, where

c(t) =

{
1 if t is even,
0 if t is odd.

(This shows that the periods of the “coefficients” of an Ehrhart quasipoly-
nomial do not necessarily increase with decreasing power.) Find the Ehrhart
series of T .

3.25. Prove the following extension of Theorem 3.12: Suppose P is a rational
d-polytope with denominator p. Then

EhrP(z) =
f(z)

(1− zp)d+1
,

where f is a polynomial with nonnegative integral coefficients.
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3.26. Find and prove a statement that extends Lemma 3.14 to Ehrhart
quasipolynomials.

3.27. Prove the following extension of Corollary 3.15 to rational polytopes.
Namely, the Ehrhart quasipolynomial LP of the rational convex polytope
P ⊂ Rd satisfies LP(0) = 1.

3.28. Prove the following analogue of Corollary 3.17 for rational polytopes:
Suppose P is a rational polytope with Ehrhart quasipolynomial LP(t) =
cd(t) td + cd−1(t) td−1 + · · ·+ c1(t) t+ c0(t). Then for all t ∈ Z and 0 ≤ k ≤ d,
we have d! ck(t) ∈ Z.

3.29. ♣ Prove that Corollary 3.20 also holds for rational polytopes: Sup-
pose P ⊂ Rd is a rational convex d-polytope with Ehrhart quasipolynomial
cd(t) td + cd−1(t) td−1 + · · · + c0(t). Then cd(t) equals the volume of P; in
particular, cd(t) is constant.

3.30. Suppose P is a rational convex polytope. Show that as rational func-
tions,

Ehr2P(z) =
1
2
(
EhrP

(√
z
)

+ EhrP
(
−
√
z
))
.

3.31. Suppose f and g are quasipolynomials. Prove that the convolution

F (t) :=
t∑

s=0

f(s) g(t− s)

is also a quasipolynomial. What can you say about the degree and the period
of F , given the degrees and periods of f and g?

3.32. Given two positive, relatively prime integers a and b, let

f(t) :=

{
1 if a|t,
0 otherwise,

and g(t) :=

{
1 if b|t,
0 otherwise.

Form the convolution of f and g. What function is it?

3.33. Suppose P ⊂ Rm and Q ⊂ Rn are rational polytopes. Prove that the
convolution of LP and LQ equals the Ehrhart quasipolynomial of the polytope
given by the convex hull of P × {0n} × {0} and {0m} × Q × {1}. Here 0d
denotes the origin in Rd.

3.34. We define the unimodular group SLd (Z) as the set of all d×dmatrices
with integer entries and determinant ±1.

(a) Show that SLd (Z) acts on the integer lattice Zd as a one-to-one, onto
map. That is, fix any A ∈ SLd (Z). Then A maps Zd to itself in a bijective
fashion.
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(b) For any open simplex ∆◦ ⊂ Rd and any A ∈ SLd (Z), consider the image
of ∆◦ under A, defined by A (∆◦) := {A x : x ∈ ∆◦}. Show that

#
{

∆◦ ∩ Zd
}

= #
{
A (∆◦) ∩ Zd

}
.

(c) Let P be an integral polytope, and let Q := A (P), where A ∈ SLd (Z),
so that P and Q are unimodular images of each other. Show that LP(t) =
LQ(t). (Hint: Write P as the disjoint union of open simplices.)

3.35. Search on the Internet for the program LattE: Lattice-Point Enumera-
tion [66, 115]. You can download it for free. Experiment.

Open Problems

3.36. How many triangulations are there for a given polytope?

3.37. What is the minimal number of simplices needed to triangulate the unit
d-cube? (These numbers are known for d ≤ 7.)

3.38. Classify the polynomials of a fixed degree d that are Ehrhart polyno-
mials. This is completely done for d = 2 [160] and partially known for d = 3
and 4 [24, Section 3].

3.39. Study the roots of Ehrhart polynomials of integral polytopes in a fixed
dimension [24, 37, 42, 94]. Study the roots of the numerators of Ehrhart series.

3.40. Come up with an efficient algorithm that computes the period of an
Ehrhart quasipolynomial. (See [188], in which Woods describes an efficient
algorithm that checks whether a given integer is a period of an Ehrhart
quasipolynomial.)

3.41. Suppose P and Q are integer polytopes with the same Ehrhart poly-
nomial, that is, LP(t) = LQ(t). What additional conditions on P and Q do
we need to ensure that integer translates of P and Q are unimodular images
of each other? That is, when is Q = A (P) + m for some A ∈ SLd (Z) and
m ∈ Zd?

3.42. Find an “Ehrhart theory” for irrational polytopes.
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Reciprocity

In mathematics you don’t understand things. You just get used to them.

John von Neumann (1903–1957)

While Exercise 1.4 (i) gave us the elementary identity⌊
t− 1
a

⌋
= −

⌊
−t
a

⌋
− 1 (4.1)

for t ∈ Z and a ∈ Z>0, this fact is a special instance of a more general theme.
Namely, (4.1) marks the simplest (one-dimensional) case of a reciprocity the-
orem that is central to Ehrhart theory. Let I := [0, 1/a] ⊂ R, a rational

0 t
a

Fig. 4.1. Lattice points in tI.

1-polytope (see Figure 4.1). Its discrete volume is (recalling Exercise 1.3)

LI(t) =
⌊
t

a

⌋
+ 1 .

The lattice-point enumerator for the interior I◦ = (0, 1/a), on the other hand,
is

LI◦(t) =
⌊
t− 1
a

⌋
(4.2)

(see Exercise 4.1). The identity (4.1) says that algebraically,

LI◦(t) = −LI(−t) .
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This chapter is devoted to proving that a similar identity holds for rational
polytopes in any dimension:

Theorem 4.1 (Ehrhart–Macdonald reciprocity). Suppose P is a convex
rational polytope. Then the evaluation of the quasipolynomial LP at negative
integers yields

LP(−t) = (−1)dimPLP◦(t) .

This theorem belongs to a class of famous reciprocity theorems. A common
theme in combinatorics is to begin with an interesting object P , and

1. define a counting function f(t) attached to P that makes physical sense
for positive integer values of t;

2. recognize the function f as a polynomial in t;
3. substitute negative integral values of t into the counting function f , and

recognize f(−t) as a counting function of a new mathematical object Q.

For us, P is the closure of a polytope and Q is its interior.

4.1 Generating Functions for Somewhat Irrational Cones

Our approach to proving Theorem 4.1 parallels the steps of Chapter 3: we
deduce Theorem 4.1 from an identity for rational cones. We start with a
reciprocity theorem for simplicial cones.

Theorem 4.2. Fix linearly independent vectors w1,w2, . . . ,wd ∈ Zd, and let
K = {λ1w1 + λ2w2 + · · ·+ λdwd : λ1, . . . , λd ≥ 0}, the simplicial cone gener-
ated by the wj’s. Then for those v ∈ Rd for which the boundary of the shifted
simplicial cone v +K contains no integer point,

σv+K

(
1
z1
,

1
z2
, . . . ,

1
zd

)
= (−1)d σ−v+K (z1, z2, . . . , zd) .

Remark. This theorem is meaningless on the level of formal power series;
however, the identity holds at the level of rational functions. We will establish
that σv+K is a rational function in the process of proving the theorem.

Proof. As in the proofs of Theorem 3.5 and Corollary 3.6, we have the formula

σv+K(z) =
σv+Π(z)

(1− zw1) (1− zw2) · · · (1− zwd)
,

where Π is the open parallelepiped

Π = {λ1w1 + λ2w2 + · · ·+ λdwd : 0 < λ1, λ2, . . . , λd < 1} . (4.3)

This also proves that σv+K is a rational function. Note that by assumption,
v + Π contains no integer points on its boundary. Naturally,
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σ−v+K(z) =
σ−v+Π(z)

(1− zw1) (1− zw2) · · · (1− zwd)
,

so we need to relate the parallelepipeds v + Π and −v + Π. This relation is
illustrated in Figure 4.2 for the case d = 2; the identity for general d is (see
Exercise 4.2)

v + Π = −(−v + Π) + w1 + w2 + · · ·+ wd . (4.4)

Now we translate the geometry of (4.4) into generating functions:

v
w1

w2

v + Π

−v + Π − (−v + Π) − (−v + Π) + w1 + w2

Fig. 4.2. From −v + Π to v + Π.

σv+Π(z) = σ−(−v+Π)(z) zw1zw2 · · · zwd

= σ−v+Π

(
1
z1
, 1
z2
, . . . , 1

zd

)
zw1zw2 · · · zwd

(the last equation follows from Exercise 3.6). Let’s abbreviate the vector(
1
z1
, 1
z2
, . . . , 1

zd

)
by 1

z . Then the last identity is equivalent to

σv+Π

(
1
z

)
= σ−v+Π(z) z−w1z−w2 · · · z−wd ,

whence
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σv+K

(
1
z

)
=

σv+Π

(
1
z

)
(1− z−w1) (1− z−w2) · · · (1− z−wd)

=
σ−v+Π(z) z−w1z−w2 · · · z−wd

(1− z−w1) (1− z−w2) · · · (1− z−wd)

=
σ−v+Π(z)

(zw1 − 1) (zw2 − 1) · · · (zwd − 1)

= (−1)d
σ−v+Π(z)

(1− zw1) (1− zw2) · · · (1− zwd)

= (−1)d σ−v+K(z) . ut

4.2 Stanley’s Reciprocity Theorem for Rational Cones

For the general reciprocity theorem for cones, we patch the simplicial cones of a
triangulation together, in a manner very similar to our proof of Theorem 3.12.

Theorem 4.3 (Stanley reciprocity). Suppose K is a rational d-cone with
the origin as apex. Then

σK

(
1
z1
,

1
z2
, . . . ,

1
zd

)
= (−1)d σK◦ (z1, z2, . . . , zd) .

Proof. Triangulate K into the simplicial cones K1,K2, . . . ,Km. Now Exer-
cise 3.14 ensures that there exists a vector v ∈ Rd such that the shifted cone
v +K contains exactly the interior lattice points of K,

K◦ ∩ Zd = (v +K) ∩ Zd, (4.5)

and there are no boundary lattice points on any of the triangulation cones:

∂ (v +Kj) ∩ Zd = ∅ for all j = 1, . . . ,m, (4.6)

as well as
∂ (−v +Kj) ∩ Zd = ∅ for all j = 1, . . . ,m. (4.7)

We invite the reader (Exercise 4.3) to realize that (4.5)–(4.7) imply

K ∩ Zd = (−v +K) ∩ Zd. (4.8)

Now by Theorem 4.2,

σK
(

1
z

)
= σ−v+K

(
1
z

)
=

m∑
j=1

σ−v+Kj
(

1
z

)
=

m∑
j=1

(−1)d σv+Kj (z)

= (−1)d σv+K (z) = (−1)d σK◦ (z) .

Note that the second and fourth equalities are true because of the validity of
(4.7) and (4.6), respectively. ut
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4.3 Ehrhart–Macdonald Reciprocity for Rational
Polytopes

In preparation for the proof of Theorem 4.1, we define the Ehrhart series
for the interior of the rational polytope P as

EhrP◦(z) :=
∑
t≥1

LP◦(t) zt.

Our convention of beginning the series with t = 1 stems from the fact that
this generating function is a special evaluation of the integer-point transform
of the open cone (cone(P))◦: Much in sync with Lemma 3.10, we have

EhrP◦(z) = σ(cone(P))◦ (1, 1, . . . , 1, z) . (4.9)

We are now ready to prove the Ehrhart-series analogue of Theorem 4.1.

Theorem 4.4. Suppose P is a convex rational polytope. Then the evaluation
of the rational function EhrP at 1/z yields

EhrP

(
1
z

)
= (−1)dimP+1 EhrP◦(z) .

Proof. Suppose P is a d-polytope. We recall Lemma 3.10, which states that
the generating function of the Ehrhart polynomial of P is an evaluation of
the generating function of cone(P):

EhrP(z) =
∑
t≥0

LP(t) zt = σcone(P) (1, 1, . . . , 1, z) .

Equation (4.9) above gives the analogous evaluation of σ(cone(P))◦ that yields
EhrP◦ . Now we apply Theorem 4.3 to the (d+ 1)-cone K = cone(P):

σ(cone(P))◦ (1, 1, . . . , 1, z) = (−1)d+1 σcone(P)

(
1, 1, . . . , 1,

1
z

)
. ut

Theorem 4.1 now follows like a breeze.

Proof of Ehrhart–Macdonald reciprocity (Theorem 4.1). We first apply Exer-
cise 4.6 to the Ehrhart series of P: namely, as rational functions,

EhrP

(
1
z

)
=
∑
t≤0

LP(−t) zt = −
∑
t≥1

LP(−t) zt.

Now we combine this identity with Theorem 4.4 to obtain∑
t≥1

LP◦(t) zt = (−1)d+1 EhrP

(
1
z

)
= (−1)d

∑
t≥1

LP(−t) zt.

Comparing the coefficients of the two power series yields the reciprocity the-
orem. ut
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With Ehrhart–Macdonald reciprocity, we can now restate Theorem 3.18
in terms of Ehrhart polynomials:

Theorem 4.5. Suppose P is an integral d-polytope with Ehrhart series

EhrP(z) =
hd z

d + hd−1 z
d−1 + · · ·+ h1 z + 1

(1− z)d+1
.

Then hd = hd−1 = · · · = hk+1 = 0 and hk 6= 0 if and only if (d − k + 1)P is
the smallest integer dilate of P that contains an interior lattice point.

Proof. Theorem 3.18 says that hk is the highest nonzero coefficient if and only
if LP(−1) = LP(−2) = · · · = LP (−(d− k)) = 0 and LP (−(d− k + 1)) 6= 0.
Now use Ehrhart–Macdonald reciprocity (Theorem 4.1). ut

The largest k for which hk 6= 0 is called the degree of P. The above
theorem says that the degree of P is k precisely if (d− k+ 1)P is the smallest
integer dilate of P that contains an interior lattice point.

4.4 The Ehrhart Series of Reflexive Polytopes

As an application of Theorem 4.4, we now study a special class of integral
polytopes whose Ehrhart series have an additional symmetry structure. We
call a polytope P that contains the origin in its interior reflexive if it is
integral and has the hyperplane description

P =
{
x ∈ Rd : A x ≤ 1

}
,

where A is an integral matrix. (Here 1 denotes a vector all of whose co-
ordinates are 1.) The following theorem gives a characterization of reflexive
polytopes through their Ehrhart series.

Theorem 4.6 (Hibi’s palindromic theorem). Suppose P is an integral
d-polytope that contains the origin in its interior and that has the Ehrhart
series

EhrP(z) =
hd z

d + hd−1 z
d−1 + · · ·+ h1 z + h0

(1− z)d+1
.

Then P is reflexive if and only if hk = hd−k for all 0 ≤ k ≤ d
2 .

The two main ingredients for the proof of this result are Theorem 4.4 and
the following:

Lemma 4.7. Suppose a1, a2, . . . , ad, b ∈ Z satisfy gcd (a1, a2, . . . , ad, b) = 1
and b > 1. Then there exist positive integers c and t such that tb < c < (t+1)b
and

{
(m1,m2, . . . ,md) ∈ Zd : a1m1 + a2m2 + · · ·+ admd = c

}
6= ∅.
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Proof. Let g = gcd (a1, a2, . . . , ad); by our assumption, gcd(g, b) = 1, so one
can find integers k and t such that

kg − tb = 1 . (4.10)

Furthermore, we can choose k and t in such a way that t > 0. Let c = kg;
equation (4.10) and the condition b > 1 imply that tb < c < (t+ 1)b. Finally,
since g = gcd (a1, a2, . . . , ad) there exist m1,m2, . . . ,md ∈ Z such that

a1m1 + a2m2 + · · ·+ admd = kg = c . ut

Proof of Theorem 4.6. We recall that P is reflexive if and only if

P =
{
x ∈ Rd : A x ≤ 1

}
for some integral matrix A. (4.11)

We claim that P has such a hyperplane description if and only if

P◦ ∩ Zd = {0} and for all t ∈ Z>0, (t+ 1)P◦ ∩ Zd = tP ∩ Zd. (4.12)

This condition means that the only lattice points that we gain when pass-
ing from tP to (t + 1)P are those on the boundary of (t + 1)P. The fact
that (4.11) implies (4.12) is the content of Exercise 4.12. Conversely, if P
satisfies (4.12) then there are no lattice points between tH and (t + 1)H for
any facet hyperplane H of P (Exercise 4.13). That is, if a facet hyperplane
is given by H =

{
x ∈ Rd : a1x1 + a2x2 + · · ·+ adxd = b

}
, where we may as-

sume gcd (a1, a2, . . . , ad, b) = 1, then{
x ∈ Zd : tb < a1x1 + a2x2 + · · ·+ adxd < (t+ 1)b

}
= ∅ .

But then Lemma 4.7 implies that b = 1, and so P has a hyperplane description
of the form (4.11).

Thus we have established that P is reflexive if and only if it satisfies (4.12).
Now by Theorem 4.4,

EhrP◦(z) = (−1)d+1 EhrP

(
1
z

)
=
h0 z

d+1 + h1 z
d + · · ·+ hd−1 z

2 + hd z

(1− z)d+1
.

By condition (4.12), P is reflexive if and only if this rational function is equal
to ∑

t≥1

LP(t− 1) zt = z
∑
t≥0

LP(t) zt = z EhrP(z)

=
hd z

d+1 + hd−1 z
d + · · ·+ h1 z

2 + h0 z

(1− z)d+1
,

that is, if and only if hk = hd−k for all 0 ≤ k ≤ d
2 . ut
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4.5 More “Reflections” on the Coin-Exchange Problem
and the Gallery of Chapter 2

We have already encountered special cases of Ehrhart–Macdonald reciprocity
several times. Note that Theorem 4.1 allows us to conclude that counting
the number of interior lattice points in a rational polytope is tantamount to
counting lattice points in its closure. Exercises 1.31, 2.1, and 2.7, as well as
part (b) of each theorem in the gallery of Chapter 2, confirm that

LP(−t) = (−1)dimPLP◦(t) .

Notes

1. Ehrhart–Macdonald reciprocity (Theorem 4.1) had been conjectured (and
proved in several special cases) by Eugène Ehrhart for about a decade before
I. G. Macdonald found a general proof in 1971 [123]. One can actually relax the
condition of Ehrhart–Macdonald reciprocity: it holds for polytopal complexes
that are homeomorphic to a d-manifold. The proof we give here (including
the proof of Theorem 4.3) appeared in [30].

2. Theorem 4.3 is due to Richard Stanley [169], who proved more general
versions of this theorem. The reader might recall that the rational function
representing the Ehrhart series of a rational cone can be thought of as its
meromorphic continuation. Stanley reciprocity (Theorem 4.3) gives a func-
tional identity for such meromorphic continuations.

3. The term reflexive polytope was coined by Victor Batyrev, who found ex-
citing applications of these polytopes to mirror symmetry in physical string
theory [16]. Batyrev proved that the toric variety XP defined by a reflexive
polytope P is Fano, and that every generic hypersurface of XP is Calabi–Yau.
That the Ehrhart series of a reflexive polytope exhibits an unexpected sym-
metry (Theorem 4.6) was discovered by Takayuki Hibi [97]. The number of
reflexive polytopes in dimension d is known for d ≤ 4 [117, 118]; for example,
there are precisely 16 reflexive polytopes in dimension 2, up to symmetries
(see also [165, Sequence A090045]). A striking result is that the sum of the
numbers of lattice points on the boundaries of a reflexive polygon and its dual
is always 12 [147]. A similar result holds in dimension 3 (with 12 replaced by
24) [18], but no elementary proof of the latter fact is known [22, Section 4].

4. There is an equivalent definition for reflexive polytopes: P is reflexive
if and only if both P and its dual P∗ are integral polytopes. The dual
polytope of P (often also called the polar polytope) is defined as P∗ :={
x ∈ Rd : x · y ≤ 1 for all y ∈ P

}
. The concept of (polar) duality is not con-

fined to polytopes but can be defined for any nonempty subset of Rd. Duality
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is a crucial chapter in the theory of polytopes, and one of its applications is
the equivalence of the vertex and hyperplane description of a polytope. For
more about (polar) duality, the reader might consult [12, Chapter IV].

5. The cross-polytopes 3 from Section 2.5 form a special class of reflexive
polytopes. We mentioned in the Notes of Chapter 2 that the roots of the
Ehrhart polynomials L3 all have real part − 1

2 [51, 109]. Christian Bey, Martin
Henk, and Jörg Wills proved in [37] that if all roots of LP , for some integral
polytope P, have real part − 1

2 , then P is the unimodular image of a reflexive
polytope.

Exercises

4.1. ♣ Prove (4.2): For a ∈ Z>0, L(0,1/a)(t) =
⌊
t− 1
a

⌋
.

4.2. ♣ Explain (4.4): If w1,w2, . . . ,wd ∈ Rd are linearly independent and

Π = {λ1w1 + λ2w2 + · · ·+ λdwd : 0 < λ1, λ2, . . . , λd < 1} ,

then v + Π = −(−v + Π) + w1 + w2 + · · ·+ wd .

4.3. ♣ Prove that (4.5)–(4.7) imply (4.8); that is, if K is a rational pointed
d-cone with the origin as apex, and v ∈ Rd is such that

K◦ ∩ Zd = (v +K) ∩ Zd,
∂ (v +Kj) ∩ Zd = ∅ for all j = 1, . . . ,m,

and

∂ (−v +Kj) ∩ Zd = ∅ for all j = 1, . . . ,m,

then

K ∩ Zd = (−v +K) ∩ Zd.

4.4. Prove the following generalization of Theorem 4.3 to rational pointed
cones with arbitrary apex: Suppose K is a rational pointed d-cone with the
origin as apex, and v ∈ Rd. Then the integer-point transform σv+K(z) of the
pointed d-cone v +K is a rational function that satisfies

σv+K

(
1
z

)
= (−1)dσ(−v+K)◦ (z) .

4.5. Generalize Theorem 4.3 by showing that we do not need to assume that
K is full dimensional.
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4.6. ♣ Suppose Q : Z → C is a quasipolynomial. We know that R+
Q(z) :=∑

t≥0Q(t) zt evaluates to a rational function.

(a) Prove that R−Q(z) :=
∑
t<0Q(t) zt also evaluates to a rational function.

(b) Let Q(t) = 1. Prove that as rational functions, R+
Q(z) +R−Q(z) = 0.

(c) Suppose Q is a polynomial. Prove that as rational functions, R+
Q(z) +

R−Q(z) = 0.
(d) Suppose Q is a quasipolynomial. Prove that as rational functions, R+

Q(z)+
R−Q(z) = 0.

4.7. ♣ Suppose that P is a rational d-polytope for which

LP◦(t) = LP(t− k) and LP◦(1) = LP◦(2) = · · · = LP◦(k − 1) = 0

for some integer k. (This situation applies to some of the polytopes in the
gallery of Chapter 2.) Prove that

EhrP

(
1
z

)
= (−1)d+1zk EhrP(z) .

4.8. Suppose P is an integral d-polytope with Ehrhart series

EhrP(z) =
hd z

d + hd−1 z
d−1 + · · ·+ h1 z + 1

(1− z)d+1
.

Prove that hd = LP◦(1).

4.9. Suppose P is a convex integral d-polytope. Show that the dilate (d+1)P
contains an interior lattice point.

4.10. Suppose P is a convex integral polytope. Denote the boundary of P by
∂P. Prove that L∂P(t) is a polynomial that is either even or odd. Determine
its constant term.

4.11. Recall the restricted partition function

p{a1,a2,...,ad}(n) := #
{

(m1, . . . ,md) ∈ Zd≥0 : m1a1 + · · ·+mdad = n
}

from Chapter 1. Prove that as quasipolynomials,

p{a1,a2,...,ad}(−n− a1 − a2 − · · · − ad) = (−1)d−1 p{a1,a2,...,ad}(n)

and that

p{a1,a2,...,ad}(−1) = p{a1,a2,...,ad}(−2) = · · ·
= p{a1,a2,...,ad}(−a1 − a2 − · · · − ad + 1) = 0 .

4.12. ♣ Prove that (4.11) implies (4.12), that is, show that if the polytope P
is given by P =

{
x ∈ Rd : A x ≤ 1

}
for an integral matrix A, then P◦∩Zd =

{0} and for all t ∈ Z>0, (t+ 1)P◦ ∩ Zd = tP ∩ Zd.
4.13. ♣ Suppose P is an integral polytope that satisfies (4.12): P◦∩Zd = {0}
and for all t ∈ Z>0, (t+ 1)P◦ ∩ Zd = tP ∩ Zd. Then for any t ∈ Z, there are
no lattice points between tH and (t+ 1)H for any facet hyperplane H of P.
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Open Problems

4.14. Prove the following conjecture of Batyrev [17]: For an integer polytope
P of degree j, the volume of P is bounded by a constant that depends only
on hj .

4.15. Suppose P is a 3-dimensional reflexive polytope. Denote by e∗ the edge
in the dual polytope P∗ that corresponds to the edge e in P. Give an elemen-
tary proof that ∑

e edge of P

length (e) · length (e∗) = 24 .

4.16. Find the number of reflexive polytopes in dimension d ≥ 5.





5

Face Numbers and the Dehn–Sommerville
Relations in Ehrhartian Terms

“Data! Data! Data!” he cried, impatiently. “I can’t make bricks without clay.”

Sherlock Holmes (“The Adventure of the Copper Beeches,” by Arthur Conan Doyle,
1859–1930)

Our goal in this chapter is twofold, or rather, there is one goal in two different
guises. The first one is to prove a set of fascinating identities, which give
linear relations among the face numbers fk. They are called Dehn–Sommerville
relations, in honor of their discoverers Max Wilhelm Dehn (1878–1952)1 and
Duncan MacLaren Young Sommerville (1879–1934).2 Our second goal is to
unify the Dehn–Sommerville relations (Theorem 5.1 below) with Ehrhart–
Macdonald reciprocity (Theorem 4.1).

5.1 Face It!

We denote the number of k-dimensional faces of P by the symbol fk. As k
varies from 0 to d, the face numbers fk encode intrinsic information about
the polytope P. The d-polytope P is simple if each vertex of P lies on
precisely d edges of P.

Theorem 5.1 (Dehn–Sommerville relations). If P is a simple d-polytope
and 0 ≤ k ≤ d, then

fk =
k∑
j=0

(−1)j
(
d− j
d− k

)
fj .

1 For more information about Dehn, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Dehn.html.

2 For more information about Sommerville, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Sommerville.html.
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This theorem takes on a particularly nice form for k = d, namely the
famous Euler relation, which holds for any polytope (not just simple ones).

Theorem 5.2 (Euler relation). If P is a convex d-polytope, then

d∑
j=0

(−1)jfj = 1 .

This identity is less trivial than it might look. We give a quick proof
for rational polytopes, for which we can use Ehrhart–Macdonald reciprocity
(Theorem 4.1).

Proof of Theorem 5.2, assuming P is rational. Let us count the integer points
in tP according to the (relatively) open faces that contain them:3

LP(t) =
∑
F⊆P

LF◦(t) =
∑
F⊆P

(−1)dimFLF (−t) .

Here, and in the remainder of this chapter, the sums are over all nonempty
faces. (Alternatively, we could agree that L∅(t) = 0.) The constant term of
LF (t) is 1, for any face F (by Exercise 3.27). Hence the constant terms of the
identity above give

1 =
∑
F⊆P

(−1)dimF =
d∑
j=0

(−1)jfj ,

which proves our claim. ut

There is a natural structure on the faces of a polytope P induced by the
containment relation F ⊆ G. This relation gives a partial ordering on the set
of all faces of P, called the face lattice of P.4 A useful way to illustrate
this partially ordered set is through a graph whose nodes correspond to the
faces of P, such that two nodes are adjacent if one of their corresponding
faces contains the other. In Figure 5.1, we give the face lattice for a triangle.
Exercise 2.6 implies that the face lattice of any simplex is a Boolean lattice,
which is the partially ordered set formed by all subsets of a finite set, where
the partial ordering is again subset containment.

We already mentioned that we will unify the Dehn–Sommerville relations
(Theorem 5.1) with Ehrhart–Macdonald reciprocity (Theorem 4.1). It is for
this reason that we will prove Theorem 5.1 only for rational polytopes. To
combine the notions of face numbers and lattice-point enumeration, we define

3 Note that the relative interior of a vertex is the vertex itself.
4 The usage of the word lattice here is disjoint from our previous definition of the

word.
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v1

v2

v3

E1

E2

E3

∅

v1 v2 v3

E3 E2 E1

∆

Fig. 5.1. The face lattice of a triangle.

Fk(t) :=
∑
F⊆P

dimF=k

LF (t) ,

the sum being taken over all k-faces of P. By Ehrhart’s theorem (Theo-
rem 3.23), Fk is a quasipolynomial. Since LF (0) = 1 for all F ,

Fk(0) = fk ,

the number of k-faces of P. We also remark that the leading coefficient of Fk
measures the relative volume of the k-skeleton of P, that is, the union of all
k-faces; see Section 5.4 for a precise definition of relative volume.

Our common extension of Theorems 5.1 and 4.1 is the subject of the next
section.

5.2 Dehn–Sommerville Extended

Theorem 5.3. If P is a simple rational d-polytope and 0 ≤ k ≤ d, then

Fk(t) =
k∑
j=0

(−1)j
(
d− j
d− k

)
Fj(−t) .

The classical Dehn–Sommerville equations (Theorem 5.1)—again, only for
rational polytopes—are obtained from the constant terms of the counting
functions on both sides of the identity. On the other hand, for k = d, Theo-
rem 5.3 gives (with t replaced by −t)

LP(−t) = Fd(−t) =
d∑
j=0

(−1)jFj(t) = (−1)d
d∑
j=0

(−1)d−jFj(t) .

The sum on the right-hand side is an inclusion–exclusion formula for the
number of lattice points in the interior of tP (count all the points in tP,
subtract the ones on the facets, add back what you’ve overcounted, etc.), so
in a sense we recover Ehrhart–Macdonald reciprocity.
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Proof. Suppose F is a k-face of P. Then, again by counting the integer points
in F according to relatively open faces of F ,

LF (t) =
∑
G⊆F

LG◦(t) ,

or, by the Ehrhart–Macdonald reciprocity (Theorem 4.1),

LF (t) =
∑
G⊆F

(−1)dimGLG(−t) =
k∑
j=0

(−1)j
∑
G⊆F

dimG=j

LG(−t) . (5.1)

Now sum both left- and right-hand sides over all k-faces and rearrange the
sum on the right-hand side:

Fk(t) =
∑
F⊆P

dimF=k

k∑
j=0

(−1)j
∑
G⊆F

dimG=j

LG(−t)

=
k∑
j=0

(−1)j
∑
F⊆P

dimF=k

∑
G⊆F

dimG=j

LG(−t)

=
k∑
j=0

(−1)j
∑
G⊆P

dimG=j

fk(P/G)LG(−t)

=
k∑
j=0

(−1)j
∑
G⊆P

dimG=j

(
d− j
d− k

)
LG(−t)

=
k∑
j=0

(−1)j
(
d− j
d− k

)
Fj(−t) .

Here fk(P/G) denotes the number of k-faces of P containing a given j-face G
of P. Since P is simple, this number equals

(
d−j
d−k
)

(see Exercise 5.4). ut

5.3 Applications to the Coefficients of an Ehrhart
Polynomial

We will now apply Theorem 5.3 to the computation of the Ehrhart polynomial
of an integral d-polytope P. The only face-lattice-point enumerator involving
the face P is Fd(t), for which Theorem 5.3 specializes to

LP(t) = Fd(t) =
d∑
j=0

(−1)jFj(−t) .
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In fact, we do not have to assume that P is simple, since this identity simply
counts integer points by faces. (Recall that (−1)jFj(−t) counts the integer
points in the t-dilates of the interior of the j-faces.)5 The last term on the
right-hand side is

(−1)dFd(−t) = (−1)dLP(−t) = LP◦(t)

by Ehrhart–Macdonald reciprocity. Shifting this term to the left gives

LP(t)− LP◦(t) =
d−1∑
j=0

(−1)jFj(−t) . (5.2)

The difference on the left-hand side of this identity has a natural interpre-
tation: it counts the integer points on the boundary of tP. (And in fact, the
right-hand side is once more an inclusion–exclusion formula for this num-
ber.) Let us write LP(t) = cd t

d + cd−1 t
d−1 + · · · + c0. Then LP◦(t) =

cd t
d − cd−1 t

d−1 + · · ·+ (−1)dc0, so that

LP(t)− LP◦(t) = 2cd−1 t
d−1 + 2cd−3 t

d−3 + · · · ,

where this sum ends with 2c0 if d is odd and 2c1t if d is even (this should look
familiar; see Exercise 4.10). Combining this expression with (5.2) yields the
following useful result.

Theorem 5.4. Suppose LP(t) = cd t
d + cd−1 t

d−1 + · · · + c0 is the Ehrhart
polynomial of P. Then

cd−1 t
d−1 + cd−3 t

d−3 + · · · = 1
2

d−1∑
j=0

(−1)jFj(−t) . ut

We can make the statement of this theorem more precise (but also more
messy) by writing

Fj(t) =
∑
F⊆P

dimF=j

LF (t) = cj,j t
j + cj,j−1t

j−1 + · · ·+ cj,0 .

Then collecting the coefficients of tk in Theorem 5.4 yields the following rela-
tions.

Corollary 5.5. If k and d are of different parity, then

ck =
1
2

d−1∑
j=0

(−1)j+kcj,k . ut

5 So one might argue that we did not need the Dehn–Sommerville machinery for
the computations in the current section. This argument is correct, although The-
orem 5.3 is a strong motivation.



98 5 Face Numbers and the Dehn–Sommerville Relations in Ehrhartian Terms

If k and d have the same parity, then the left-hand side has to be replaced
by 0.

The first coefficient ck in the Ehrhart polynomial of a d-polytope P satis-
fying the parity condition is cd−1. In this case Corollary 5.5 tells us that cd−1

equals 1
2 times the sum of the leading coefficients of the Ehrhart polynomials

of the facets of P.
The next interesting coefficient is cd−3. For example, if dimP = 4, we can

use Corollary 5.5 to compute c1 entirely from (the linear coefficients of) the
Ehrhart polynomials of the faces of dimension ≤ 3.

5.4 Relative Volume

It’s time to return to continuous volume. Recall Lemma 3.19: if S ⊂ Rd is
d-dimensional, then volS = limt→∞

1
td
·#
(
tS ∩ Zd

)
. Back in Chapter 3, we

stressed the importance of S being d-dimensional, because otherwise (i.e., S
is lower-dimensional although living in d-space), by our definition volS = 0.
However, the case that S ⊂ Rd is not of dimension d is often very in-
teresting; an example is the polytope P that we encountered in connec-
tion with the coin-exchange problem in Chapter 1. We still would like to
compute the volume of such objects, in the relative sense. This makes for
a slight complication. Let’s say S ⊂ Rd is of dimension m < d, and let
spanS = {x + λ(y − x) : x,y ∈ S, λ ∈ R}, the affine span of S. If we follow
the same procedure as above (counting boxes or grid points), we compute
the volume relative to the sublattice (spanS) ∩ Zd; we call this the relative
volume of S.

For example, the line segment L from (0, 0) to (4, 2) in R2 has the relative
volume 2, because in spanL =

{
(x, y) ∈ R2 : y = x/2

}
, L is covered by two

segments of “unit length” in this affine subspace, as pictured in Figure 5.2. A
three-dimensional instance that should be reminiscent of Chapter 1 is illus-
trated in Figure 5.3.

(0, 0)

(4, 2)

Fig. 5.2. The line segment from (0, 0) to (4, 2) and its affine sublattice.
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2

20

5

x

y

z

Fig. 5.3. The triangle defined by x
5

+ y
20

+ z
2

= 1, x ≥ 0, y ≥ 0, z ≥ 0. The shaded
region is a fundamental domain for the sublattice that lies on the affine span of the
triangle.

If S ⊆ Rd has full dimension d, the relative volume coincides with the
“full-dimensional” volume. Henceforth, when we write volS we refer to the
relative volume of S. With this convention we can rewrite Lemma 3.19 to
accommodate a set S ⊂ Rd that is m-dimensional: its relative volume can be
computed as

volS = lim
t→∞

1
tm
·#
(
tS ∩ Zd

)
.

In the case that #
(
tS ∩ Zd

)
has the special form of a polynomial—for

example, if S is an integral polytope—we can further simplify this theorem.
Suppose P ⊂ Rd is an integral m-polytope with Ehrhart polynomial

LP(t) = cm t
m + cm−1 t

m−1 + · · ·+ c1 t+ 1 .

Then, according to the above discussion, and much in sync with Lemma 3.19,
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volP = lim
t→∞

1
tm
LP(t) = lim

t→∞

cm t
m + cm−1 t

m−1 + · · ·+ c1 t+ 1
tm

= cm .

The relative volume of P is the leading term of the corresponding counting
function LP .

For example, in the previous section we found that Corollary 5.5 implies
that the second leading coefficient cd−1 of the Ehrhart polynomial of the
d-polytope P equals 1

2 times the sum of the leading terms of the Ehrhart
polynomials of the facets of P. The leading term for one facet is simply the
relative volume of that facet:

Theorem 5.6. Suppose LP(t) = cd t
d + cd−1 t

d−1 + · · · + c0 is the Ehrhart
polynomial of the integral polytope P. Then

cd−1 =
1
2

∑
F a facet of P

volF . ut

Notes

1. The Dehn–Sommerville relations (Theorem 5.1) first surfaced in the work
of Max Dehn, who proved them in 1905 for dimension five [71]. (The Dehn–
Sommerville relations are not that complicated for d ≤ 4; see Exercise 5.3.)
Some two decades later, D. M. Y. Sommerville proved the general case [167].
Theorem 5.1 was neither well known nor much used in the first half of the
twentieth century, but only after its rediscovery by Victor Klee [111] and its
appearance in Branko Grünbaum’s famous and widely read book [90].

2. The Euler relation (Theorem 5.2) is easy to prove directly for d = 3 (this
case is attributed to Euler), but for higher dimension, one has to be somewhat
careful, as we already remarked in the text. The classical proof for general d
was found in 1852 by Ludwig Schläfli [158], although it (like numerous later
proofs) assumes that the boundary of a convex polytope can be built up
inductively in a “good” way. This nontrivial fact—which is called shelling of
a polytope—was proved by Heinz Bruggesser and Peter Mani in 1971 [50].
Shellability is nicely discussed in [193, Lecture 8]. There are short proofs of
the Euler relation that do not use the shelling of a polytope (see, for example,
[120, 139, 184]).

3. The reader might suspect that proving Theorems 5.1 and 5.2 for rational
polytopes suffices for the general case, since it seems that we can transform
a polytope with irrational vertices slightly to one with only rational vertices
without changing the face structure of the polytope. This is true in our every-
day world but fails in dimension ≥ 4 (see [156] for dimension 4 and [193,
pp. 172/173] for general dimension).
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4. Theorem 5.3 is due to Peter McMullen [127], who, in fact, proved this result
in somewhat greater generality. Another generalization of Theorem 5.3 can be
found in [59].

Exercises

5.1. Consider a simple 3-polytope with at least five facets. Two players play
the following game: Each player, in turn, signs his or her name on a previously
unsigned face. The winner is the player who first succeeds in signing three
facets that share a common vertex. Show that the player who signs first will
always win by playing as well as possible.6

5.2. Show that for the d-cube, fk = 2d−k
(
d
k

)
.

5.3. Give an elementary proof of the Dehn–Sommerville relations (Theo-
rem 5.1) for d ≤ 4.

5.4. ♣ Let P be a simple d-polytope. Prove that the number of k-faces of P
containing a given j-face of P equals

(
d−j
d−k
)
.

5.5. ♣ Show directly, without using Theorem 5.2, that for a d-simplex:

(a) fk =
(
d+1
k+1

)
.

(b)
d∑
k=0

(−1)kfk = 1.

5.6. Prove Theorem 5.1 directly (and hence not requiring P to be an integral
polytope). (Hint: Orient yourself along the proof of Theorem 5.3, but start
with the Euler relation (Theorem 5.2) for a given face F instead of (5.1).)

5.7. Let F be a face of a simple polytope P. Prove that∑
G⊇F

(−1)dimG
(

dimG
k

)
= (−1)d

(
dimF
d− k

)
, k = 0, . . . , d.

5.8. Show that the equations in Theorem 5.3 are equivalent to the following
identities. If P is a simple lattice d-polytope and k ≤ d, then

k∑
j=0

(−1)k−j
(
d− j
k − j

)
Fd−j(−n) =

d∑
i=k

(−1)i−k
(
i

k

)
Fi(n) .

6 This was one of the 2002 Putnam contest problems.
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5.9. Prove that the equations in the previous exercise imply the following
identities which compare the number of lattice points in faces and relative
interiors of faces of the simple polytope P:

k∑
j=0

(−1)j
(
d− j
k − j

) ∑
F⊆P

dimF=d−j

#
(
F ∩ Zd

)
=

d∑
i=k

(
i

k

) ∑
G⊆P

dimG=i

#
(
G◦ ∩ Zd

)
,

where k = 0, . . . , d = dimP. For example, for k = 0, we have

#(P ∩ Zd) =
∑
G⊆P

#
(
G◦ ∩ Zd

)
,

and for k = d we obtain the inclusion–exclusion formula

#(P◦ ∩ Zd) =
d∑
j=0

(−1)d−j
∑
F⊆P

dimF=j

#
(
F ∩ Zd

)
.

5.10. Another nice reformulation of Theorem 5.3 is the following generalized
reciprocity law. For a simple integral d-polytope P, define the generalized
Ehrhart polynomial

Ek(t) :=
k∑
j=0

(−1)j
(
d− j
k − j

) ∑
F⊆P

dimF=d−j

LF (t) , k = 0, . . . , d.

Prove the generalized reciprocity law

Ek(−t) = (−1)dEd−k(t) , k = 0, . . . , d,

which implies Ehrhart–Macdonald reciprocity (Theorem 4.1) when k = 0.

5.11. What happens when P is not simple? Give an example for which The-
orem 5.3 fails.

5.12. Give an alternative proof of Theorem 5.6 by considering LP(t)−LP◦(t)
as the lattice-point enumerator of the boundary of P.
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Magic Squares

The peculiar interest of magic squares and all lusus numerorum in general lies in
the fact that they possess the charm of mystery.

W. S. Andrews

Fig. 6.1. Magic square at the Temple de la Sagrada Famı́lia (Barcelona, Spain).

Equipped with a solid base of theoretical results, we are now ready to return
to computations. We use Ehrhart theory to assist us in enumerating magic
squares.

Loosely speaking, a magic square is an n × n array of integers (usually
required to be positive, often restricted to the numbers 1, 2, . . . , n2, usually
required to have distinct entries) whose sum along any row, column, and main
diagonal is the same number, called the magic sum. Magic squares have turned
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up time and again, some in mathematical contexts, others in philosophical or
religious contexts. According to legend, the first magic square (the ancient Luo
Shu square) was discovered in China sometime before the first century B.C.E.
on the back of a turtle emerging from a river. It was the square pictured in
Figure 6.2.

4 9 2

3 5 7

8 1 6

Fig. 6.2. The Luo Shu square.

Our task in this chapter is to develop a theory for counting certain classes
of magic squares, which we now introduce.

6.1 It’s a Kind of Magic

One should notice that the Luo Shu square has the distinct entries 1, 2, . . . , 9,
so these entries are positive, distinct integers drawn from a particular set. Such
requirements are too restrictive for our purposes. We define a semimagic
square to be a square matrix whose entries are nonnegative integers and
whose rows and columns (called lines in this setting) sum to the same number.
A magic square is a semimagic square whose main diagonals also add up to
the line sum. Figure 6.3 shows two examples.

3 0 0

0 1 2

0 2 1

1 2 0

0 1 2

2 0 1

Fig. 6.3. A semimagic and a magic square.

We caution the reader about clashing definitions in the literature. For
example, some people reserve the term “magic square” for what we will call
a traditional magic square, a magic square of order n whose entries are
the distinct integers 1, 2, . . . , n2. (The Luo Shu square is an example of a
traditional magic square.) Others are slightly less restrictive and use the term
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“magic square” for a magic square with distinct entries. We stress that we do
not make this requirement in this chapter.

Our goal is to count semimagic and magic squares. In the traditional case,
this is in some sense not very interesting:1 for each order there is a fixed
number of traditional magic squares. For example, there are 7040 traditional
4× 4 magic squares.

The situation becomes more interesting if we drop the condition of tra-
ditionality and study the number of magic squares as a function of the line
sum. We denote the total numbers of semimagic and magic squares of order
n and line sum t by Hn(t) and Mn(t), respectively.

♥ t−♥

t−♥ ♥

t

2

t

2

t

2

t

2

Fig. 6.4. Semimagic and magic squares for n = 2.

Example 6.1. We illustrate these notions for the case n = 2, which is not
very complicated. Here a semimagic square is determined once we know one
entry, say the upper left one, denoted by ♥ in Figure 6.4. Because of the upper
row sum, the upper right entry has to be t − ♥, as does the lower left entry
(because of the left column sum). But then the lower right entry has to be
t − (t − ♥) = ♥ (for two reasons: the lower row sum and the right column
sum). The entry ♥ can be any integer between 0 and t. Since there are t+ 1
such integers,

H2(t) = t+ 1 . (6.1)

In the magic case, we also have to think of the diagonals. Looking back at our
semimagic square in Figure 6.4, the first diagonal gives 2 · ♥ = t, or ♥ = t/2.
In this case, t − ♥ = t/2, and so a 2 × 2 magic square has to have identical
entries in each position. Because we require the entries to be integers, this is
possible only if t is even, in which case we obtain precisely one solution, the
square on the right in Figure 6.4. That is,

M2(t) =
{

1 if t is even,
0 if t is odd.

These easy results already hint at something: the counting function Hn is of
a different character than the function Mn. ut
1 It is, nevertheless, an incredibly hard problem to count all traditional magic

squares of a given size n. At present, these numbers are known only for n ≤ 5
[165, Sequence A006052].
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6.2 Semimagic Squares: Integer Points in the
Birkhoff–von Neumann Polytope

Just as the Frobenius problem was intrinsically connected to questions about
integer points on line segments, triangles, and higher-dimensional simplices,
magic squares and their relatives have a life in the world of geometry. The
most famous example is connected to semimagic squares.

A semimagic n×n square has n2 nonnegative entries that sum to the same
number along any row or column. Consider therefore the polytope

Bn :=


 x11 · · · x1n

...
...

xn1 . . . xnn

 ∈ Rn
2

: xjk ≥ 0,
∑
j xjk = 1 for all 1 ≤ k ≤ n∑
k xjk = 1 for all 1 ≤ j ≤ n

 ,

(6.2)
consisting of nonnegative real matrices, in which all rows and columns sum
to one. Bn is called the nth Birkhoff–von Neumann polytope, in honor
of Garrett Birkhoff (1911–1996)2 and John von Neumann (1903–1957).3 Be-
cause the matrices contained in the Birkhoff–von Neumann polytope appear
frequently in probability and statistics (the line sum 1 representing probabil-
ity 1), Bn is often described as the set of all n× n doubly stochastic matrices.

Geometrically, Bn is a subset of Rn2
and as such difficult to picture once

n exceeds 1.4 However, we can get a glimpse of B2 ⊂ R4 when we think about
what form points in B2 can possibly attain. Very much in sync with Figure 6.4,
such a point is determined by its upper left entry ♥, pictured in Figure 6.5.
This entry ♥ is a real number between 0 and 1, which suggests that B2 should

„
♥ 1−♥

1−♥ ♥

«

Fig. 6.5. A point in B2.

look like a line segment in 4-space. Indeed, the vertices of B2 should be given
by ♥ = 0 and ♥ = 1, that is, by the points(

1 0
0 1

)
,

(
0 1
1 0

)
∈ B2 .

2 For more information about Birkhoff, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Birkhoff Garrett.html.

3 For more information about von Neumann, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Von Neumann.html.

4 The case n = 1 is not terribly interesting: B1 = {1} is a point.
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These results generalize: Bn is an (n− 1)2-polytope (see Exercise 6.3), whose
vertices (Exercise 6.5) are the permutation matrices, namely, those n× n
matrices that have precisely one 1 in each row and column (every other entry
being zero). For dimensional reasons, we can talk about the continuous volume
of Bn only in the relative sense, following the definition of Section 5.4.

The connection of the semimagic counting function Hn(t) to the Birkhoff–
von Neumann polytope Bn becomes clear in the light of the lattice-point enu-
merator for Bn: the counting function Hn(t) enumerates precisely the integer
points in tBn, that is,

Hn(t) = #
(
tBn ∩ Zn

2
)

= LBn(t) .

We can say more after noticing that permutation vertices are integer points
in Bn, and so Ehrhart’s theorem (Theorem 3.8) applies:

Theorem 6.2. Hn(t) is a polynomial in t of degree (n− 1)2. ut

The fact that Hn is a polynomial—apart from being mathematically
appealing—has the same nice computational consequence that we exploited
in Section 3.6: we can calculate this counting function by interpolation. For
example, to compute H2, a linear polynomial, we need to know only two val-
ues. In fact, since we know that the constant term of H2 is 1 (by Corollary
3.15), we need only one value. It is not hard to convince even a lay person
that H2(1) = 2 (which two semimagic squares are those?), from which we
interpolate

H2(t) = t+ 1 .

To interpolate the polynomial H3, we need to know 4 values aside from
H3(0) = 1. In fact, we do not even have to know that many values, because
Ehrhart–Macdonald reciprocity (Theorem 4.1) assists us in computations. To
see this, let H◦n(t) denote the number of n × n square matrices with positive
integer entries summing up to t along each row and column. A moment’s
thought (Exercise 6.6) reveals that

H◦n(t) = Hn(t− n) . (6.3)

But there is a second relationship between Hn and H◦n, namely, H◦n(t) counts,
by definition, the integer points in the relative interior of the Birkhoff–von
Neumann polytope Bn, that is, H◦n(t) = LB◦n(t). Now Ehrhart–Macdonald
reciprocity (Theorem 4.1) gives

H◦n(−t) = (−1)(n−1)2
Hn(t) .

Combining this identity with (6.3) gives us a symmetry identity for the count-
ing function for semimagic squares:
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Theorem 6.3. The polynomial Hn satisfies

Hn(−n− t) = (−1)(n−1)2
Hn(t)

and
Hn(−1) = Hn(−2) = · · · = Hn(−n+ 1) = 0 . ut

The roots of Hn at the first n − 1 negative integers follow from (Exer-
cise 6.7)

H◦n(1) = H◦n(2) = · · · = H◦n(n− 1) = 0 .

Theorem 6.3 gives the degree of Bn, and it implies that the numerator of the
Ehrhart series of the Birkhoff–von Neumann polytope is palindromic:

Corollary 6.4. The Ehrhart series of the Birkhoff–von Neumann polytope Bn
has the form

EhrBn(z) =
h(n−1)(n−2) z

(n−1)(n−2) + · · ·+ h0

(1− z)(n−1)2+1
,

where h0, h1, . . . , h(n−1)(n−2) ∈ Z≥0 satisfy hk = h(n−1)(n−2)−k for 0 ≤ k ≤
(n−1)(n−2)

2 .

Proof. Denote the Ehrhart series of Bn by

EhrBn(z) =
h(n−1)2 z(n−1)2

+ · · ·+ h0

(1− z)(n−1)2+1
.

The fact that h(n−1)2 = · · · = h(n−1)2−(n−2) = 0 follows from the second
part of Theorem 6.3 and Theorem 4.5. The palindromy of the numerator
coefficients follows from the first part of Theorem 6.3 and Exercise 4.7: it
implies

EhrBn

(
1
z

)
= (−1)(n−1)2+1zn EhrBn(z) ,

which yields hk = h(n−1)(n−2)−k upon simplifying both sides of the equation.
ut

Let’s return to the interpolation of H3: Theorem 6.3 gives, in addition to
H3(0) = 1, the values

H3(−3) = 1 and H3(−1) = H3(−2) = 0 .

These four values together with H3(1) = 6 (see Exercise 6.1) suffice to inter-
polate the quartic polynomial H3, and one computes

H3(t) =
1
8
t4 +

3
4
t3 +

15
8
t2 +

9
4
t+ 1 . (6.4)
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This interpolation example suggests the use of a computer; we let it calcu-
late enough values of Hn and then simply interpolate. As far as computations
are concerned, however, we should not get too excited about the fact that
we computed H2 and H3 so effortlessly. In general, the polynomial Hn has
degree (n − 1)2, so we need to compute (n − 1)2 + 1 values of Hn to be
able to interpolate. Of those, we know n (the constant term and the roots
given by Theorem 6.3), so n2 − 3n+ 2 values of Hn remain to be computed.
Ehrhart–Macdonald reciprocity reduces the number of values to be computed
to n2−3n+2

2 . That’s still a lot, as anyone can testify who has tried to get a
computer to enumerate all semimagic 7× 7 squares with line sum 15. Never-
theless, it is a fun fact that we can compute Hn for small n by interpolation.
It is amusing to test one’s computer against the constant-term computation
we will outline below, and we invite the reader to try both. For small n, in-
terpolation is clearly superior to a constant-term computation in the spirit
of Chapter 1. The turning point seems to be right around n = 5: the com-
puter needs more and more time to compute the values Hn(t) as t increases.
Methods superior to interpolation are needed.

6.3 Magic Generating Functions and Constant-Term
Identities

Now we will construct a generating function for Hn, for which we will use
Theorem 2.13. The semimagic counting function Hn is the Ehrhart polynomial
of the nth Birkhoff–von Neumann polytope Bn, which, in turn, is defined as a
set of matrices by (6.2). First we rewrite the definition of Bn to fit the general
description (2.23) of a polytope. If we consider the points in Bn as column
vectors in Rn2

(rather than as matrices in Rn×n) then

Bn =
{

x ∈ Rn
2

≥0 : A x = b
}
,

where

A =



1 · · · 1
1 · · · 1

. . .
1 · · · 1

1 1 1
. . . . . . · · ·

. . .
1 1 1


∈ Z2n×n2

(6.5)

(here we omit the zero entries) and

b =


1
1
...
1

 ∈ Z2n.
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From this description of Bn, we can easily build the generating function
for Hn. According to Theorem 2.13, for a general rational polytope P ={
x ∈ Rd≥0 : A x = b

}
, we have

LP(t) = const
(

1
(1− zc1) (1− zc2) · · · (1− zcd) ztb

)
,

where c1, c2, . . . , cd denote the columns of A. In our special case, the columns
of A are of a simple form: they contain exactly two 1’s and elsewhere 0’s. We
need one generating-function variable for each row of A. To keep things as
clear as possible, we use z1, z2, . . . , zn for the first n rows of A (representing
the row constraints of Bn) and w1, w2, . . . , wn for the last n rows of A (rep-
resenting the column constraints of Bn). With this notation, Theorem 2.13
applied to Bn gives the following starting point for our computations:

Theorem 6.5. The number Hn(t) of semimagic n× n squares with line sum
t satisfies

Hn(t) = const

 1∏
1≤j,k≤n (1− zjwk)

(∏
1≤j≤n zj

∏
1≤k≤n wk

)t
 . ut

This identity is of both theoretical and practical use. One can use it to compute
H3 and even H4 by hand. For now, we work on refining it further, exemplified
by the case n = 2.

We first note that in the formula for H2, the variables w1 and w2 are
separated, in the sense that we can write this formula as a product of two
factors, one involving only w1 and the other involving only w2:

H2(t) = const
(

1
zt1z

t
2

1
(1− z1w1) (1− z2w1)wt1

1
(1− z1w2) (1− z2w2)wt2

)
.

Now we put an ordering on the constant-term computation: let us first com-
pute the constant term with respect to w2, then the one with respect to w1.
(We don’t order the computation with respect to z1 and z2 just yet.) Since z1,
z2, and w1 are considered constants when we do constant-term computations
with respect to w2, we can simplify:

H2(t) = constz1,z2

(
1

zt1z
t
2

constw1

(
1

(1− z1w1) (1− z2w1)wt1

× constw2

(
1

(1− z1w2) (1− z2w2)wt2

)))
.

Now we can see the effect of the separate appearance of w1 and w2: the
constant-term identity factors. This is very similar to the factoring that can
appear in computations of integrals in several variables. Let us rewrite our
identity to emphasize the factoring:
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H2(t) = constz1,z2

(
1

zt1z
t
2

constw1

(
1

(1− z1w1) (1− z2w1)wt1

)
× constw2

(
1

(1− z1w2) (1− z2w2)wt2

))
.

But now the expressions in the last two sets of parentheses are identical,
except that in one case the constant-term variable is called w1 and in the
other case w2. Since these are just “dummy” variables, we can call them w,
and combine:

H2(t) = constz1,z2

(
1

zt1z
t
2

(
constw

1
(1− z1w) (1− z2w)wt

)2
)
.

(Note the square!) Naturally, all of this factoring works in the general case,
and we invite the reader to prove it (Exercise 6.8):

Hn(t) = constz1,...,zn

(
(z1 · · · zn)−t

(
constw

1
(1− z1w) · · · (1− znw)wt

)n)
.

(6.6)
We can go further, namely, we can compute the innermost constant term

constw
1

(1− z1w) · · · (1− znw)wt
.

It should come as no surprise that we’ll use a partial fraction expansion to do
so. The w-poles of the rational function are at w = 1/z1, w = 1/z2, . . . , w =
1/zn, w = 0, and so we expand

1
(1− z1w) · · · (1− znw)wt

=
A1

w − 1
z1

+
A2

w − 1
z2

+· · ·+ An

w − 1
zn

+
t∑

k=1

Bk
wk

. (6.7)

Just as in Chapter 1, we can forget about the Bk-terms, since they do not
contribute to the constant term, that is,

constw
1

(1− z1w) · · · (1− znw)wt

= constw

(
A1

w − 1
z1

+
A2

w − 1
z2

+ · · ·+ An

w − 1
zn

)
= −A1z1 −A2z2 − · · · −Anzn .

We invite the reader to show (Exercise 6.9) that

Ak = −
zt−1
k(

1− z1
zk

)
· · ·
(

1− zk−1
zk

)(
1− zk+1

zk

)
· · ·
(

1− zn
zk

)
= −

zt+n−2
k∏

j 6=k(zk − zj)
. (6.8)



112 6 Magic Squares

Putting these coefficients back into the partial fraction expansion yields the
following identity.

Theorem 6.6. The number Hn(t) of semimagic n× n squares with line sum
t satisfies

Hn(t) = const

(
(z1 · · · zn)−t

(
n∑
k=1

zt+n−1
k∏

j 6=k(zk − zj)

)n)
. ut

Amidst all this generality, we almost forgot to compute H2 with our partial
fraction approach. The last theorem says that

H2(t) = const

(
(z1z2)−t

(
zt+1

1

z1 − z2
+

zt+1
2

z2 − z1

)2
)

= const
(

zt+2
1 z−t2

(z1 − z2)2
− 2

z1z2

(z1 − z2)2
+

z−t1 zt+2
2

(z1 − z2)2

)
. (6.9)

Now it’s time to put more order on the constant-term computation. Let’s say
we first compute the constant term with respect to z1, and after that with
respect to z2. So we have to compute first

constz1

(
zt+2

1 z−t2

(z1 − z2)2

)
, constz1

(
z1z2

(z1 − z2)2

)
, and constz1

(
z−t1 zt+2

2

(z1 − z2)2

)
.

To obtain these constant terms, we need to expand the function 1
(z1−z2)2 . As

we know from calculus, this expansion depends on the order of the magnitudes
of z1 and z2. For example, if |z1| < |z2| then

1
z1 − z2

=
1
z2

1
z1
z2
− 1

= − 1
z2

∑
k≥0

(
z1

z2

)k
= −

∑
k≥0

1
zk+1

2

zk1 ,

and hence

1
(z1 − z2)2

= − d

dz1

(
1

z1 − z2

)
=
∑
k≥1

k

zk+1
2

zk−1
1 =

∑
k≥0

k + 1
zk+2

2

zk1 .

So let’s assume for the moment that |z1| < |z2|. This might sound funny, since
z1 and z2 are variables. However, as such they are simply tools that enable
us to compute some quantity that is independent of z1 and z2. In view of
these ideas, we may assume any order of the magnitudes of the variables. In
Exercise 6.11 we will check that indeed the order does not matter. Now,
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constz1

(
zt+2

1 z−t2

(z1 − z2)2

)
= z−t2 constz1

(
zt+2

1

(z1 − z2)2

)

= z−t2 constz1

zt+2
1

∑
k≥0

k + 1
zk+2

2

zk1

 (6.10)

= z−t2 constz1

∑
k≥0

k + 1
zk+2

2

zk+t+2
1


= 0 ,

since there are only positive powers of z1 (remember that t ≥ 0). Analogously
(see Exercise 6.10) one checks that

constz1

(
z1z2

(z1 − z2)2

)
= 0 . (6.11)

For the last constant term, we compute

constz1

(
z−t1 zt+2

2

(z1 − z2)2

)
= zt+2

2 constz1

z−t1

∑
k≥0

k + 1
zk+2

2

zk1


= zt+2

2 constz1

∑
k≥0

k + 1
zk+2

2

zk−t1

 .

The constant term on the right-hand side is the term with k = t, that is,

constz1

(
z−t1 zt+2

2

(z1 − z2)2

)
= zt+2

2

t+ 1
zt+2

2

= t+ 1 .

So of the three constant terms only one survives, and with constz2(t+1) = t+1
we recover what we have known since the beginning of this chapter:

H2(t) = const
(

zt+2
1 z−t2

(z1 − z2)2
− 2

z1z2

(z1 − z2)2
+

z−t1 zt+2
2

(z1 − z2)2

)
= t+ 1 .

This was a lot of work for this seemingly trivial polynomial. Recall, for
example, that we can get the same result by an easy interpolation. How-
ever, to compute a similar interpolation, e.g., for H4, we likely would need
to use a computer (to obtain the interpolation values). On the other hand,
the constant-term computation of H4 boils down to only five iterated con-
stant terms, which can actually be computed by hand (see Exercise 6.14).
The result is

H4(t) =
11

11340
t9 +

11
630

t8 +
19
135

t7 +
2
3
t6 +

1109
540

t5 +
43
10
t4 +

35117
5670

t3

+
379
63

t2 +
65
18
t+ 1 .
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6.4 The Enumeration of Magic Squares

What happens when we bring the diagonal constraints, which are not present
in the semimagic case, into the magic picture? In the introduction of this
chapter we have already seen an example, namely the number of 2× 2 magic
squares,

M2(t) =
{

1 if t is even,
0 if t is odd.

This is a very simple example of a quasipolynomial. In fact, like Hn, the
counting function Mn is defined by integral linear equations and inequalities,
so it is the lattice-point enumerator of a rational polytope, and Theorem 3.23
gives at once the following result.

Theorem 6.7. The counting function Mn(t) is a quasipolynomial in t. ut

We invite the reader to prove that the degree of Mn is n2 − 2n − 1 (Exer-
cise 6.16).

Let’s see what happens in the first nontrivial case, 3 × 3 magic squares.
We follow our recipe and assign variables m1,m2, . . . ,m9 to the entries of our
3× 3 squares, as in Figure 6.6.

m1 m2 m3

m4 m5 m6

m7 m8 m9

Fig. 6.6. Variables in a magic 3× 3 square.

The magic conditions require now that m1,m2, . . . ,m9 ∈ Z≥0 and

m1 +m2 +m3 = t ,

m4 +m5 +m6 = t ,

m7 +m8 +m9 = t ,

m1 +m4 +m7 = t ,

m2 +m5 +m8 = t ,

m3 +m6 +m9 = t ,

m1 +m5 +m9 = t ,

m3 +m5 +m7 = t ,

according to the row sums (the first three equations), the column sums (the
next three equations), and the diagonal sums (the last two equations). By
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now, we’re experienced in translating this system into a generating function:
we need one variable for each equation, so let’s take z1, z2, z3 for the first
three, w1, w2, w3 for the next three, and y1, y2 for the last two equations. The
function M3(t) is the constant term of

1
(1− z1w1y1) (1− z1w2) (1− z1w3y2) (1− z2w1) (1− z2w2y1y2) (1− z2w3)

× 1
(1− z3w1y2) (1− z3w2) (1− z3w3y1) (z1z2z3w1w2w3y1y2)t

. (6.12)

It does take some work, but it is instructive to compute this constant term
(just try it!). The result is

M3(t) =

{
2
9 t

2 + 2
3 t+ 1 if 3|t,

0 otherwise.
(6.13)

As predicted by Theorem 6.7, M3 is a quasipolynomial. It has degree 2 and
period 3. This may be more apparent if we rewrite it as

M3(t) =


2
9 t

2 + 2
3 t+ 1 if t ≡ 0 mod 3,

0 if t ≡ 1 mod 3,
0 if t ≡ 2 mod 3,

and we can see the three constituents of the quasipolynomial M3. There is
an alternative way to describe M3; namely, let

c2(t) =


2
9 if t ≡ 0 mod 3,
0 if t ≡ 1 mod 3,
0 if t ≡ 2 mod 3,

c1(t) =


2
3 if t ≡ 0 mod 3,
0 if t ≡ 1 mod 3,
0 if t ≡ 2 mod 3,

c0(t) =


1 if t ≡ 0 mod 3,
0 if t ≡ 1 mod 3,
0 if t ≡ 2 mod 3.

Then the quasipolynomial M3 can be written as

M3(t) = c2(t) t2 + c1(t) t+ c0(t) .

Notes

1. Magic squares date back to China in the first millennium B.C.E. [53]; they
underwent much further development in the Islamic world late in the first



116 6 Magic Squares

millennium C.E. and in the next millennium (or sooner; the data are lacking)
in India [54]. From Islam they passed to Christian Europe in the later Middle
Ages, probably initially through the Jewish community [54, Part II, pp. 290
ff.] and later possibly Byzantium [54, Part I, p. 198], and no later than the
early eighteenth century (the data are buried in barely tapped archives) to
sub-Saharan Africa [191, Chapter 12]. The contents of a magic square have
varied with time and writer; usually they have been the first n2 consecutive
integers, but often any arithmetic sequence or arbitrary positive numbers.
In the past century, mathematicians have made some simplifications in the
interest of obtaining results about the number of squares with a fixed magic
sum, in particular, allowing repeated entries as in this chapter.

2. The problem of counting magic squares (other than traditional magic
squares) seems to have occurred to anyone only in the twentieth century,
no doubt because there was no way to approach the question previously. The
first nontrivial formulas addressing the counting problem, namely (6.4) and
(6.13) for H3 and M3, were established by Percy Macmahon (1854–1929)5

[124] in 1915. Recently there has grown up a literature on exact formulas (see
for example [80, 168] for semimagic squares; for magic squares see [1, 23]; for
magic squares with distinct entries see [31, 189]).

3. Another famous kind of square is latin squares (see, for example, [72]).
Here each row and column has n different numbers, the same n numbers in
every row/column (usually taken to be the first n positive integers). There
are counting problems associated with latin squares, which can be attacked
using Ehrhart theory [31] (see also [165, Sequence A002860]).

4. Recent work includes mathematical-historical research, such as the discov-
ery of unpublished magic squares of Benjamin Franklin [2, 141]. Aside from
mathematical research, magic squares and their siblings naturally continue
to be an excellent source of topics for popular mathematics books (see, for
example, [4] or [144]).

5. The Birkhoff–von Neumann polytope Bn possesses fascinating combinato-
rial properties [38, 48, 49, 58, 192] and relates to many mathematical areas
[74, 112]. Its name honors Garrett Birkhoff and John von Neumann, who
proved that the extremal points of Bn are the permutation matrices [39, 186]
(see Exercise 6.5). A long-standing open problem is the determination of
the relative volume of Bn, which is known only for n ≤ 10 [165, Sequence
A037302]. In fact, the last two records (n = 9 and 10) for computing volBn
rely on the theory of counting functions that is introduced in this book, more
precisely, Theorem 6.6 [28].

5 For more information about MacMahon, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/MacMahon.html.
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6. An important generalization of the Birkhoff–von Neumann polytope is the
transportation polytopes, which consist of contingency tables. They have appli-
cations to statistics and in particular to disclosure limitation procedures [68].
The Birkhoff–von Neumann polytopes are special transportation polytopes
that consist of two-way contingency tables with given 1-marginals.

7. The polynomiality of Hn (Theorem 6.2) and its symmetry (Theorem 6.3)
were conjectured in 1966 by Harsh Anand, Vishwa Dumir, and Hansraj Gupta
[3] and proved seven years later independently by Eugène Ehrhart [80] and
Richard Stanley [168]. Stanley also conjectured that the numerator coefficients
in Corollary 6.4 are unimodal, a fact that was proved only in 2005, by Christos
Athanasiadis [8]. The quasipolynomiality of Mn (Theorem 6.7) and its degree
are discussed in [23]. The period of Mn is in general not known. In [23] it
is conjectured that it is always nontrivial for n > 1. The work in [1] gives
some credence to this conjecture by proving that the polytope of magic n×n
squares is not integral for n ≥ 2.

8. We close with a story about Cornelius Agrippa’s De Occulta Philosophia,
written in 1510. In it he describes the spiritual powers of magic squares and
produces some squares of orders from three up to nine. His work, although
influential in the mathematical community, enjoyed only brief success, for
the Counter-Reformation and the witch hunts of the Inquisition began soon
thereafter: Agrippa himself was accused of being allied with the devil.

Exercises

6.1. ♣ Find and prove a formula for Hn(1).

6.2. Let (xij)1≤i,j≤3 be a magic 3× 3 square.

(a) Show that the center term x22 is the average over all xij .
(b) Show that M3(t) = 0 if 3 does not divide t.

6.3. ♣ Prove that dimBn = (n− 1)2.

6.4. Prove the following characterization of a vertex of a convex polytope P: A
point v ∈ P is a vertex of P if for any line L through v and any neighborhood
N of v there exists a point in L ∩N that is not in P.

6.5. ♣ Prove that the vertices of Bn are the n× n-permutation matrices.

6.6. ♣ Let H◦n(t) denote the number of n × n matrices with positive integer
entries summing up to t along each row and column. Show that H◦n(t) =
Hn(t− n) for t > n.

6.7. ♣ Show that H◦n(1) = H◦n(2) = · · · = H◦n(n− 1) = 0.
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6.8. ♣ Prove (6.6):

Hn(t) = constz1,...,zn

(
(z1 · · · zn)−t

(
constw

1
(1− z1w) · · · (1− znw)wt

)n)
.

6.9. ♣ Compute the partial fraction coefficients (6.8).

6.10. ♣ Verify (6.11).

6.11. Repeat the constant-term computation of H2 starting from (6.9), but
now by first computing the constant term with respect to z2, and after that
with respect to z1.

6.12. Use your favorite computer program to calculate the formula for H3(t),
H4(t), . . . by interpolation.

6.13. Compute H3 using Theorem 6.6.

6.14. Compute H4 using Theorem 6.6.

6.15. Show that
n∑
k=1

zt+n−1
k∏

j 6=k(zk − zj)
=

∑
m1+···+mn=t

zm1
1 · · · zmnn ,

and use this identity to give an alternative proof of Theorem 6.6.

6.16. ♣ Prove that for n ≥ 3, the degree of Mn is n2 − 2n− 1.

6.17. Compute the vertices of the polytope of 3× 3 magic squares.

6.18. ♣ Verify (6.12) and use it to compute M3.

6.19. Compute M3 by interpolation. (Hint: Use Exercises 6.2 and 6.17.)

6.20. A symmetric semimagic square is a semimagic square that is a sym-
metric matrix. Show that the number of symmetric semimagic n× n squares
with line sum t is a quasipolynomial in t. Determine its degree and period.

Open Problems

6.21. Compute the number of traditional magic n× n squares for n > 5.

6.22. Compute volBn for n > 10. Compute Hn for n > 9.

6.23. Prove that the period of Mn is nontrivial for n > 1.

6.24. The vertices of the Birkhoff–von Neumann polytope are in one-to-one
correspondence with the elements of the symmetric group Sn. Consider a sub-
group of Sn and take the convex hull of the corresponding permutation matri-
ces. Compute the Ehrhart polynomials of this polytope. (The face numbers of
the polytope corresponding to the subgroup An, the even permutations, were
studied in [102].)

6.25. Prove that the graph formed by the vertices and edges of any 2-way
transportation polytope is Hamiltonian.
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7

Finite Fourier Analysis

God created infinity, and man, unable to understand infinity, created finite sets.

Gian-Carlo Rota (1932–1999)

We now consider the vector space of all complex-valued periodic functions
on the integers with period b. It turns out that every such function a(n) on
the integers can be written as a polynomial in the bth root of unity ξn :=
e2πin/b. Such a representation for a(n) is called a finite Fourier series.
Here we develop the finite Fourier theory using rational functions and their
partial fraction decomposition. We then define the Fourier transform and the
convolution of finite Fourier series, and show how one can use these ideas to
prove identities on trigonometric functions, as well as find connections to the
classical Dedekind sums.

The more we know about roots of unity and their various sums, the deeper
are the results that we can prove (see Exercise 7.19); in fact, certain statements
about sums of roots of unity even imply the Riemann hypothesis! However,
this chapter is elementary and draws connections to the sawtooth functions
and Dedekind sums, two basic sums over roots of unity. The general philos-
ophy here is that finite sums of rational functions of roots of unity are basic
ingredients in many mathematical structures.

7.1 A Motivating Example

To ease the reader into the general theory, let’s work out the finite Fourier
series for a simple example first, an arithmetic function with a period of 3.

Example 7.1. Consider the following arithmetic function, of period 3:

n : 0, 1, 2, 3, 4, 5, . . .
a(n) : 1, 5, 2, 1, 5, 2, . . .
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We first embed this sequence into a generating function as follows:

F (z) := 1 + 5z + 2z2 + z3 + 5z4 + 2z5 + · · · =
∑
n≥0

a(n) zn.

Since the sequence is periodic, we can simplify F (z) using a geometric series
argument:

F (z) =
∑
n≥0

a(n) zn

= 1 + 5z + 2z2 + z3
(
1 + 5z + 2z2

)
+ z6

(
1 + 5z + 2z2

)
+ · · ·

=
(
1 + 5z + 2z2

)∑
k≥0

z3k

=
1 + 5z + 2z2

1− z3
.

We now use the same technique that was employed in Chapter 1, namely the
technique of expanding a rational function into its partial fraction decompo-
sition. Here all the poles are simple, and located at the three cube roots of
unity, so that

F (z) =
â(0)
1− z

+
â(1)

1− ρz
+

â(2)
1− ρ2z

, (7.1)

where the constants â(0), â(1), â(2) remain to be found, and where ρ := e2πi/3,
a third root of unity. Using the geometric series for each of these terms sepa-
rately, we arrive at

F (z) =
∑
n≥0

(
â(0) + â(1)ρn + â(2)ρ2n

)
zn,

so that we’ve derived the finite Fourier series of our sequence a(n)! The only
remaining piece of information that we need is the computation of the con-
stants â(j), for j = 0, 1, 2. It turns out that this is also quite easy to do. We
have, from (7.1) above, the identity

â(0) (1− ρz)
(
1− ρ2z

)
+ â(1) (1− z)

(
1− ρ2z

)
+ â(2) (1− z) (1− ρz)

= 1 + 5z + 2z2,

valid for all z ∈ C. Upon letting z = 1, ρ2, and ρ, respectively, we obtain

3 â(0) = 1 + 5 + 2 ,

3 â(1) = 1 + 5ρ2 + 2ρ4,

3 â(2) = 1 + 5ρ+ 2ρ2,

where we’ve used the identity (1− ρ)(1− ρ2) = 3 (see Exercise 7.2). We can
simplify a bit to get â(0) = 8

3 , â(1) = −4−3ρ
3 , and â(2) = −1+3ρ

3 . Thus the
finite Fourier series for our sequence is
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a(n) =
8
3

+
(
−4

3
− ρ
)
ρn +

(
−1

3
+ ρ

)
ρ2n. ut

The object of the next section is to show that this simple process follows just
as easily for any periodic function on Z. The ensuing sections contain some
applications of the finite Fourier series of periodic functions.

7.2 Finite Fourier Series for Periodic Functions on Z

The general theory is just as easy conceptually as the example above, and we
now develop it. Consider any periodic sequence on Z, defined by {a(n)}∞n=0, of
period b. Throughout the chapter, we fix the bth root of unity ξ := e2πi/b. As
before, we embed our periodic sequence {a(n)}∞n=0 into a generating function,

F (z) :=
∑
n≥0

a(n) zn,

and use the periodicity of the sequence to immediately get

F (z) =

(
b−1∑
k=0

a(k) zk
)

+

(
b−1∑
k=0

a(k) zk
)
zb +

(
b−1∑
k=0

a(k) zk
)
z2b + · · ·

=
∑b−1
k=0 a(k) zk

1− zb
=

P (z)
1− zb

,

where the last step simply defines the polynomial P (z) =
∑b−1
k=0 a(k) zk. Now

we expand the rational generating function F (z) into partial fractions, as
before:

F (z) =
P (z)

1− zb
=

b−1∑
m=0

â(m)
1− ξmz

.

As in the example of the previous section, we expand each of the terms 1
1−ξmz

as a geometric series, and substitute into the sum above to get

F (z) =
∑
n≥0

a(n) zn =
b−1∑
m=0

â(m)
1− ξmz

=
b−1∑
m=0

â(m)
∑
n≥0

ξmnzn =
∑
n≥0

(
b−1∑
m=0

â(m) ξmn
)
zn.

Comparing the coefficients of any fixed zn gives us the finite Fourier series for
a(n), namely

a(n) =
b−1∑
m=0

â(m) ξmn.
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We now find a formula for the Fourier coefficients â(n), as in the example.
To recapitulate, we have

P (z) =
b−1∑
m=0

â(m)
1− zb

1− ξmz
.

To solve for P (ξ−n), we note that

lim
z→ξ−n

1− zb

1− ξmz
= 0 if m− n 6≡ 0 mod b,

and

lim
z→ξ−n

1− zb

1− ξmz
= lim
z→ξ−n

bzb−1

ξm
= b ξn−m = b if m− n ≡ 0 mod b.

Thus P (ξ−n) = b â(n) and so

â(n) =
1
b
P (ξ−n) =

1
b

b−1∑
k=0

a(k) ξ−nk.

We have just proved the main result of finite Fourier series, using only ele-
mentary properties of rational functions:

Theorem 7.2 (Finite Fourier series expansion and Fourier inver-
sion). Let a(n) be any periodic function on Z, with period b. Then we have
the following finite Fourier series expansion:

a(n) =
b−1∑
k=0

â(k) ξnk,

where the Fourier coefficients are

â(n) =
1
b

b−1∑
k=0

a(k) ξ−nk, (7.2)

with ξ = e2πi/b. ut

The coefficients â(m) are known as the Fourier coefficients of the func-
tion a(n), and if â(m) 6= 0 we sometimes say that the function has fre-
quency m. The finite Fourier series of a periodic function provides us with
surprising power and insight into its structure. We are able to analyze the func-
tion using its frequencies (only finitely many), and this window into the fre-
quency domain becomes indispensable for computations and simplifications.

We note that the Fourier coefficients â(n) and the original sequence ele-
ments a(n) are related by a linear transformation given by the matrix
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L =
(
ξ(i−1)(j−1)

)
, (7.3)

where 1 ≤ i, j ≤ b, as is evident from (7.2) in the proof above. We further note
that the second half of the proof, namely solving for the Fourier coefficients
â(n), is just tantamount to inverting this matrix L.

One of the main building blocks of our lattice-point enumeration formulas
in polytopes is the sawtooth function, defined by

((x)) :=

{
{x} − 1

2 if x /∈ Z,
0 if x ∈ Z.

(7.4)

(As a reminder, {x} = x− bxc is the fractional part of x.) The graph of this
function is displayed in Figure 7.1. We have seen a closely related function
before, in Chapter 1, in our study of the coin-exchange problem. Equation
(1.8) gave us the finite Fourier series for essentially this function from the
discrete-geometry perspective of the coin-exchange problem; however, we now
compute the finite Fourier series for this periodic function directly, pretending
that we do not know about its other life as a counting function.

x

y

Fig. 7.1. The sawtooth function y = ((x)).

Lemma 7.3. The finite Fourier series for the discrete sawtooth function((
a
b

))
, a periodic function of a ∈ Z with period b, is given by

((a
b

))
=

1
2b

b−1∑
k=1

1 + ξk

1− ξk
ξak =

i

2b

b−1∑
k=1

cot
πk

b
ξak.

Here the second equality follows from 1+e2πix

1−e2πix = i cot(πx), by the definition
of the cotangent.

Proof. Using Theorem 7.2, we know that our periodic function has a finite
Fourier series

((
a
b

))
=
∑b−1
k=0 â(k) ξak, where
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â(k) =
1
b

b−1∑
m=0

((m
b

))
ξ−mk.

We first compute â(0) = 1
b

∑b−1
m=0

((
m
b

))
= 0, by Exercise 7.14. For k 6= 0, we

have

â(k) =
1
b

b−1∑
m=1

(
m

b
− 1

2

)
ξ−mk =

1
b2

b−1∑
m=1

mξ−mk +
1
2b

=
1
b

(
ξk

1− ξk
+

1
2

)
=

1
2b

1 + ξk

1− ξk
,

where we used Exercise 7.5 in the penultimate equality above. ut

We define the Dedekind sum by

s(a, b) =
b−1∑
k=0

((
ka

b

))((
k

b

))
,

for any two relatively prime integers a and b > 0. Note that the Dedekind
sum is a periodic function of the variable a, with period b, by the periodicity
of the sawtooth function. That is,

s(a+ jb, b) = s(a, b) for all j ∈ Z . (7.5)

Using the finite Fourier series for the sawtooth function, we can now easily
reformulate the Dedekind sums as a finite sum over the bth roots of unity or
cotangents:

Lemma 7.4.

s(a, b) =
1
4b

b−1∑
µ=1

1 + ξµ

1− ξµ
1 + ξ−µa

1− ξ−µa
=

1
4b

b−1∑
µ=1

cot
πµ

b
cot

πµa

b
.

Proof.

s(a, b) =
b−1∑
k=0

((
ka

b

))((
k

b

))

=
1

4b2

b−1∑
k=0

((
b−1∑
µ=1

1 + ξµ

1− ξµ
ξµka

)(
b−1∑
ν=1

1 + ξν

1− ξν
ξνk

))

=
1

4b2

b−1∑
µ=1

b−1∑
ν=1

1 + ξµ

1− ξµ
1 + ξν

1− ξν

(
b−1∑
k=0

ξk(ν+µa)

)
.

We note that the last sum
∑b−1
k=0 ξ

k(ν+µa) vanishes, unless ν ≡ −µa mod b
(Exercise 7.6), in which case the sum equals b, and we obtain
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s(a, b) =
1
4b

b−1∑
µ=1

1 + ξµ

1− ξµ
1 + ξ−µa

1− ξ−µa
.

Rewriting the right-hand side in terms of cotangents gives

s(a, b) =
i2

4b

b−1∑
µ=1

cot
πµ

b
cot
−πµa
b

=
1
4b

b−1∑
µ=1

cot
πµ

b
cot

πµa

b
,

because the cotangent is an odd function. ut

7.3 The Finite Fourier Transform and Its Properties

Given a periodic function f on Z, we have seen that f possesses a finite
Fourier series, with the finite collection of Fourier coefficients that we called
f̂(0), f̂(1), . . . , f̂(b − 1). We now regard f as a function on the finite set
G = {0, 1, 2, . . . , b− 1}, and let VG be the vector space of all complex-valued
functions on G. Equivalently, VG is the vector space of all complex-valued,
periodic functions on Z with period b.

We define the Fourier transform of f , denoted by F(f), to be the peri-
odic function on Z defined by the sequence of uniquely determined values

f̂(0), f̂(1), . . . , f̂(b− 1) .

Thus
F(f)(m) = f̂(m) .

Theorem 7.2 above gave us these coefficients as a linear combination of the
values f(k), with k = 0, 1, 2, . . . , b − 1. Thus F(f) is a linear transformation
of the function f , thought of as a vector in VG. In other words, we’ve shown
that F(f) is a one-to-one and onto linear transformation of VG.

The vector space VG is a vector space of dimension b; indeed, an explicit
basis can easily be given for VG using the “delta functions” (see Exercise 7.7)
defined by

δm(x) :=

{
1 if x = m+ kb, for some integer k,
0 otherwise.

In other words, δm(x) is the periodic function on Z that picks out the arith-
metic progression {m+ kb : k ∈ Z}.

But there is another natural basis for VG. For any fixed integer a the roots
of unity {ea(x) := e2πiax/b : x ∈ Z} can be thought of as a single function
ea(x) ∈ VG because of its periodicity on Z. As we saw in Theorem 7.2, the
functions {e1(x), . . . , eb(x)} give a basis for the vector space of functions VG.
A natural question now arises: how are the two bases related to each other?
An initial observation is
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δ̂a(n) =
1
b
e−2πian/b,

which simply follows from the computation

δ̂a(n) =
1
b

b−1∑
k=0

δa(k) ξ−kn =
1
b
ξ−an =

1
b
e−2πian/b.

So to get from the first basis to the second basis, we need precisely the finite
Fourier transform!

It is extremely useful to define the following inner product on this vector
space:

〈f, g〉 =
b−1∑
k=0

f(k) g(k) , (7.6)

for any two functions f, g ∈ VG. Here the bar denotes complex conjugation.
The following elementary properties show that 〈f, g〉 is an inner product (see
Exercise 7.8):

1. 〈f, f〉 ≥ 0, with equality if and only if f = 0, the zero function.
2. 〈f, g〉 = 〈g, f〉.

Equipped with this inner product, VG can now be regarded as a metric
space. We can now measure distances between any two functions, and in
particular between any two basis elements ea(x) := e2πiax/b and ec(x) :=
e2πicx/b. Any positive definite inner product gives rise to the distance function
d(f, g) = 〈f − g, f − g〉.

Lemma 7.5 (Orthogonality relations).

1
b
〈ea, ec〉 = δa(c) =

{
1 if b | (a− c),
0 otherwise.

Proof. We compute the inner product

〈ea, ec〉 =
b−1∑
m=0

ea(m) ec(m) =
b−1∑
m=0

e2πi(a−c)m/b.

If b | (a− c), then each term equals 1 in the latter sum, and hence the sum
equals b. This verifies the first case of the lemma.

If b - (a− c), then ea−c(m) = e2πim(a−c)/b is a nontrivial root of unity, and
we have the finite geometric series

b−1∑
m=0

e
2πi(a−c)m

b =
eb

2πi(a−c)
b − 1

e
2πi(a−c)

b − 1
= 0 ,

verifying the second case of the lemma. ut
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Example 7.6. We recall the sawtooth function again, since it is one of the
building blocks of lattice point enumeration, and compute its Fourier trans-
form. Namely, we define

B(k) :=
((

k

b

))
=

{{
k
b

}
− 1

2 if k
b /∈ Z,

0 if k
b ∈ Z,

a periodic function on the integers with period b. What is its finite Fourier
transform? We have already seen the answer, in the course of the proof of
Lemma 7.3:

B̂(n) =
1
2b

1 + ξn

1− ξn
=

i

2b
cot

πn

b

for n 6= 0, and B̂(0) = 0. As always, ξ = e2πi/b. ut
In the next section we delve more deeply into the behavior of this inner

product, where the Parseval identity is proved.

7.4 The Parseval Identity

A nontrivial property of the inner product defined above is the following iden-
tity, linking the “norm of a function” to the “norm of its Fourier transform.” It
is known as the Parseval identity, and also goes by the name of the Plancherel
theorem.

Theorem 7.7 (Parseval identity). For all f ∈ VG,

〈f, f〉 = b 〈f̂ , f̂〉 .

Proof. Using the definition em(x) = ξmx and the relation

f̂(x) =
1
b

b−1∑
m=0

f(m) em(x)

from Theorem 7.2, we have

〈f̂ , f̂〉 =

〈
1
b

b−1∑
m=0

f(m) em ,
1
b

b−1∑
n=0

f(n) en

〉

=
1
b2

b−1∑
k=0

b−1∑
m=0

f(m) em(k)
b−1∑
n=0

f(n) en(k)

=
1
b2

b−1∑
m=0

b−1∑
n=0

f(m) f(n) 〈em, en〉

=
1
b

b−1∑
m=0

b−1∑
n=0

f(m) f(n) δm(n)

=
1
b
〈f, f〉 ,
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where the essential step in the proof was using the orthogonality relations
(Lemma 7.5) in the fourth equality above. ut

A basically identical proof yields the following stronger result, showing that
the “distance between any two functions” is essentially equal to the “distance
between their Fourier transforms.”

Theorem 7.8. For all f, g ∈ VG, we have

〈f, g〉 = b 〈f̂ , ĝ〉 . ut

Example 7.9. A nice application of the generalized Parseval identity above
now gives us Lemma 7.4 very quickly, the reformulation of the Dedekind sum
as a sum over roots of unity. Namely, we first fix an integer a relatively prime
to b and define f(k) =

((
k
b

))
, and g(k) =

((
ka
b

))
. Then, using Example 7.6, we

have f̂(n) = i
2b cot πnb . To find the Fourier transform of g we need an extra

twist. Since ((
ka

b

))
=

i

2b

b−1∑
m=1

cot
πm

b
ξmka,

we can multiply each index m by a−1, the multiplicative inverse of a modulo
b (recall that we require a and b to be relatively prime for the reformulation
of the Dedekind sum). Since a−1 is relatively prime to b, this multiplication
just permutes m = 1, 2, . . . , b − 1 modulo b, but the sum stays invariant (see
Exercise 1.9):

b−1∑
m=1

cot
πm

b
ξmka =

b−1∑
m=1

cot
πma−1

b
ξma

−1ka =
b−1∑
m=1

cot
πma−1

b
ξmk,

that is,

ĝ(n) =
i

2b
cot

πna−1

b
.

Hence Theorem 7.8 immediately gives us the reformulation of the Dedekind
sum:

s(a, b) :=
b−1∑
k=0

((
k

b

))((
ka

b

))

= b

b−1∑
m=1

(
i

2b
cot

πm

b

)(
i

2b
cot

πma−1

b

)

=
1
4b

b−1∑
m=1

cot
πm

b
cot

πma−1

b

=
1
4b

b−1∑
m=1

cot
πma

b
cot

πm

b
.

For the last equality, we again used the trick of replacing m by ma. ut
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7.5 The Convolution of Finite Fourier Series

Another basic tool in finite Fourier analysis is the convolution of two finite
Fourier series. Namely, suppose f and g are periodic functions with period b.
We define the convolution of f and g by

(f ∗ g)(t) =
b−1∑
m=0

f(t−m)g(m) .

Indeed, it is this convolution tool (the proof of the convolution theorem be-
low is almost trivial!) that is responsible for the fastest known algorithm for
multiplying two polynomials of degree b in O(b log(b)) steps (see the Notes at
the end of this chapter).

Theorem 7.10 (Convolution theorem for finite Fourier series). Let
f(t) = 1

b

∑b−1
k=0 ak ξ

kt and g(t) = 1
b

∑b−1
k=0 ck ξ

kt, where ξ = e2πi/b. Then their
convolution satisfies

(f ∗ g)(t) =
1
b

b−1∑
k=0

akck ξ
kt.

Proof. The proof is straightforward: we just compute the left-hand side, and
obtain

b−1∑
m=0

f(t−m)g(m) =
1
b2

b−1∑
m=0

(
b−1∑
k=0

ak ξ
k(t−m)

)(
b−1∑
l=0

cl ξ
lm

)

=
1
b2

b−1∑
k=0

b−1∑
l=0

akcl

(
b−1∑
m=0

ξkt+(l−k)m

)

=
1
b

b−1∑
k=0

akck ξ
kt,

because the sum
∑b−1
m=0 ξ

(l−k)m vanishes, unless l = k (see Exercise 7.6). In
the case that l = k, we have

∑b−1
m=0 ξ

(l−k)m = b. ut

It is an easy exercise (Exercise 7.22) to show that this convolution theorem
is equivalent to the following statement:

F(f ∗ g) = bF(f)F(g) .

Note that the proof of Theorem 7.10 is essentially identical with the proof of
Lemma 7.4 above; we could have proved the lemma, in fact, by applying the
convolution theorem. We now show how Theorem 7.10 can be used to derive
identities on trigonometric functions.
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Example 7.11. We claim that

b−1∑
k=1

cot2

(
πk

b

)
=

(b− 1)(b− 2)
3

.

The sum suggests the use of the convolution theorem, with a function whose
Fourier coefficients are ak = ck = cot πkb . But we already know such a function!
It is just the sawtooth function 2b

i

((
m
b

))
. Therefore

− 1
4b

b−1∑
k=1

cot2

(
πk

b

)
ξkt =

b−1∑
m=1

((
t−m
b

))((m
b

))
,

where the equality follows from Theorem 7.10. On setting t = 0, we obtain

b−1∑
m=1

((
−m
b

))((m
b

))
= −

b−1∑
m=1

((m
b

))((m
b

))
= − 1

b2

b−1∑
m=1

m2 +
1
b

b−1∑
m=1

m− 1
4

(b− 1)

= − (b− 1)(b− 2)
12b

,

as desired. We used the identity
((−m

b

))
= −

((
m
b

))
in the first equality above,

and some algebra was used in the last equality. Notice, moreover, that the
convolution theorem gave us more than we asked for, namely an identity for
every value of t. ut

Notes

1. Finite Fourier analysis offers a wealth of applications and is, for example,
one of the main tools in quantum information theory. For the reader inter-
ested in going further than the humble beginnings outlined in this chapter,
we heartily recommend Audrey Terras’s monograph [180].

2. The Dedekind sum is our main motivation for studying finite Fourier series,
and in fact, Chapter 8 is devoted to a detailed investigation of these sums, in
which the Fourier–Dedekind sums of Chapter 1 also finally reappear.

3. The reader may consult [116, p. 501] for a proof that two polynomials of
degree N can be multiplied in O(N logN) steps. The proof of this fact runs
along the following conceptual lines. First, let the two given polynomials of
degree N be f(x) =

∑N
n=0 a(n)xn and g(x) =

∑N
n=0 b(n)xn. Then we know

that f(ξ) and g(ξ) are two finite Fourier series, and we abbreviate them by
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f and g, respectively. We now note that fg = F(F−1(f) ∗ F−1(g)). If we
can compute the finite Fourier transform (and its inverse) quickly, then this
argument shows that we can multiply polynomials quickly. It is a fact of life
that we can compute the Fourier transform of a periodic function of period
N in O(N logN) steps, by an algorithm known as the fast Fourier transform
(again, see [116] for a complete description).

4. The continuous Fourier transform, defined by
∫∞
−∞ f(t)e−2πitxdt, can be

related to the finite Fourier transform in the following way. We approximate
the continuous integral by discretizing a large interval [0, a]. Precisely, we let
∆ := a

b , and we let tk := k∆ = ka
b . Then∫ a

0

f(t)e−2πitxdt ≈
b∑

k=1

f(tk)e−2πitkxtk ,

a finite Fourier series for the function f(abx) as a function of x ∈ Z. Hence
finite Fourier series find an application to continuous Fourier analysis as an
approximation tool.

Exercises

Throughout the exercises, we fix an integer b > 1 and let ξ = e2πi/b.

7.1. Show that 1− xb =
∏b
k=1(1− ξkx).

7.2. ♣ Show that
∏b−1
k=1(1− ξk) = b.

7.3. Consider the matrix that came up in the proof of Theorem 7.2, namely
L = (aij), with aij := ξ(i−1)(j−1) and with 1 ≤ i, j ≤ b. Show that the matrix
1√
b
L is a unitary matrix (recall that a matrix U is unitary if U∗U = I, where

U∗ is the conjugate transpose of U). Thus, this exercise shows that the Fourier
transform of a periodic function is always given by a unitary transformation.

7.4. Show that
∣∣∣det

(
1√
b
L
)∣∣∣ = 1, where |z| denotes the norm of the complex

number z. (It turns out that det(L) can sometimes be a complex number, but
we will not use this fact here.)

7.5. ♣ For any integer a relatively prime to b, show that

1
b

b−1∑
k=1

k ξ−ak =
ξa

1− ξa
.

7.6. ♣ Let n be an integer. Show that the sum
∑b−1
k=0 ξ

kn vanishes, unless
n ≡ 0 (mod b), in which case it is equal to b.
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7.7. ♣ For an integer m, define the delta function δm(x) by

δm(x) =

{
1 if x = m+ ab, for some integer a,
0 otherwise.

The b functions δ1(x), . . . , δb(x) are clearly in the vector space VG, since they
are periodic on Z with period b. Show that they form a basis for VG.

7.8. ♣ Prove that for all f, g ∈ VG:

(a) 〈f, f〉 ≥ 0, with equality if and only if f = 0, the zero function.
(b) 〈f, g〉 = 〈g, f〉.

7.9. Show that
∑b−1
k=1

1
1−ξk = b−1

2 .

7.10. Show that 〈δa, δc〉 = δa(c).

7.11. Prove that (f ∗ δa)(x) = f(x− a).

7.12. Prove that δa ∗ δc = δ(a+c) mod b .

7.13. Let g(x) = x− a. Prove that f̂ ◦ g = f̂(x) e
2πiax
b .

7.14. ♣ For any real number x, prove that ((x)) =
∑b−1
k=0

((
x+k
b

))
.

7.15. If x is not an integer, show that
∑b−1
n=0 cot

(
π n+x

b

)
= b cot (πx).

7.16. For any integer a relatively prime to b, show that∑
ξ

ξa+1 − 1
(ξa − 1)(ξ − 1)

= 0 ,

where the sum is taken over all bth roots of unity ξ except ξ = 1.

7.17. We call a root of unity e2πia/b a primitive bth root of unity if a is
relatively prime to b. Let Φb(x) denote the polynomial with leading coefficient
1 and of degree φ(b)1 whose roots are the φ(b) distinct primitive bth roots of
unity. This polynomial is known as the cyclotomic polynomial of order b. Show
that ∏

d|b

Φd(x) = xb − 1 ,

where the product is taken over all positive divisors d of b.

1 φ(b) := # {k ∈ [1, b− 1] : gcd(k, b) = 1} is the Euler φ-function.
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7.18. We define the Möbius µ-function for positive integers n by

µ(n) =


1 if n = 1,
0 if n is divisible by a square,
(−1)k if n is square-free and has k prime divisors.

Deduce from the previous exercise that

Φb(x) =
∏
d|b

(
xd − 1

)µ(b/d)
.

7.19. Prove that for any positive integer b,∑
1≤a≤b, gcd(a,b)=1

e2πia/b = µ(b) ,

the Möbius µ-function.

7.20. Show that for any positive integer k, s(1, k) = − 1
4 + 1

6k + k
12 .

7.21. Show that
∑b−1
k=1 tan2

(
πk
b

)
= b(b− 1).

7.22. ♣ Show that Theorem 7.10 is equivalent to the following statement:

F(f ∗ g) = bF(f)F(g) .

7.23. Consider the trace of the linear transformation L =
(
ξ(i−1)(j−1)

)
, de-

fined in (7.3). The trace of L is G(b) :=
∑b−1
m=0 ξ

m2
, known as a Gauß sum.

Show that |G(b)| =
√
b if b is an odd prime.
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Dedekind Sums, the Building Blocks of
Lattice-point Enumeration

If things are nice there is probably a good reason why they are nice: and if you don’t
know at least one reason for this good fortune, then you still have work to do.

Richard Askey

We’ve encountered Dedekind sums in our study of finite Fourier analysis and
we became intimately acquainted with their siblings in our study of the coin-
exchange problem in Chapter 1. They have one shortcoming, however (which
we’ll remove): the definition of s(a, b) requires us to sum over b terms, which
is rather slow when b = 2100, for example. Luckily, there is a magical reci-
procity law for the Dedekind sum s(a, b) that allows us to compute it in
roughly log2(b) = 100 steps. This is the kind of magic that saves the day
when we try to enumerate lattice points in integral polytopes of dimensions
d ≤ 4. There is an ongoing effort to extend these ideas to higher dimensions,
but there is much room for improvement. In this chapter we focus on the
computational-complexity issues that arise when we try to compute Dedekind
sums explicitely.

8.1 Fourier–Dedekind Sums and the Coin-Exchange
Problem Revisited

Recall from Chapter 1 the Fourier–Dedekind sum (defined in (1.13))

sn (a1, a2, . . . , ad; b) =
1
b

b−1∑
k=1

ξknb(
1− ξka1

b

)(
1− ξka2

b

)
· · ·
(

1− ξkadb

) ,
which appeared as a main player in our analysis of the Frobenius coin-
exchange problem. We can now recognize the Fourier–Dedekind sums as hon-
est finite Fourier series with period b. The Fourier–Dedekind sums unify many
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variations of the Dedekind sum that have appeared in the literature, and form
the building blocks of Ehrhart quasipolynomials. For example, we showed in
Chapter 1 that sn (a1, a2, . . . , ad; b) appears in the Ehrhart quasipolynomial
of the d-simplex{

(x1, . . . , xd+1) ∈ Rd+1
≥0 : a1x1 + · · ·+ adxd + bxd+1 = 1

}
.

Example 8.1. We first notice that when n = 0 and d = 2, the Fourier–
Dedekind sum reduces to a classical Dedekind sum (which—finally—explains
the name): for relatively prime positive integers a and b,

s0(a, 1; b) =
1
b

b−1∑
k=1

1(
1− ξkab

) (
1− ξkb

)
=

1
b

b−1∑
k=1

(
1

1− ξkab
− 1

2

)(
1

1− ξkb
− 1

2

)

+
1
2b

b−1∑
k=1

1
1− ξkb

+
1
2b

b−1∑
k=1

1
1− ξkab

− 1
b

b−1∑
k=1

1
4

=
1
4b

b−1∑
k=1

(
1 + ξkab
1− ξkab

)(
1 + ξkb
1− ξkb

)
+

1
b

b−1∑
k=1

1
1− ξkb

− b− 1
4b

.

In the last step we used the fact that multiplying the index k by a does not
change the middle sum. This middle sum can be further simplified by recalling
(1.8):

1
b

b−1∑
k=1

1(
1− ξkb

)
ξknb

= −
{n
b

}
+

1
2
− 1

2b
,

whence

s0(a, 1; b) =
1
4b

b−1∑
k=1

(
1 + ξkab
1− ξkab

)(
1 + ξkb
1− ξkb

)
+

1
2
− 1

2b
− b− 1

4b

= − 1
4b

b−1∑
k=1

cot
(
πka

b

)
cot
(
πk

b

)
+
b− 1

4b
(8.1)

= −s(a, b) +
b− 1

4b
. ut

Example 8.2. The next special evaluation of a Fourier–Dedekind sum is very
similar to the computation above, so that we leave it to the reader to prove
(Exercise 8.5) that for a1, a2 relatively prime to b,

s0 (a1, a2; b) = −s
(
a1a
−1
2 , b

)
+
b− 1

4b
, (8.2)

where a−1
2 a2 ≡ 1 mod b. ut
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Returning to the general Fourier–Dedekind sum, we now prove the first
of a series of reciprocity laws: identities for certain sums of Fourier–Dedekind
sums. We first recall how these sums came up in Chapter 1, namely, from the
partial fraction expansion of the function

f(z) =
1

(1− za1) · · · (1− zad) zn

=
A1

z
+
A2

z2
+ · · ·+ An

zn
+

B1

z − 1
+

B2

(z − 1)2
+ · · ·+ Bd

(z − 1)d
(8.3)

+
a1−1∑
k=1

C1k

z − ξka1

+
a2−1∑
k=1

C2k

z − ξka2

+ · · ·+
ad−1∑
k=1

Cdk
z − ξkad

.

(Here we assume that a1, a2, . . . , ad are pairwise relatively prime.) Theo-
rem 1.7 states that with the help of the partial fraction coefficients B1, . . . , Bd
and Fourier–Dedekind sums, we can compute the restricted partition function
for A = {a1, a2, . . . , ad}:

pA(n) = −B1 +B2 − · · ·+ (−1)dBd + s−n (a2, a3, . . . , ad; a1)
+ s−n (a1, a3, a4, . . . , ad; a2) + · · ·+ s−n (a1, a2, . . . , ad−1; ad) .

We note that B1, B2, . . . , Bd are polynomials in n (Exercise 8.6), whence we
call

polyA(n) := −B1 +B2 − · · ·+ (−1)dBd

the polynomial part of the restricted partition function pA(n).

Example 8.3. The first few expressions for poly{a1,...,ad}(n) are

poly{a1}(n) =
1
a1
,

poly{a1,a2}(n) =
n

a1a2
+

1
2

(
1
a1

+
1
a2

)
,

poly{a1,a2,a3}(n) =
n2

2a1a2a3
+
n

2

(
1

a1a2
+

1
a1a3

+
1

a2a3

)
(8.4)

+
1
12

(
3
a1

+
3
a2

+
3
a3

+
a1

a2a3
+

a2

a1a3
+

a3

a1a2

)
,
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poly{a1,a2,a3,a4}(n) =
n3

6a1a2a3a4

+
n2

4

(
1

a1a2a3
+

1
a1a2a4

+
1

a1a3a4
+

1
a2a3a4

)
+
n

4

(
1

a1a2
+

1
a1a3

+
1

a1a4
+

1
a2a3

+
1

a2a4
+

1
a3a4

)
+

n

12

(
a1

a2a3a4
+

a2

a1a3a4
+

a3

a1a2a4
+

a4

a1a2a3

)
+

1
24

(
a1

a2a3
+

a1

a2a4
+

a1

a3a4
+

a2

a1a3
+

a2

a1a4
+

a2

a3a4

+
a3

a1a2
+

a3

a1a4
+

a3

a2a4
+

a4

a1a2
+

a4

a1a3
+

a4

a2a3

)
+

1
8

(
1
a1

+
1
a2

+
1
a3

+
1
a4

)
. ut

We are about to combine the Ehrhart results of Chapter 3 with the partial
fraction expansion of Chapter 1 that gave rise to the Fourier–Dedekind sums.

Theorem 8.4 (Zagier reciprocity). For any pairwise relatively prime pos-
itive integers a1, a2, . . . , ad,

s0 (a2, a3, . . . , ad; a1) + s0 (a1, a3, a4, . . . , ad; a2) + · · ·
+ s0 (a1, a2, . . . , ad−1; ad)

= 1− poly{a1,a2,...,ad}(0) .

At first sight, this reciprocity law should come as a surprise. The Fourier–
Dedekind sums can be complicated, long sums, yet when combined in this
fashion, they add up to a trivial rational function in a1, a2, . . . , ad.

Proof. We compute the constant term of the quasipolynomial pA(n):

pA(0) = polyA(0) + s0 (a2, a3, . . . , ad; a1)
+ s0 (a1, a3, a4, . . . , ad; a2) + · · ·+ s0 (a1, a2, . . . , ad−1; ad) .

On the other hand, Exercise 3.27 (the extension of Corollary 3.15 to Ehrhart
quasipolynomials) states that pA(0) = 1, whence

1 = polyA(0) + s0 (a2, a3, . . . , ad; a1)
+ s0 (a1, a3, a4, . . . , ad; a2) + · · ·+ s0 (a1, a2, . . . , ad−1; ad) . ut
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8.2 The Dedekind Sum and Its Reciprocity and
Computational Complexity

We derived in (8.1) the classical Dedekind sum s(a, b) as a special evaluation
of the Fourier–Dedekind sum. Naturally, Theorem 8.4 takes on a particular
form when we specialize this reciprocity law to the classical Dedekind sum.

Corollary 8.5 (Dedekind’s reciprocity law). For any relatively prime
positive integers a and b,

s(a, b) + s(b, a) =
1
12

(
a

b
+
b

a
+

1
ab

)
− 1

4
.

Proof. A special case of Theorem 8.4 is

s0(a, 1; b) + s0(b, a; 1) + s0(1, b; a) = 1− poly{a,1,b}(0)

= 1− 1
12

(
3
a

+ 3 +
3
b

+
a

b
+

1
ab

+
b

a

)
=

3
4
− 1

12

(
a

b
+
b

a
+

1
ab

)
− 1

4a
− 1

4b
.

Now we use the fact that s0(b, a; 1) = 0 and the identity (8.1):

s0(a, 1; b) = −s(a, b) +
1
4
− 1

4b
. ut

Dedekind’s reciprocity law allows us to compute the Dedekind sum s(a, b)
as quickly as the gcd algorithm for a and b. Let’s get a better feeling for
the way we can compute the Dedekind sum by working out an example. We
remind the reader of another crucial property of the Dedekind sums that we
already pointed out in (7.5): s(a, b) remains invariant when we replace a by
its residue modulo b, that is,

s(a, b) = s(a mod b, b) . (8.5)

Example 8.6. Let a = 100 and b = 147. Now we alternately use Corollary 8.5
and the reduction identity (8.5):
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s(100, 147) =
1
12

(
100
147

+
147
100

+
1

14700

)
− 1

4
− s(147, 100)

= − 1249
17640

− s(47, 100)

= − 1249
17640

−
(

1
12

(
47
100

+
100
47

+
1

4700

)
− 1

4
− s(100, 47)

)
= − 773

20727
+ s(6, 47)

= − 773
20727

+
1
12

(
6
47

+
47
6

+
1

282

)
− 1

4
− s(47, 6)

=
166
441
− s(5, 6)

=
166
441
−
(

1
12

(
5
6

+
6
5

+
1
30

)
− 1

4
− s(6, 5)

)
=

2003
4410

+ s(1, 5)

=
2003
4410

− 1
4

+
1
30

+
5
12

=
577
882

.

In the last step we used Exercise 7.20: s(1, k) = − 1
4 + 1

6k + k
12 . A priori,

s(100, 147) takes 147 steps to compute, whereas we were able to compute it
in nine steps using Dedekind’s reciprocity law and (8.5). ut

As a second corollary to Theorem 8.4, we mention the following three-
term reciprocity law for the special Fourier–Dedekind sum s0(a, b; c). This
reciprocity law could be restated in terms of the classical Dedekind sum via
the identity (8.2).

Corollary 8.7. For pairwise relatively prime positive integers a, b, and c,

s0(a, b; c) + s0(c, a; b) + s0(b, c; a) = 1− 1
12

(
3
a

+
3
b

+
3
c

+
a

bc
+

b

ca
+

c

ab

)
.

ut

8.3 Rademacher Reciprocity for the Fourier–Dedekind
Sum

The next reciprocity law will be again for the general Fourier–Dedekind sums.
It extends Theorem 8.4 beyond n = 0.

Theorem 8.8 (Rademacher reciprocity). Let a1, a2, . . . , ad be pairwise
relatively prime positive integers. Then for n = 1, 2, . . . , (a1 + · · ·+ ad − 1),
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sn (a2, a3, . . . , ad; a1) + sn (a1, a3, a4, . . . , ad; a2) + · · ·
+ sn (a1, a2, . . . , ad−1; ad) = −poly{a1,a2,...,ad}(−n) .

Proof. We recall the definition

p◦A(n) = #
{

(m1, . . . ,md) ∈ Zd : all mj > 0, m1a1 + · · ·+mdad = n
}

of Exercise 1.31, that is, p◦A(n) counts the number of partitions of n using
only the elements of A as parts, where each part is used at least once. This
counting function is, naturally, connected to pA through Ehrhart–Macdonald
reciprocity (Theorem 4.1):

p◦A(n) = (−1)d−1pA(−n) ,

that is,

(−1)d−1p◦A(n) = polyA(−n) + sn (a2, a3, . . . , ad; a1)
+ sn (a1, a3, a4, . . . , ad; a2) + · · ·+ sn (a1, a2, . . . , ad−1; ad) .

On the other hand, by its very definition,

p◦A(n) = 0 for n = 1, 2, . . . , (a1 + · · ·+ ad − 1) ,

so that for those n,

0 = polyA(−n) + sn (a2, a3, . . . , ad; a1)
+ sn (a1, a3, a4, . . . , ad; a2) + · · ·+ sn (a1, a2, . . . , ad−1; ad) . ut

Just as Zagier reciprocity takes on a special form for the classical Dedekind
sum, Rademacher reciprocity specializes for d = 2 to a reciprocity identity for
the Dedekind–Rademacher sum

rn(a, b) :=
b−1∑
k=0

((
ka+ n

b

))((
k

b

))
.

The classical Dedekind sum is, naturally, the specialization r0(a, b) = s(a, b).
To be able to state the reciprocity law for the Dedekind–Rademacher sums,
we define the function

χa(n) :=

{
1 if a|n,
0 otherwise,

which will come in handy as a book keeping device.

Corollary 8.9 (Reciprocity law for Dedekind–Rademacher sums).
Let a and b be relatively prime positive integers. Then for n = 1, 2, . . . , a+ b,
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rn(a, b) + rn(b, a) =
n2

2ab
− n

2

(
1
ab

+
1
a

+
1
b

)
+

1
12

(
a

b
+
b

a
+

1
ab

)
+

1
2

(((
a−1n

b

))
+
((

b−1n

a

))
+
((n
a

))
+
((n
b

)))
+

1
4

(1 + χa(n) + χb(n)) ,

where a−1a ≡ 1 mod b and b−1b ≡ 1 mod a.

This identity follows almost instantly once we are able to express the
Dedekind–Rademacher sum in terms of Fourier–Dedekind sums.

Lemma 8.10. Suppose a and b are relatively prime positive integers and n ∈
Z. Then

rn(a, b) = −sn(a, 1; b) +
1
2

((n
b

))
+

1
2

((
na−1

b

))
− 1

4b
+

1
4
χb(n) ,

where a−1a ≡ 1 mod b.

Proof. We start by rewriting the finite Fourier series (1.8) for the sawtooth
function ((x)):

1
b

b−1∑
k=1

ξknb
1− ξkb

= −
{
−n
b

}
+

1
2
− 1

2b

= −
((
−n
b

))
+

1
2
χb(n)− 1

2b

=
((n
b

))
+

1
2
χb(n)− 1

2b
.

Hence we also have

1
b

b−1∑
k=1

ξknb
1− ξkab

=
1
b

b−1∑
k=1

ξka
−1n

b

1− ξkb

=
((

a−1n

b

))
+

1
2
χb
(
a−1n

)
− 1

2b

=
((

a−1n

b

))
+

1
2
χb (n)− 1

2b
.

Now we use the convolution theorem for finite Fourier series (Theorem 7.10)
for the functions

f(n) :=
1
b

b−1∑
k=1

ξknb
1− ξkb

and g(n) :=
1
b

b−1∑
k=1

ξknb
1− ξkab

.

It gives
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1
b

b−1∑
k=1

ξknb(
1− ξkb

) (
1− ξkab

) =
b−1∑
m=0

f(n−m) g(m) =

b−1∑
m=0

(((
n−m
b

))
+

1
2
χb(n−m)− 1

2b

)(((
a−1m

b

))
+

1
2
χb (m)− 1

2b

)
.

We invite the reader to check (Exercise 8.9) that the sum on the right-hand
side simplifies to

−
b−1∑
m=0

((
am+ n

b

))((m
b

))
+

1
2

((
a−1n

b

))
+

1
2

((n
b

))
− 1

4b
+

1
4
χb(n) ,

whence

sn(a, 1; b) = −rn(a, b) +
1
2

((
a−1n

b

))
+

1
2

((n
b

))
− 1

4b
+

1
4
χb(n) . ut

Proof of Corollary 8.9. We use the special case of Theorem 8.8

sn(a, 1; b) + sn(1, a; b) + sn(a, b; 1) = −poly{a,1,b}(−n)

= − n2

2ab
+
n

2

(
1
ab

+
1
a

+
1
b

)
− 1

12

(
3
a

+
3
b

+ 3 +
a

b
+
b

a
+

1
ab

)
,

which holds for n = 1, 2, . . . , a + b. Lemma 8.10 allows us to translate this
identity into one for Dedekind–Rademacher sums:

rn(a, b) + rn(b, a) =
n2

2ab
− n

2

(
1
ab

+
1
a

+
1
b

)
+

1
12

(
a

b
+
b

a
+

1
ab

)
+

1
2

(((
a−1n

b

))
+
((

b−1n

a

))
+
((n
a

))
+
((n
b

)))
+

1
4

(1 + χa(n) + χb(n)) . ut

The two-term reciprocity law allows us to compute the Dedekind–Rade-
macher sum as quickly as the gcd algorithm, just as obtained for the classical
Dedekind sum. This fact has an interesting consequence: In Theorem 2.10
and Exercise 2.34 we showed implicitly (see Exercise 8.10) that Dedekind–
Rademacher sums are the only nontrivial ingredients of the Ehrhart quasipoly-
nomials of rational polygons. Corollary 8.9 ensures that these Ehrhart quasi-
polynomials can be computed almost instantly.

8.4 The Mordell–Pommersheim Tetrahedron

In this section we return to Ehrhart polynomials and illustrate how Dedekind
sums appear naturally in generating-function computations. We will study
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the tetrahedron that historically first gave rise to the connection of Dedekind
sums and lattice-point enumeration in polytopes. It is given by

P =
{

(x, y, z) ∈ R3 : x, y, z ≥ 0,
x

a
+
y

b
+
z

c
≤ 1
}
, (8.6)

a tetrahedron with vertices (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c), where a, b, c
are positive integers. We insert the slack variable n and interpret

LP(t) = #
{

(k, l,m) ∈ Z3 : k, l,m ≥ 0,
k

a
+
l

b
+
m

c
≤ t
}

= #
{

(k, l,m, n) ∈ Z4 : k, l,m, n ≥ 0, bck + acl + abm+ n = abct
}

as the Taylor coefficient of zabct for the function∑
k≥0

zbck

∑
l≥0

zacl

∑
m≥0

zabm

∑
n≥0

zn


=

1
(1− zbc) (1− zac) (1− zab) (1− z)

.

As we have done numerous times before, we shift this coefficient to the con-
stant term:

LP(t) = const
(

1
(1− zbc) (1− zac) (1− zab) (1− z) zabct

)
.

To reduce the number of poles, it is convenient to change this function slightly;
the constant term of 1/

(
1− zbc

)
(1− zac)

(
1− zab

)
(1− z) is 1, so that

LP(t) = const
(

z−abct − 1
(1− zbc) (1− zac) (1− zab) (1− z)

)
+ 1 .

This trick becomes useful in the next step, namely expanding the function into
partial fractions. Strictly speaking, we cannot do that, since the numerator
is not a polynomial in z. However, we can think of this rational function as
a sum of two functions. The higher-order poles of both summands that we
will not include in our computation below cancel each other, so we can ignore
them at this stage. The only poles of

z−abct − 1
(1− zbc) (1− zac) (1− zab) (1− z)

(8.7)

are at the ath, bth, cth roots of unity and at 0. (As before, we don’t have
to bother with the coefficients of z = 0 of the partial fraction expansion.) To
make life momentarily easier (the general case is the subject of Exercise 8.12),
let’s assume that a, b, and c are pairwise relatively prime; then all the poles
besides 0 and 1 are simple. The computation of the coefficients for z = 1 is
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very similar to what we did with the restricted partition function in Chapter 1.
The coefficient in the partial fraction expansion of a nontrivial root of unity,
say ξka , is also computed practically as easily as in earlier examples: it is

− t

a (1− ξkbca ) (1− ξka)
(8.8)

(see Exercise 8.11). Summing this fraction over k = 1, 2, . . . , a − 1 gives rise
to the Fourier–Dedekind sum

− t
a

a−1∑
k=1

1
(1− ξkbca ) (1− ξka)

= −t s0 (bc, 1; a) .

Putting this coefficient and its siblings for the other roots of unity into the par-
tial fraction expansion and computing the constant term yields (Exercise 8.11)

LP(t) =
abc

6
t3 +

ab+ ac+ bc+ 1
4

t2

+
(
a+ b+ c

4
+

1
4

(
1
a

+
1
b

+
1
c

)
+

1
12

(
bc

a
+
ca

b
+
ab

c
+

1
abc

))
t

+ (s0 (bc, 1; a) + s0 (ca, 1; b) + s0 (ab, 1; c)) t
+ 1 .

We recognize instantly that the Fourier–Dedekind sums in this Ehrhart poly-
nomial are in fact classical Dedekind sums by (8.1), and so we arrive at the
following celebrated result.

Theorem 8.11. Let P be given by (8.6) with a, b, and c pairwise relatively
prime. Then

LP(t) =
abc

6
t3 +

ab+ ac+ bc+ 1
4

t2 +
(

3
4

+
a+ b+ c

4

+
1
12

(
bc

a
+
ca

b
+
ab

c
+

1
abc

)
− s (bc, a)− s (ca, b)− s (ab, c)

)
t+ 1 .

ut

We finish this chapter by giving the Ehrhart series of the Mordell–
Pommersheim tetrahedron P. It follows simply from the transformation for-
mulas (computing the Ehrhart numerator coefficients from the Ehrhart poly-
nomial coefficients) of Corollary 3.16 and Exercise 3.10, and hence the Ehrhart
series of P naturally contains Dedekind sums.

Corollary 8.12. Let P be given by (8.6) with a, b, and c pairwise relatively
prime. Then

EhrP(z) =
h3 z

3 + h2 z
2 + h1 z + 1

(1− z)4
,
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where

h3 =
abc

6
− ab+ ac+ bc+ a+ b+ c

4
− 1

2
+

1
12

(
bc

a
+
ca

b
+
ab

c
+

1
abc

)
− s (bc, a)− s (ca, b)− s (ab, c)

h2 =
2abc

3
+
a+ b+ c

2
+

3
2

+
1
6

(
bc

a
+
ca

b
+
ab

c
+

1
abc

)
− 2 (s (bc, a) + s (ca, b) + s (ab, c))

h1 =
abc

6
+
ab+ ac+ bc+ a+ b+ c

4
− 2 +

1
12

(
bc

a
+
ca

b
+
ab

c
+

1
abc

)
− s (bc, a)− s (ca, b)− s (ab, c) . ut

It is a curious fact that the above expressions for h1, h2, and h3 are non-
negative integers due to Corollary 3.11.

Notes

1. The classical Dedekind sums came to life in the 1880s when Richard
Dedekind (1831–1916)1 studied the transformation properties of the Dedekind
η-function [70]

η(z) := eπiz/12
∏
n≥1

(
1− e2πinz

)
,

a useful computational gadget in the land of modular forms in number theory.
Dedekind’s reciprocity law (Corollary 8.5) follows from one of the functional
transformation identities for η. Dedekind also proved that

12k s(h, k) ≡ k + 1− 2
(
h

k

)
(mod 8) ,

establishing a beautiful connection between the Dedekind sum and the Jacobi
symbol

(
h
k

)
(the reader may want to consult the lovely Carus monograph

entitled Dedekind Sums, by Emil Grosswald and Hans Rademacher, where the
above result is proved [151, p. 34]), and then used this identity to show that
the reciprocity law for the Dedekind sums (for which [151] contains several
different proofs) is equivalent to the reciprocity law for the Jacobi symbol.

2. The Dedekind sums and their generalizations appear in various contexts be-
sides analytic number theory and discrete geometry. Other mathematical areas
in which Dedekind sums show up include topology [101, 131, 190], algebraic
number theory [129, 166], and algebraic geometry [85]. They also have con-
nections to algorithmic complexity [114] and continued fractions [10, 99, 138].
1 For more information about Dedekind, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Dedekind.html.
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3. The reciprocity laws (Theorems 8.4 and 8.8) for the Fourier–Dedekind
sums were proved in [25]. Theorem 8.4 is equivalent to the reciprocity law for
Don Zagier’s higher-dimensional Dedekind sums [190]. Corollary 8.7 (stated
in terms of the classical Dedekind sum) is originally due to Hans Rademacher
[149]. Theorem 8.8 generalizes reciprocity laws by Rademacher [150] (essen-
tially Corollary 8.9) and Ira Gessel [87].

4. The Fourier–Dedekind sums form only one set of generalizations of the
classical Dedekind sums. A long, but by no means complete, list of other
generalizations is [5, 6, 21, 34, 35, 36, 56, 77, 78, 87, 92, 93, 113, 129, 131,
130, 150, 179, 190].

5. The connection of Dedekind sums and lattice-point problems, namely The-
orem 8.11 for t = 1, was first established by Louis Mordell in 1951 [136]. Some
42 years later, James Pommersheim established a proof of Theorem 8.11 as
part of a much more general machinery [146]. In fact, Pommersheim’s work
implies that the classical Dedekind sum is the only nontrivial ingredient one
needs for Ehrhart polynomials in dimensions three and four.

6. We touched the question of efficient computability of Ehrhart (quasi-)po-
lynomials in this chapter. Unfortunately, our current state of knowledge on
generalized Dedekind sums does not suffice to make any general statement.
However, Alexander Barvinok proved in 1994 [15] that in fixed dimension,
the rational generating function of the Ehrhart quasipolynomial of a ratio-
nal polytope can be efficiently computed. Barvinok’s proof did not employ
Dedekind sums but rather used a decomposition theorem of Brion, which is
the subject of Chapter 9.

Exercises

8.1. Show that s(a, b) = 0 if and only if a2 ≡ −1 mod b.

8.2. Prove that 6b s(a, b) ∈ Z. (Hint: Start with rewriting the Dedekind sum
in terms of the greatest-integer function.)

8.3. Let a and b be any two relatively prime positive integers. Show that the
reciprocity law for the Dedekind sums implies that for b ≡ r mod a,

12ab s(a, b) = −12ab s(r, a) + a2 + b2 − 3ab+ 1 .

Deduce the following identities:

(a) For b ≡ 1 mod a,

12ab s(a, b) = −a2b+ b2 + a2 − 2b+ 1 .
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(b) For b ≡ 2 mod a,

12ab s(a, b) = −1
2
a2b+ a2 + b2 − 5

2
b+ 1 .

(c) For b ≡ −1 mod a,

12ab s(a, b) = a2b+ a2 + b2 − 6ab+ 2b+ 1 .

8.4. Denote by fn the sequence of Fibonacci numbers, defined by

f1 = f2 = 1 and fn+2 = fn+1 + fn for n ≥ 1 .

Prove that
s (f2k, f2k+1) = 0

and
12f2k−1f2k s (f2k−1, f2k) = f2

2k−1 + f2
2k − 3f2k−1f2k + 1 .

8.5. ♣ Prove (8.2):

s0(a1, a2; b) = −s
(
a1a
−1
2 , b

)
+
b− 1

4b
,

where a−1
2 a2 ≡ 1 mod b.

8.6. Prove that B1, B2, . . . , Bd in the partial fraction expansion (8.3),

f(z) =
1

(1− za1) · · · (1− zad) zn

=
A1

z
+
A2

z2
+ · · ·+ An

zn
+

B1

z − 1
+

B2

(z − 1)2
+ · · ·+ Bd

(z − 1)d

+
a1−1∑
k=1

C1k

z − ξka1

+
a2−1∑
k=1

C2k

z − ξka2

+ · · ·+
ad−1∑
k=1

Cdk
z − ξkad

,

are polynomials in n (of degree less than d) and rational functions in a1, . . . , ad.

8.7. ♣ Verify the first few expressions for poly{a1,...,ad}(n) in (8.4).

8.8. Show that the Dedekind–Rademacher sum satisfies r−n(a, b) = rn(a, b).

8.9. ♣ Show that

b−1∑
m=0

(((
n−m
b

))
+

1
2
χb(n−m)− 1

2b

)(((
a−1m

b

))
+

1
2
χb (m)− 1

2b

)

=
b−1∑
m=0

((
am− n

b

))((m
b

))
+

1
2

((
a−1n

b

))
+

1
2

((
−n
b

))
− 1

4b

+
1
4
χb(n) .
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8.10. Rephrase the Ehrhart quasipolynomials for rational triangles given in
Theorem 2.10 and Exercise 2.34 in terms of Dedekind–Rademacher sums.

8.11. ♣ Prove Theorem 8.11 by verifying (8.8) and computing the coefficients
for z = 1 in the partial fraction expansion of (8.7).

8.12. Generalize the Ehrhart polynomial of the Mordell–Pommersheim tetra-
hedron to the case that a, b, and c are not necessarily pairwise relatively
prime.

8.13. Compute the Ehrhart polynomial of the 4-simplex{
(x1, x2, x3, x4) ∈ R4

≥0 :
x1

a
+
x2

b
+
x3

c
+
x4

d
≤ 1
}
,

where a, b, c, d are pairwise relatively prime positive integers. (Hint: You may
use Corollary 5.5 to compute the linear term.)

Open Problems

8.14. Find new relations between various Dedekind sums.

8.15. It is known [21] that the Fourier–Dedekind sums are efficiently com-
putable. Find a fast algorithm that can be implemented in practice.

8.16. For any fixed integers b and k, find a nice characterization for the set
of all a ∈ Z such that s(a, b) = k.
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The Decomposition of a Polytope into Its
Cones

Mathematics compares the most diverse phenomena and discovers the secret analo-
gies that unite them.

Jean Baptiste Joseph Fourier (1768–1830)

In this chapter, we return to integer-point transforms of rational cones and
polytopes and connect them in a magical way that was first discovered by
Michel Brion. The power of Brion’s theorem has been applied to various do-
mains, such as Barvinok’s algorithm in integer linear programming, and to
higher-dimensional Euler–Maclaurin summation formulas, which we study in
Chapter 10. In a sense, Brion’s theorem is the natural extension of the familiar
finite geometric series identity

∑b
m=a z

m = zb+1−za
z−1 to higher dimensions.

9.1 The Identity “
∑

m∈Z z
m = 0”. . .

. . . or “Much Ado About Nothing”

We start gently by illustrating Brion’s theorem in dimension one. To this end,
let’s consider the line segment I := [20, 34]. We recall that its integer-point
transform lists the lattice points in I in the form of monomials:

σI(z) =
∑

m∈I∩Z
zm = z20 + z21 + · · ·+ z34.

Already in this simple example, we are too lazy to list all integers in I and
use · · · to write the polynomial σI . Is there a more compact way to write
σI? The reader might have guessed it even before we asked the question: this
integer-point transform equals the rational function

σI(z) =
z20 − z35

1− z
.
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This last sentence is not quite correct: the definition of σI(z) yielded a poly-
nomial in z, whereas the rational function above is not defined at z = 1.
We can overcome this deficiency by noticing that the limit of this rational
function as z → 1 equals the evaluation of the polynomials σI(1) = 15, by
L’Hôpital’s rule. Notice that the rational-function representation of σI has
the unquestionable advantage of being much more compact than the original
polynomial representation. The reader who is not convinced of this advantage
should replace the right vertex 34 of I by 3400.

Now let’s rewrite the rational form of the integer-point transform of I
slightly:

σI(z) =
z20 − z35

1− z
=

z20

1− z
+

z34

1− 1
z

. (9.1)

There is a natural geometric interpretation of the two summands on the right-
hand side. The first term represents the integer-point transform of the interval
[20,∞):

σ[20,∞)(z) =
∑
m≥20

zm =
z20

1− z
.

The second term in (9.1) corresponds to the integer-point transform of the
interval (−∞, 34]:

σ(−∞,34](z) =
∑
m≤34

zm =
z34

1− 1
z

.

So (9.1) says that on a rational-function level,

σ[20,∞)(z) + σ(−∞,34](z) = σ[20,34](z) . (9.2)

This identity, which we illustrate graphically in Figure 9.1, should come

20 34

20 34

20 34

Fig. 9.1. Decomposing a line segment into two infinite rays.

as a mild surprise. Two rational functions that represent infinite sequences
somehow collapse, when being summed up, to a polynomial with a finite
number of terms. We emphasize that (9.2) does not make sense on the level of
infinite series; in fact, the two infinite series involved here have disjoint regions
of convergence.
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Even more magical is the geometry behind this identity: on the right-hand
side we have a polynomial that lists the integer points in a finite interval P,
while on the left-hand side each of the rational generating functions represents
the integer points in an infinite ray that begins at a vertex of P. The two
half-lines will be called vertex cones below, and indeed the remainder of this
chapter is devoted to proving that an identity similar to (9.2) holds in general
dimension.

We now extend the definition of integer-point transforms σA(z) from the
case of cones A to the case of affine spaces A. Any such affine space A ⊆ Rd
equals w + V for some w ∈ Rd and some n-dimensional vector subspace
V ⊆ Rd, and if A contains integer points (which is the only interesting case
for our purposes), we may choose w ∈ Zd. The integer points V ∩ Zd in V
form a Z-module, and hence there exists a basis v1,v2, . . . ,vn for V∩Zd. This
implies that any integer point m ∈ A ∩ Zd can be uniquely written as

m = w + k1v1 + k2v2 + · · ·+ knvn for some k1, k2, . . . , kn ∈ Z .

Using this fixed lattice basis for V, we define the skewed orthants of A as the
sets of the form {w + λ1v1 + λ2v2 + · · ·+ λnvn}, where for each 1 ≤ j ≤ n,
we require either λj ≥ 0 or λj < 0. So there are 2n such skewed orthants,
and their disjoint union equals A. We denote them by O1,O2, . . . ,O2n . All of
them are (half-open) pointed cones, and so their integer-point transforms are
rational.

Lemma 9.1. Suppose A is an n-dimensional affine space with skewed or-
thants O1,O2, . . . ,O2n . Then as rational functions,

σO1(z) + σO2(z) + · · ·+ σO2n (z) = 0 .

Proof. Suppose

A = {w + λ1v1 + λ2v2 + · · ·+ λnvn : λ1, λ2, . . . , λn ∈ R} .

Then a typical skewed orthant O looks like

O = {w + λ1v1 + λ2v2 + · · ·+ λnvn : λ1, . . . , λk ≥ 0, λk+1, . . . , λn < 0} ,

and its integer-point transform is

σO(z)

= zw

∑
j1≥0

zj1v1

 · · ·
∑
jk≥0

zjkvk

 ∑
jk+1<0

zjk+1vk+1

 · · ·
∑
jn<0

zjnvn


= zw 1

1− zv1
· · · 1

1− zvk

1
zvk+1 − 1

· · · 1
zvn − 1

.

Now consider the skewed orthant O′ with the same conditions on the λ’s as in
O except that we switch λ1 ≥ 0 to λ1 < 0. Then the integer-point transform
of O′ is



156 9 The Decomposition of a Polytope into Its Cones

σO′(z) = zw 1
zv1 − 1

1
1− zv2

· · · 1
1− zvk

1
zvk+1 − 1

· · · 1
zvn − 1

,

so that σO(z) + σO′(z) = 0. Since we can pair up all skewed orthants in this
fashion, the sum of all their rational generating functions is zero. ut

Since O1 ∪ O2 ∪ · · · ∪ O2n is equal to A as a disjoint union, it now makes
sense to set

σA(z) := 0 (9.3)

for any n-dimensional affine space with n > 0. Lemma 9.1 says that this defi-
nition is not as arbitrary as it might seem, and the following result strengthens
our motivation for the definition (9.3).

Theorem 9.2. Given half-open pointed cones K1,K2, . . . ,Km ⊆ Rd with a
common apex in Zd such that the disjoint union of K1,K2, . . . ,Km is an affine
space, then as rational functions,

σK1(z) + σK2(z) + · · ·+ σKm(z) = 0 .

Proof. Suppose the disjoint union of K1,K2, . . . ,Km is the n-dimensional
affine space A, and w ∈ Zd is the common apex of K1,K2, . . . ,Km. Now
we decompose A into the skewed orthants O1,O2, . . . ,O2n , which are also
pointed cones with common apex w. The intersection of one of the Kj ’s with
one of the Ok’s is again a half-open pointed cone, and all these cones form yet
another disjoint union of A, which is a common refinement of the dissection
of A in terms of the Kj ’s and in terms of the Ok’s:

A =
⋃

1≤j≤m
1≤k≤2n

(Kj ∩ Ok) .

For each 1 ≤ j ≤ m, Kj =
⋃2n

k=1 (Kj ∩ Ok) as a disjoint union, and so we can
write the integer-point transform of Kj as

σKj (z) =
2n∑
k=1

σKj∩Ok(z) ,

as a rational-function identity. Similarly, we obtain for each 1 ≤ k ≤ 2n,

σOk(z) =
m∑
j=1

σKj∩Ok(z) .

Thus

m∑
j=1

σKj (z) =
m∑
j=1

2n∑
k=1

σKj∩Ok(z) =
2n∑
k=1

m∑
j=1

σKj∩Ok(z) =
2n∑
k=1

σOk(z) = 0 ,

by Lemma 9.1. ut
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9.2 Tangent Cones and Their Rational Generating
Functions

The goal of this section, apart from setting the language that allows us to prove
Brion’s theorem, is to prove a sort of analogue of (9.2) in general dimension.

We recall a definition that was touched on only briefly, in Exercise 3.14:
A hyperplane arrangement H is a finite collection of hyperplanes. An
arrangement H is rational if all its hyperplanes are, that is, if each hyper-
plane in H is of the form

{
x ∈ Rd : a1x1 + a2x2 + · · ·+ adxd = b

}
for some

a1, a2, . . . , ad, b ∈ Z. An arrangement H is called a central hyperplane ar-
rangement if its hyperplanes meet in (at least) one point.

Our next definition generalizes (finally) the notion of a pointed cone, de-
fined in Chapter 3. A convex cone is the intersection of finitely many half-
spaces of the form

{
x ∈ Rd : a1x1 + a2x2 + · · ·+ adxd ≤ b

}
for which the cor-

responding hyperplanes
{
x ∈ Rd : a1x1 + a2x2 + · · ·+ adxd = b

}
form a cen-

tral arrangement. This definition extends that of a pointed cone: a cone is
pointed if the defining hyperplanes meet in exactly one point. A cone is ra-
tional if all of its defining hyperplanes are rational. Cones and polytopes are
special cases of polyhedra, which are convex bodies defined as the intersec-
tion of finitely many half-spaces.

We now attach a cone to each face F of P, namely its tangent cone,
defined by

KF := {x + λ (y − x) : x ∈ F , y ∈ P, λ ∈ R≥0} .

It turns out that KF is the smallest convex cone containing both spanF and
P. We note that KP = spanP. For a vertex v of P, the tangent cone Kv is
often called a vertex cone; it is pointed. For a k-face F of P with k > 0, the
tangent cone KF is not pointed. For example, the tangent cone of an edge of
a 3-polytope is a wedge.

Lemma 9.3. For any face F of P, spanF ⊆ KF .

Proof. As x and y vary over all points of F , x +λ (y − x) varies over spanF .
ut

We note that this lemma implies that KF contains a line, unless F is a
vertex. More precisely, if KF is not pointed, it contains the affine space spanF ,
which is called the apex of the tangent cone. (A pointed cone has a point as
apex.)

An affine space A ⊆ Rd equals w + V for some w ∈ Rd and some vector
subspace V ⊆ Rd. The orthogonal complement A⊥ of this affine space A
is defined by

A⊥ :=
{
x ∈ Rd : x · v = 0 for all v ∈ V

}
.

We note that A⊕A⊥ = Rd, which gives us the following result.
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Lemma 9.4. For any face F of P, the tangent cone KF has the decomposition

KF = spanF ⊕
(

(spanF)⊥ ∩ KF
)
.

Consequently, unless F is a vertex,

σKF (z) = 0 .

Proof. Since spanF ⊕ (spanF)⊥ = Rd,

KF =
(

spanF ⊕ (spanF)⊥
)
∩ KF

= (spanF ∩ KF )⊕
(

(spanF)⊥ ∩ KF
)

= spanF ⊕
(

(spanF)⊥ ∩ KF
)
,

where the last step follows from Lemma 9.3. The second part of the lemma is
immediate since σspanF⊕((spanF)⊥∩KF)(z) = σspanF (z)σ(spanF)⊥∩KF (z) and
σspanF (z) = 0. ut

Although we do not need this fact in the sequel, it’s nice to know that
(spanF)⊥ ∩ KF is a pointed cone (see Exercise 9.1).

9.3 Brion’s Theorem

The following theorem is a classical identity of convex geometry named after
Charles Julien Brianchon (1783–1864)1 and Jørgen Pedersen Gram (1850–
1916).2 It holds for any convex polytope. However, its proof for simplices
is considerably simpler than that for the general case. We need only the
Brianchon–Gram identity for simplices, so we restrict ourselves to this special
case. (One could prove the general case along similar lines as below; however,
we would need some additional machinery not covered in this book.) The
indicator function 1S of a set S ⊂ Rd is defined by

1S(x) :=
{

1 if x ∈ S,
0 if x 6∈ S.

Theorem 9.5 (Brianchon–Gram identity for simplices). Let ∆ be a d-
simplex. Then

1∆(x) =
∑
F⊆∆

(−1)dimF1KF (x) ,

where the sum is taken over all nonempty faces F of ∆.
1 For more information about Brianchon, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Brianchon.html.

2 For more information about Gram, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Gram.html.
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Proof. We distinguish between two disjoint cases: whether or not x is in the
simplex.

Case 1: x ∈ ∆. Then x ∈ KF for all F ⊆ ∆, and the identity becomes

1 =
∑
F⊆∆

(−1)dimF =
dim ∆∑
k=0

(−1)kfk .

This is the Euler relation for simplices, which we proved in Exercise 5.5.

Case 2: x /∈ ∆. Then there is a unique minimal face F ⊆ ∆ (minimal with
respect to dimension) such that x ∈ KF and x ∈ KG for all faces G ⊆ ∆ that
contain F (Exercise 9.2). The identity to be proved is now

0 =
∑
G⊇F

(−1)dimG . (9.4)

The validity of this identity again follows from the logic of Exercise 5.5; the
proof of (9.4) is the subject of Exercise 9.4. ut

Corollary 9.6 (Brion’s theorem for simplices). Suppose ∆ is a rational
simplex. Then we have the following identity of rational functions:

σ∆(z) =
∑

v a vertex of ∆

σKv(z) .

Proof. We translate the Brianchon–Gram theorem into the language of inte-
ger-point transforms: we sum both sides of the identity in Theorem 9.5 for all
m ∈ Zd, ∑

m∈Zd
1∆(m) zm =

∑
m∈Zd

∑
F⊆∆

(−1)dimF1KF (m) zm,

which is equivalent to

σ∆(z) =
∑
F⊆∆

(−1)dimFσKF (z) .

But Lemma 9.4 implies that σKF (z) = 0 except when F is a vertex. Hence

σ∆(z) =
∑

v a vertex of ∆

σKv(z) . ut

Now we extend Corollary 9.6 to any convex rational polytope:

Theorem 9.7 (Brion’s theorem). Suppose P is a rational convex polytope.
Then we have the following identity of rational functions:

σP(z) =
∑

v a vertex of P

σKv(z) . (9.5)
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Proof. We use the same irrational trick as in the proofs of Theorems 3.12 and
4.3. Namely we start by triangulating P into the simplices ∆1,∆2, . . . ,∆m

(using no new vertices). Consider the hyperplane arrangement

H := {spanF : F is a facet of ∆1,∆2, . . . , or ∆m} .

We will now shift the hyperplanes in H, obtaining a new hyperplane arrange-
ment Hshift. Those hyperplanes of H that defined P now define, after shifting,
a new polytope that we will call Pshift. Exercise 9.6 ensures that we can shift
H in such a way that:

• no hyperplane in Hshift contains any lattice point;
• Hshift yields a triangulation of Pshift;
• the lattice points contained in a vertex cone of P are precisely the lattice

points contained in the corresponding vertex cone of Pshift.

This setup implies that

• the lattice points in P are precisely the lattice points in Pshift;
• the lattice points in a vertex cone of Pshift can be written as a disjoint

union of lattice points in vertex cones of simplices of the triangulation that
Hshift induces on Pshift.

The latter two conditions, in turn, mean that Brion’s identity (9.5) follows
from Brion’s theorem for simplices: the integer-point transforms on both sides
of the identity can be written as a sum of integer-point transforms of simplices
and their vertex cones. ut

9.4 Brion Implies Ehrhart

We conclude this chapter by showing that Ehrhart’s theorem (Theorem 3.23)
for rational polytopes (which includes the integral case, Theorem 3.8) follows
from Brion’s theorem (Theorem 9.7) in a relatively straightforward manner.

Second proof of Theorem 3.23. As in our first proof of Ehrhart’s theorem, it
suffices to prove Theorem 3.23 for simplices, because we can triangulate any
polytope (using only the vertices). So suppose ∆ is a rational d-simplex whose
vertices have coordinates with denominator p. Our goal is to show that, for a
fixed 0 ≤ r < p, the function L∆(r+ pt) is a polynomial in t; this means that
L∆ is a quasipolynomial with period dividing p.

First, if r = 0, then L∆(pt) = Lp∆(t), which is a polynomial by Ehrhart’s
Theorem 3.8, because p∆ is an integer simplex.

Now we assume r > 0. By Theorem 9.7,
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L∆(r + pt) =
∑

m∈(r+pt)∆∩Zd
1

= lim
z→1

σ(r+pt)∆(z) (9.6)

= lim
z→1

∑
v vertex of ∆

σ(r+pt)Kv
(z) .

We used the limit computation for the integer-point transform σ(r+pt)∆ rather
than the evaluation σ(r+pt)∆(1), because this evaluation would have yielded
singularities in the rational generating functions of the vertex cones. Note that
the vertex cones Kv are all simplicial, because ∆ is a simplex. So suppose

Kv = {v + λ1w1 + λ2w2 + · · ·+ λdwd : λ1, λ2, . . . , λd ≥ 0} ;

then

(r + pt)Kv = {(r + pt)v + λ1w1 + λ2w2 + · · ·+ λdwd : λ1, λ2, . . . , λd ≥ 0}
= tpv + {rv + λ1w1 + λ2w2 + · · ·+ λdwd : λ1, λ2, . . . , λd ≥ 0}
= tpv + rKv .

What’s important to note here is that pv is an integer vector. In particular,
we can safely write

σ(r+pt)Kv
(z) = ztpvσrKv(z)

(we say “safely” because tpv ∈ Zd, so ztpv is indeed a monomial). Now we
can rewrite (9.6) as

L∆(r + pt) = lim
z→1

∑
v vertex of ∆

ztpvσrKv(z) . (9.7)

The exact forms of the rational functions σrKv(z) is not important, except for
the fact that they do not depend on t. We know that the sum of the generating
functions of all vertex cones is a polynomial in z; that is, the singularities of
the rational functions cancel. To compute L∆(r + pt) from (9.7), we write
all the rational functions on the right-hand side over one denominator and
use L’Hôpital’s rule to compute the limit of this one huge rational function.
The variable t appears only in the simple monomials ztpv, so the effect of
L’Hôpital’s rule is that we obtain linear factors of t every time we differentiate
the numerator of this rational function. At the end we evaluate the remaining
rational function at z = 1. The result is a polynomial in t. ut

Notes

1. Theorem 9.5 (in its general form for convex polytopes) has an interesting
history. In 1837 Charles Brianchon proved a version of this theorem involving
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volumes of polytopes in R3 [44]. In 1874 Jørgen Gram gave a proof of the same
result [88]; apparently he was unaware of Brianchon’s paper. In 1927 Duncan
Sommerville published a proof for general d [167], which was corrected in the
1960s by Victor Klee [111], Branko Grünbaum [90, Section 14.1], and many
others.

2. Michel Brion discovered Theorem 9.7 in 1988 [45]. His proof involved the
Baum–Fulton–Quart Riemann–Roch formula for equivariant K-theory of toric
varieties. A more elementary proof of Theorem 9.7 was found by Masa-Nori
Ishida a few years later [103]. Our approach in this chapter follows [27].

3. As we have already remarked earlier, Brion’s theorem led to an efficient
algorithm by Alexander Barvinok to compute Ehrhart quasipolynomials [15].
More precisely, Barvinok proved that in fixed dimension, one can efficiently3

compute the Ehrhart series
∑
t≥0 LP(t) zt as a short sum of rational func-

tions.4 Brion’s theorem essentially reduces the problem to computing the
integer-point transforms of the rational tangent cones of the polytope. Barvi-
nok’s ingenious idea was to use a signed decomposition of a rational cone to
compute its integer-point transform: the cone is written as a sum and differ-
ence of unimodular cones, which we will encounter in Section 10.4 and which
have a trivial integer-point transform. Finding a signed decomposition involves
triangulations, Minkowski’s theorem on lattice points in convex bodies (see,
for example, [57, 133, 140, 163]), and the LLL algorithm which finds a short
vector in a lattice [121]. At any rate, Barvinok proved that one can find a
signed decomposition quickly, which is the main step towards computing the
Ehrhart series of the polytope. Barvinok’s algorithm has been implemented
in the software packages barvinok [185] and LattE [66, 67, 115]. Barvinok’s
algorithm is described in detail in [13].

Exercises

9.1. ♣ Prove that for any face F of a polytope, (spanF)⊥ ∩ KF is a pointed
cone. (Hint: Show that if H is a defining hyperplane for F , then H∩(spanF)⊥

is a hyperplane in the vector space (spanF)⊥.)

9.2. ♣ Suppose ∆ is a simplex and x /∈ ∆. Prove that there is a unique
minimal face F ⊆ ∆ (minimal with respect to dimension) such that the corre-
sponding tangent cone KF contains x. Show that x ∈ KG for all faces G ⊆ ∆
that contain F , and x /∈ KG for all other faces G.
3 “Efficiently” here means that for every dimension, there exists a polynomial that

gives an upper bound on the running time of the algorithm, when evaluated at
the logarithm of the input data of the polytope (e.g., its vertices).

4 “Short” means that the set of data needed to output this sum of rational functions
is also of polynomial size in the logarithm of the input data of the polytope.
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9.3. Show that Exercise 9.2 fails to be true if ∆ is a quadrilateral (for exam-
ple). Show that the Brianchon–Gram identity holds for your quadrilateral.

9.4. ♣ Prove (9.4): for a face F of a simplex ∆,∑
G⊇F

(−1)dimG = 0 ,

where the sum is taken over all faces of ∆ that contain F .

9.5. Give a direct proof of Brion’s theorem for the 1-dimensional case.

9.6. ♣ Provide the details of the irrational-shift argument in the proof of
Theorem 9.7: Given a rational polytope P, triangulate it into the simplices
∆1,∆2, . . . ,∆m (using no new vertices). Consider the hyperplane arrangement

H := {spanF : F is a facet of ∆1,∆2, . . . ,∆m} .

We will now shift the hyperplanes in H, obtaining a new hyperplane arrange-
ment Hshift. Those hyperplanes of H that defined P now define, after shifting,
a new polytope that we will call Pshift. Prove that we can shift H in such a
way that:

• no hyperplane in Hshift contains any lattice point;
• Hshift yields a triangulation of Pshift;
• the lattice points contained in a vertex cone of P are precisely the lattice

points contained in the corresponding vertex cone of Pshift.

9.7. ♣ Prove the following “open polytope” analogue for Brion’s theorem: If
P is a rational convex polytope, then we have the identity of rational functions

σP◦(z) =
∑

v a vertex of P

σK◦v(z) .

9.8. Prove the following extension of Ehrhart’s theorem (Theorem 3.23): Sup-
pose P ⊂ Rd is a rational convex polytope and q is a polynomial in d variables.
Then

LqP(t) :=
∑

m∈tP∩Zd
q(m)

is a quasipolynomial in t. (Hint: Modify the proof in Section 9.4 by introducing
a differential operator.)
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Euler–Maclaurin Summation in Rd

All means (even continuous) sanctify the discrete end.

Doron Zeilberger

Thus far we have often been concerned with the difference between the dis-
crete volume of a polytope P and its continuous volume. In other words, the
quantity ∑

m∈P∩Zd
1−

∫
P
dy , (10.1)

which is by definition LP(1)− vol(P), has been on our minds for a long time
and has arisen naturally in many different contexts. An important extension is
the difference between the discrete integer-point transform and its continuous
sibling: ∑

m∈P∩Zd
em·x −

∫
P
ey·xdy , (10.2)

where we have replaced the variable z that we have commonly used in generat-
ing functions by the exponential variable (z1, z2, . . . , zd) = (ex1 , ex2 , . . . , exd).
Note that upon setting x = 0 in (10.2) we get the former quantity (10.1). Re-
lations between the two quantities

∑
m∈P∩Zd e

m·x and
∫
P e

y·xdy are known as
Euler–Maclaurin summation formulas for polytopes. The “behind-the-scenes”
operators that are responsible for affording us with such connections are the
differential operators known as Todd operators, whose definition utilizes the
Bernoulli numbers in a surprising way.

10.1 Todd Operators and Bernoulli Numbers

Recall the Bernoulli numbers Bk from Section 2.4, defined by the generating
function
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z

ez − 1
=
∑
k≥0

Bk
k!

zk.

We now introduce a differential operator via essentially the same generating
function, namely

Toddh := 1 +
∑
k≥1

(−1)k
Bk
k!

(
d

dh

)k
. (10.3)

This Todd operator is often abbreviated as

Toddh =
d
dh

1− e− d
dh

,

but we should keep in mind that this is only a shorthand notation for the
infinite series (10.3). We first show that the exponential function is an eigen-
function of the Todd operator.

Lemma 10.1. For z ∈ C \ {0} with |z| < 2π,

Toddh ezh =
z ezh

1− e−z
.

Proof.

Toddh ezh =
∑
k≥0

(−1)k
Bk
k!

(
d

dh

)k
ezh

=
∑
k≥0

(−1)k
Bk
k!
zkezh

= ezh
∑
k≥0

(−z)kBk
k!

= ezh
−z

e−z − 1
.

The condition |z| < 2π is needed in the last step, by Exercise 2.14. ut

The Todd operator is a discretizing operator, in the sense that it transforms
a continuous integral into a discrete sum, as the following theorem shows.

Theorem 10.2 (Euler–Maclaurin in dimension 1). For all a < b ∈ Z
and z ∈ C with |z| < 2π,

Toddh1 Toddh2

∫ b+h1

a−h2

ezxdx

∣∣∣∣∣
h1=h2=0

=
b∑

k=a

ekz.
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Proof. Case 1: z = 0. Then ezx = 1, and so

Toddh1 Toddh2

∫ b+h1

a−h2

ezxdx

∣∣∣∣∣
h1=h2=0

= Toddh1 Toddh2

∫ b+h1

a−h2

dx

∣∣∣∣∣
h1=h2=0

= b− a+ Toddh1 h1 + Toddh2 h2|h1=h2=0

= b− a+ h1 +
1
2

+ h2 +
1
2

∣∣∣∣
h1=h2=0

= b− a+ 1

by Exercise 10.1. Since
∑b
k=a e

k·0 = b − a + 1, we’ve verified the theorem in
this case.

Case 2: z 6= 0. Then

Toddh1 Toddh2

∫ b+h1

a−h2

ezxdx = Toddh1 Toddh2

1
z

(
ez(b+h1) − ez(a−h2)

)
=

1
z

(
Toddh1 e

zb+zh1 − Toddh2 e
za−zh2

)
=
ezb

z
Toddh1 e

zh1 − eza

z
Toddh2 e

−zh2

=
ezb

z

z ezh1

1− e−z
− eza

z

−z e−zh2

1− ez
,

where the last step follows from Lemma 10.1. Hence

Toddh1 Toddh2

∫ b+h1

a−h2

ezxdx

∣∣∣∣∣
h1=h2=0

= ezb
1

1− e−z
+ eza

1
1− ez

=
ez(b+1) − eza

ez − 1

=
b∑

k=a

ekz. ut

We will need a similar multivariate version of the Todd operator later, so
that we define for h = (h1, h2, . . . , hm),

Toddh :=
m∏
j=1

 ∂
∂hj

1− exp
(
− ∂
∂hj

)
 ,

keeping in mind that this is a product over infinite series of the form (10.3).
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10.2 A Continuous Version of Brion’s Theorem

In the following two sections, we develop the tools that, once fused with the
Todd operator, will enable us to extend Euler–Maclaurin summation to higher
dimensions. A lemma, which is of independent interest, but will be used in
the proof of the continous version of Brion’s theorem, now follows.

Lemma 10.3. Suppose w1,w2, . . . ,wd ∈ Zd are linearly independent, and let

Π = {λ1w1 + λ2w2 + · · ·+ λdwd : 0 ≤ λ1, λ2, . . . , λd < 1} .

Then
#
(
Π ∩ Zd

)
= vol Π = |det (w1, . . . ,wd)|

and for any positive integer t,

#
(
tΠ ∩ Zd

)
= (vol Π) td.

In other words, for the half-open parallelepiped Π, the discrete volume
#
(
tΠ ∩ Zd

)
coincides with the continuous volume (vol Π) td.

Proof. Because Π is half open, we can tile the tth dilate tΠ by td translates
of Π, and hence

LΠ(t) = #
(
tΠ ∩ Zd

)
= #

(
Π ∩ Zd

)
td.

On the other hand, by the results of Chapter 3, LΠ(t) is a polynomial with
leading coefficient vol Π = |det (w1, . . . ,wd)|. Since we have equality of these
polynomials for all positive integers t,

#
(
Π ∩ Zd

)
= vol Π . ut

We now give an integral analogue of Theorem 9.7 for simple rational poly-
topes. We start by translating Brion’s integer-point transforms

σP(z) =
∑

v a vertex of P

σKv(z)

into an exponential form:

σP(exp z) =
∑

v a vertex of P

σKv(exp z) ,

where we used the notation exp z = (ez1 , ez2 , . . . , ezd). For the continuous
analogue of Brion’s theorem, we replace the sum on the left-hand side,

σP(exp z) =
∑

m∈P∩Zd
(exp z)m =

∑
m∈P∩Zd

exp(m · z) ,

by an integral.
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Theorem 10.4 (Brion’s theorem: continuous form). Suppose P is a
simple rational convex d-polytope. For a vertex cone Kv of P, fix a set of
generators w1(v),w2(v), . . . ,wd(v) ∈ Zd. Then∫
P

exp(x · z) dx = (−1)d
∑

v a vertex of P

exp (v · z) |det (w1(v), . . . ,wd(v))|∏d
k=1 (wk(v) · z)

for all z such that the denominators on the right-hand side do not vanish.

Proof. We start with the assumption that P is an integral polytope; we will
see in the process of the proof that this assumption can be relaxed. Let’s
write out the exponential form of Brion’s theorem (Theorem 9.7), using the
assumption that the vertex cones are simplicial (because P is simple). By
Theorem 3.5,∑

m∈P∩Zd
exp(m · z) =

∑
v a vertex of P

exp(v · z)σΠv(exp z)∏d
k=1 (1− exp (wk(v) · z))

, (10.4)

where

Πv = {λ1w1(v) + λ2w2(v) + · · ·+ λdwd(v) : 0 ≤ λ1, λ2, . . . , λd < 1}

is the fundamental parallelepiped of the vertex cone Kv. We would like to
rewrite (10.4) with the lattice Zd replaced by the refined lattice

(
1
nZ
)d, be-

cause then the left-hand side of (10.4) will give rise to the sought-after integral
by letting n approach infinity. The right-hand side of (10.4) changes accord-
ingly; now every integral point has to be scaled down by 1

n :

∑
m∈P∩( 1

nZ)d
exp(m · z) =

∑
v a vertex of P

exp(v · z)
∑

m∈Πv∩Zd exp
(
m
n · z

)
∏d
k=1

(
1− exp

(
wk(v)
n · z

)) .

(10.5)
The proof of this identity is in essence the same as that of Theorem 3.5; we
leave it as Exercise 10.2. Now our sought-after integral is∫
P

exp(x · z) dx = lim
n→∞

1
nd

∑
m∈P∩( 1

nZ)d
exp(m · z)

= lim
n→∞

1
nd

∑
v a vertex of P

exp(v · z)
∑

m∈Πv∩Zd exp
(
m
n · z

)
∏d
k=1

(
1− exp

(
wk(v)
n · z

)) .

(10.6)

At this point we can see that our assumption that P has integral vertices can
be relaxed to the rational case, since we may compute the limit only for n’s
that are multiples of the denominator of P. The numerators of the terms on
the right-hand side have a simple limit:
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lim
n→∞

exp(v · z)
∑

m∈Πv∩Zd
exp

(m
n
· z
)

= exp(v · z)
∑

m∈Πv∩Zd
1

= exp (v · z) |det (w1(v), . . . ,wd(v))| ,

where the last identity follows from Lemma 10.3. Hence (10.6) simplifies to∫
P

exp(x · z) dx =
∑

v a vertex of P

exp (v · z) |det (w1(v), . . . ,wd(v))|∏d
k=1 limn→∞ n

(
1− exp

(
wk(v)
n · z

)) .
Finally, using L’Hôpital’s rule, we have

lim
n→∞

n

(
1− exp

(
wk(v)
n

· z
))

= −wk(v) · z ,

and the theorem follows. ut

It turns out (Exercise 10.4) that for each vertex cone Kv,∫
Kv

exp(x · z) dx = (−1)d
exp (v · z) |det (w1(v), . . . ,wd(v))|∏d

k=1 (wk(v) · z)
, (10.7)

and Theorem 10.4 shows that the Fourier–Laplace transform of P equals the
sum of the Fourier–Laplace transforms of the vertex cones. In other words,∫

P
exp(x · z) dx =

∑
v a vertex of P

∫
Kv

exp(x · z) dx .

We also remark that |det (w1(v), . . . ,wd(v))| has a geometric meaning: it
is the volume of the fundamental parallelepiped of the vertex cone Kv.

The curious reader might wonder what happens to the statement of The-
orem 10.4 if we scale each of the generators wk(v) by a different factor. It is
immediate (Exercise 10.5) that the right-hand side of Theorem 10.4 remains
invariant.

10.3 Polytopes Have Their Moments

The most common notion for moments of a set P ⊂ Rd is

µa :=
∫
P

ya dy =
∫
P
ya1

1 ya2
2 · · · y

ad
d dy

for any fixed vector a = (a1, a2, . . . , ad) ∈ Cd. For a = 0 = (0, 0, . . . , 0), we
get µ0 = volP. As an application of moments, consider the problem of finding
the center of mass of P, which is defined by

1
volP

(∫
P
y1 dy ,

∫
P
y2 dy , . . . ,

∫
P
yd dy

)
.
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This integral is equal to

1
µ0

(
µ(1,0,0,...,0), µ(0,1,0,...,0), . . . , µ(0,...,0,1)

)
.

Similarly, one can define the variance of P and other statistical data attached
to P and use moments to compute them.

Our next task is to present the moments µa in terms of Theorem 10.4. We
make the change of variables yk = exk in the defining integral of µa:

µa =
∫
P

ya dy =
∫
P
ex1a1ex2a2 · · · exdad ex1ex2 · · · exd dx =

∫
P
ex·(a+1) dx .

Thus Theorem 10.4 gives us the following formulas for the moments of a simple
rational d-polytope P:

µa = (−1)d
∑

v a vertex of P

exp (v · (a + 1)) |det (w1(v), . . . ,wd(v))|∏d
k=1 (wk(v) · (a + 1))

,

for all a such that the denominators on the right-hand side do not vanish.
Going a step further, we can use Theorem 10.4 to obtain information for a
different set of moments. Along the way, we stumble on an amazing formula
for the continuous volume of a polytope.

Theorem 10.5. Suppose P is a simple rational convex d-polytope. For a ver-
tex cone Kv of P, fix a set of generators w1(v),w2(v), . . . ,wd(v) ∈ Zd. Then

volP =
(−1)d

d!

∑
v a vertex of P

(v · z)d |det (w1(v), . . . ,wd(v))|∏d
k=1 (wk(v) · z)

for all z such that the denominators on the right-hand side do not vanish.
More generally, for any integer j ≥ 0,∫
P

(x · z)j dx =
(−1)dj!
(j + d)!

∑
v a vertex of P

(v · z)j+d |det (w1(v), . . . ,wd(v))|∏d
k=1 (wk(v) · z)

.

Proof. We replace the variable z in the identity of Theorem 10.4 by sz, where
s is a scalar:∫
P

exp (x · (sz)) dx = (−1)d
∑

v a vertex of P

exp (v · (sz)) |det (w1(v), . . . ,wd(v))|∏d
k=1 (wk(v) · (sz))

,

which can be rewritten as∫
P

exp (s (x · z)) dx = (−1)d
∑

v a vertex of P

exp (s (v · z)) |det (w1(v), . . . ,wd(v))|
sd
∏d
k=1 (wk(v) · (z))

.
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The general statement of the theorem follows now by first expanding the
exponential functions as Taylor series in s, and then comparing coefficients
on both sides:∑

j≥0

∫
P

(x · z)j dx
sj

j!

= (−1)d
∑

v a vertex of P

∑
j≥0

(v · z)j
sj−d

j!
|det (w1(v), . . . ,wd(v))|∏d

k=1 (wk(v) · (z))

=
∑
j≥−d

(−1)d
∑

v a vertex of P

(v · z)j+d |det (w1(v), . . . ,wd(v))|∏d
k=1 (wk(v) · (z))

sj

(j + d)!
. ut

The proof of this theorem reveals yet more identities between rational
functions. Namely, the coefficients of the negative powers of s in the last line
of the proof have to be zero. This immediately yields the following curious set
of d identities for simple d-polytopes:

Corollary 10.6. Suppose P is a simple rational convex d-polytope. For a ver-
tex cone Kv of P, fix a set of generators w1(v),w2(v), . . . ,wd(v) ∈ Zd. Then
for 0 ≤ j ≤ d− 1, ∑

v a vertex of P

(v · z)j |det (w1(v), . . . ,wd(v))|∏d
k=1 (wk(v) · (z))

= 0 . ut

10.4 From the Continuous to the Discrete Volume of a
Polytope

In this section, we apply the Todd operator to a perturbation of the continuous
volume. Namely, consider a simple full-dimensional polytope P, which we may
write as

P =
{
x ∈ Rd : A x ≤ b

}
.

Then we define the perturbed polytope

P(h) :=
{
x ∈ Rd : A x ≤ b + h

}
for a “small” vector h ∈ Rm. A famous theorem due to Askold Khovanskĭı and
Aleksandr Pukhlikov says that the integer-point count in P can be obtained
from applying the Todd operator to vol (P(h)). Here we prove the theorem
for a certain class of polytopes, which we need to define first.

We call a rational pointed d-cone unimodular if its generators are a basis
of Zd. An integral polytope is unimodular if each of its vertex cones is
unimodular.1

1 Unimodular polytopes go by two additional names, namely smooth and
Delzant.
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Theorem 10.7 (Khovanskĭı–Pukhlikov theorem). For a unimodular d-
polytope P,

#
(
P ∩ Zd

)
= Toddh vol (P(h))|h=0 .

More generally,

σP(exp z) = Toddh

∫
P(h)

exp(x · z) dx

∣∣∣∣∣
h=0

.

Proof. We use Theorem 10.4, the continuous version of Brion’s theorem; note
that if P is unimodular, then P is automatically simple. For a vertex cone
Kv of P, denote its generators by w1(v),w2(v), . . . ,wd(v) ∈ Zd. Then The-
orem 10.4 states that∫
P

exp(x · z) dx = (−1)d
∑

v a vertex of P

exp (v · z) |det (w1(v), . . . ,wd(v))|∏d
k=1 (wk(v) · z)

= (−1)d
∑

v a vertex of P

exp (v · z)∏d
k=1 (wk(v) · z)

, (10.8)

where the last identity follows from Exercise 10.3. A similar formula holds
for P(h), except that we have to account for the shift of the vertices. The
vector h shifts the facet-defining hyperplanes. This shift of the facets induces
a shift of the vertices; let’s say that the vertex v gets moved along each edge
direction wk (the vectors that generate the vertex cone Kv) by hk(v), so that
P(h) has now the vertex v −

∑d
k=1 hk(v)wk(v). If h is small enough, P(h)

will still be simple,2 and we can apply Theorem 10.4 to P(h):

∫
P(h)

exp(x · z) dx = (−1)d
∑

v a vertex of P

exp
((

v −
∑d
k=1 hk(v)wk(v)

)
· z
)

∏d
k=1 (wk(v) · z)

= (−1)d
∑

v a vertex of P

exp
(
v · z−

∑d
k=1 hk(v)wk(v) · z

)
∏d
k=1 (wk(v) · z)

= (−1)d
∑

v a vertex of P

exp(v · z)
∏d
k=1 exp (−hk(v)wk(v) · z)∏d
k=1 (wk(v) · z)

.

Strictly speaking, this formula holds only for h ∈ Qm, so that the vertices
of P(h) are rational. Since we will eventually set h = 0, this is a harmless
restriction. Now we apply the Todd operator:

2 The cautious reader may consult [193, p. 66] to confirm this fact.
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Toddh

∫
P(h)

exp(x · z) dx

∣∣∣∣∣
h=0

= (−1)d
∑

v vertex of P

Toddh
exp(v · z)

∏d
k=1 exp (−hk(v)wk(v) · z)∏d
k=1 (wk(v) · z)

∣∣∣∣∣
h=0

= (−1)d
∑

v vertex of P

exp(v · z)∏d
k=1 (wk(v) · z)

×
d∏
k=1

Toddhk(v) exp (−hk(v)wk(v) · z)

∣∣∣∣∣
hk(v)=0

.

By a multivariate version of Lemma 10.1,

Toddh

∫
P(h)

exp(x · z) dx

∣∣∣∣∣
h=0

= (−1)d
∑

v vertex of P

exp (v · z)∏d
k=1 (wk(v) · z)

d∏
k=1

−wk(v) · z
1− exp(wk(v) · z)

=
∑

v vertex of P

exp (v · z)
d∏
k=1

1
1− exp(wk(v) · z)

.

However, Brion’s theorem (Theorem 9.7), together with the fact that P is
unimodular, says that the right-hand side of this last formula is precisely the
integer-point transform of P (see also (10.8)):

Toddh

∫
P(h)

exp(x · z) dx

∣∣∣∣∣
h=0

= σP(exp z) .

Finally, setting z = 0 gives

Toddh

∫
P(h)

dx

∣∣∣∣∣
h=0

=
∑

m∈P∩Zd
1 ,

as claimed. ut

We note that
∫
P(h)

exp(x · z) dx is, by definition, the continuous Fourier–
Laplace transform of P(h). Upon being acted on by the discretizing operator
Toddh,

∫
P(h)

exp(x ·z) dx gives us the discrete integer-point transform σP(z).

Notes

1. The classical Euler–Maclaurin formula states that
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n∑
k=1

f(k) =
∫ n

0

f(x) dx+
f(0) + f(n)

2
+

p∑
m=1

B2m

(2m)!

[
f (2m−1)(x)

]n
0

+
1

(2p+ 1)!

∫ n

0

B2p+1 ({x}) f (2p+1)(x) dx ,

where Bk(x) denotes the kth Bernoulli polynomial. It was discovered indepen-
dently by Leonhard Euler and Colin Maclaurin (1698–1746).3 This formula
provides an explicit error term, whereas Theorem 10.2 provides a summation
formula with no error term.

2. The Todd operator was introduced by Friedrich Hirzebruch in the 1950s
[100], following a more complicated definition by J. A. Todd [181, 182] some
twenty years earlier. The Khovanskĭı–Pukhlikov theorem (Theorem 10.7)
can be interpreted as a combinatorial analogue of the algebro-geometric
Hirzebruch–Riemann–Roch theorem, in which the Todd operator plays a
prominent role.

3. Theorem 10.4, the continuous form of Brion’s theorem, was generalized by
Alexander Barvinok to any polytope [11]. In fact, [11] contains a certain ex-
tension of Brion’s theorem to irrational polytopes as well. The decomposition
formula for moments of a polytope in Theorem 10.5 is due to Michel Brion
and Michèle Vergne [46].

4. Theorem 10.7 was first proved in 1992 by Askold Khovanskĭı and Alek-
sandr Pukhlikov [108]. The proof we give here is essentially theirs. Their paper
[108] also draws parallels between toric varieties and lattice polytopes. Subse-
quently, many attempts to provide formulas for Ehrhart quasipolynomials—
some based on Theorem 10.7—have provided fertile ground for deeper con-
nections and future work; a long but by no means complete list of references
is [9, 33, 46, 55, 60, 61, 76, 91, 106, 107, 119, 125, 137, 146, 178].

Exercises

10.1. ♣ Show that Toddh h = h+ 1
2 . More generally, prove that Toddh hk =

Bk(h+ 1) for k ≥ 1, where Bk(x) denotes the kth Bernoulli polynomial.

10.2. ♣ Prove (10.5): Suppose P is a simple integral d-polytope. For a vertex
cone Kv of P, denote its generators by w1(v),w2(v), . . . ,wd(v) ∈ Zd and its
fundamental parallelepiped by Πv. Then∑

m∈P∩( 1
nZ)d

exp(m · z) =
∑

v a vertex of P

exp(v · z)
∑

m∈Πv∩Zd exp
(
m
n · z

)
∏d
k=1

(
1− exp

(
wk(v)
n · z

)) .

3 For more information about Maclaurin, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Maclaurin.html.
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10.3. ♣ Given a unimodular cone

K = {v + λ1w1 + λ2w2 + · · ·+ λdwd : λ1, λ2, . . . , λd ≥ 0} ,

where v,w1,w2, . . . ,wd ∈ Zd such that w1,w2, . . . ,wd are a basis for Zd,
show that

σK(z) =
zv∏d

k=1 (1− zwk)

and |det (w1, . . . ,wd)| = 1.

10.4. ♣ Prove (10.7). That is, for the simplicial cone

K =

{
v +

d∑
k=1

λkwk : λk ≥ 0

}

with v,w1,w2, . . . ,wd ∈ Qd, show that∫
K

exp(x · z) dx = (−1)d
exp (v · z) |det (w1(v), . . . ,wd(v))|∏d

k=1 (wk(v) · z)
.

10.5. Show that in the statement of Theorem 10.4, the expression

|det (w1(v), . . . ,wd(v))|∏d
k=1 (wk(v) · z)

remains invariant upon scaling each wk(v) by an independent positive integer.

Open Problems

10.6. Find all differentiable eigenfunctions of the Todd operator.

10.7. Classify all polytopes whose discrete and continuous volumes coincide,
that is, LP(1) = volP.

10.8. Which integer polytopes have a triangulation into d-simplices such that
each of the simplices is unimodular?
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Solid Angles

Everything you’ve learned in school as “obvious” becomes less and less obvious as
you begin to study the universe. For example, there are no solids in the universe.
There’s not even a suggestion of a solid. There are no absolute continuums. There
are no surfaces. There are no straight lines.

Buckminster Fuller (1895–1983)

The natural generalization of a two-dimensional angle to higher dimensions is
called a solid angle. Given a pointed cone K ⊂ Rd, the solid angle at its apex
is the proportion of space that the cone K occupies. In slightly different words,
if we pick a point x ∈ Rd “at random,” then the probability that x ∈ K is
precisely the solid angle at the apex of K. Yet another view of solid angles is
that they are in fact volumes of spherical polytopes: the region of intersection
of a cone with a sphere. There is a theory here that parallels the Ehrhart
theory of Chapters 3 and 4, but which has some genuinely new ideas.

11.1 A New Discrete Volume Using Solid Angles

Suppose P ⊂ Rd is a convex rational d-polyhedron. The solid angle ωP(x)
of a point x (with respect to P) is a real number equal to the proportion of a
small ball centered at x that is contained in P. That is, we let Bε(x) denote
the ball of radius ε centered at x and define

ωP(x) :=
vol (Bε(x) ∩ P)

volBε(x)

for all positive ε sufficiently small. We note that when x /∈ P, ωP(x) = 0;
when x ∈ P◦, ωP(x) = 1; when x ∈ ∂P, 0 < ωP(x) < 1. The solid angle
of a face F of P is defined by picking any point x in the relative interior F◦
and setting ωP(F) = ωP(x).
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Example 11.1. We compute the solid angles of the faces belonging to the
standard 3-simplex ∆ = conv {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}. As we just
mentioned, a point interior to ∆ has solid angle 1. Every facet has solid angle
1
2 (and this remains true for any polytope).

The story gets interesting with the edges: here we are computing dihedral
angles. The dihedral angle of any one-dimensional edge is defined by the
angle between the outward-pointing normal to one of its defining facets and
the inward-pointing normal to its other defining facet.

B

C

A

O

Each of the edges OA, OB, and OC in the above figure have the same
solid angle 1

4 . Turning to the edge AB, we compute the angle between its
defining facets as follows:

1
2π

cos−1

(
1√
3

(−1,−1,−1) · (0, 0,−1)
)

=
1

2π
cos−1

(
1√
3

)
.

The edges AC and BC have the same solid angle by symmetry.
Finally, we compute the solid angle of the vertices: the origin has solid

angle 1
8 , and the other three vertices all have the same solid angle ω. With

Corollary 11.9 below (the Brianchon–Gram relation), we can compute this
angle via

0 =
∑
F⊆P

(−1)dimFωP(F) = −1 + 4 · 1
2
−3 · 1

4
−3 · 1

2π
cos−1

(
1√
3

)
+

1
8

+ 3 ·ω ,

which gives ω = 1
2π cos−1

(
1√
3

)
− 1

8 . ut

We now introduce another measure of discrete volume; namely, we let
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AP(t) :=
∑

m∈tP∩Zd
ωtP(m) ,

the sum of the solid angles at all integer points in tP; recalling that ωP(x) = 0
if x /∈ P, we can also write

AP(t) =
∑

m∈Zd
ωtP(m) .

This new discrete volume measure differs in a substantial way from the
Ehrhart counting function LP(t). Namely, suppose P is a d-polytope that can
be written as the union of the polytopes P1 and P2 such that dim (P1 ∩ P2) <
d, that is, P1 and P2 are glued along a lower-dimensional subset. Then at each
lattice point m ∈ Zd, ωP1(m) + ωP2(m) = ωP(m), and so the function AP
has an additive property:

AP(t) = AP1(t) +AP2(t) . (11.1)

In contrast, the Ehrhart counting functions satisfy

LP(t) = LP1(t) + LP2(t)− LP1∩P2(t) .

On the other hand, we can transfer computational effort from the Ehrhart
counting functions to the solid-angle sum and vice versa, with the use of the
following lemma.

Lemma 11.2. Let P be a polytope. Then

AP(t) =
∑
F⊆P

ωP(F)LF◦(t) .

Proof. The dilated polytope tP is the disjoint union of its relative open faces
tF◦, so that we can write

AP(t) =
∑

m∈Zd
ωtP(m) =

∑
F⊆P

∑
m∈Zd

ωtP(m) 1tF◦(m) .

But ωtP(m) is constant on each relatively open face tF◦, and we called this
constant ωP(F), whence

AP(t) =
∑
F⊆P

ωP(F)
∑

m∈Zd
1tF◦(m) =

∑
F⊆P

ωP(F)LF◦(t) . ut

Thus AP(t) is a polynomial (respectively quasipolynomial) in t for an
integral (respectively rational) polytope P. We claim that Lemma 11.2 is in
fact useful in practice. To drive the point home, we illustrate this identity by
computing the solid-angle sum over all integer points of ∆ in Example 11.1.
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Example 11.3. We continue the solid-angle computation for the 3-simplex
∆ = conv {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}. We recall from Section 2.3 that
L∆◦ =

(
t−1

3

)
. The facets of ∆ are three standard triangles and one triangle

that appeared in the context of the Frobenius problem. All four facets have
the same interior Ehrhart polynomial

(
t−1

2

)
. A similar phenomenon holds for

the edges of ∆: all six of them have the same interior Ehrhart polynomial
t − 1. These polynomials add up, by Lemma 11.2 and Example 11.1, to the
solid-angle sum

A∆(t) =
(
t− 1

3

)
+ 4 · 1

2

(
t− 1

2

)
+
(

3 · 1
4

+ 3 · 1
2π

cos−1

(
1√
3

))
(t− 1)

+
1
8

+ 3 ·
(

1
2π

cos−1

(
1√
3

)
− 1

8

)
=

1
6
t3 +

(
3

2π
cos−1

(
1√
3

)
− 5

12

)
t .

The magic cancellation of the even terms of this polynomial is not a coinci-
dence, as we will discover in Theorem 11.7. The curious reader may notice
that the coefficient of t in this example is not a rational number, in stark
contrast with Ehrhart polynomials. ut

The analogue of Ehrhart’s theorem (Theorem 3.23) in the world of solid
angles is as follows.

Theorem 11.4 (Macdonald’s theorem). Suppose P is a rational convex
d-polytope. Then AP is a quasipolynomial of degree d whose leading coefficient
is volP and whose period divides the denominator of P.

Proof. The denominator of a face F ⊂ P divides the denominator of P, and
hence so does the period of LF , by Ehrhart’s theorem (Theorem 3.23). By
Lemma 11.2, AP is a quasipolynomial with period dividing the denominator
of P. The leading term of AP equals the leading term of LP◦ , which is volP,
by Corollary 3.20 and its extension in Exercise 3.29. ut

11.2 Solid-Angle Generating Functions and a
Brion-Type Theorem

By analogy with the integer-point transform of a polyhedron P ⊆ Rd, which
lists all lattice points in P, we form the solid-angle generating function

αP(z) :=
∑

m∈P∩Zd
ωP(m) zm.

Using the same reasoning as in (11.1) for AP , this function satisfies a nice
additivity relation. Namely, if the d-polyhedron P equals P1 ∪ P2, where
dim (P1 ∩ P2) < d, then
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αP(z) = αP1(z) + αP2(z) . (11.2)

This generating function obeys the following reciprocity relation, which par-
allels both the statement and proof of Theorem 4.3:

Theorem 11.5. Suppose K is a rational pointed d-cone with the origin as
apex, and v ∈ Rd. Then the solid-angle generating function αv+K(z) of the
pointed d-cone v +K is a rational function that satisfies

αv+K

(
1
z

)
= (−1)dα−v+K (z) .

Proof. Because solid angles are additive by (11.2), it suffices to prove this the-
orem for simplicial cones. The proof for this case proceeds along the same lines
as the proof of Theorem 4.2; the main geometric ingredient is Exercise 4.2.
We invite the reader to finish the proof (Exercise 11.5). ut

The analogue of Brion’s theorem in terms of solid angles is as follows.

Theorem 11.6. Suppose P is a rational convex polytope. Then we have the
following identity of rational functions:

αP(z) =
∑

v a vertex of P

αKv(z) .

Proof. As in the proof of Theorem 9.7, it suffices to prove Theorem 11.6 for
simplices. So let ∆ be a rational simplex. We write ∆ as the disjoint union of
its open faces and use Brion’s theorem for open polytopes (Exercise 9.7) on
each face. That is, if we denote the vertex cone of F at vertex v by Kv(F),
then by a monomial version of Lemma 11.2,

α∆(z) =
∑
F⊆∆

ω∆(F)σF◦(z)

=
∑

v a vertex of ∆

ω∆(v) zv +
∑
F⊆∆

dimF>0

ω∆(F)
∑

v a vertex of F

σKv(F)◦(z) ,

where we used Brion’s theorem for open polytopes (Exercise 9.7) in the second
step. By Exercise 11.6,∑
F⊆∆

dimF>0

ω∆(F)
∑

v a vertex of F

σKv(F)◦(z) =
∑

v a vertex of ∆

∑
F⊆Kv

dimF>0

ωKv(F)σF◦(z) ,

and so

α∆(z) =
∑

v a vertex of ∆

ω∆(v) zv +
∑

v a vertex of ∆

∑
F⊆Kv

dimF>0

ωKv(F)σF◦(z)

=
∑

v a vertex of ∆

∑
F⊆Kv

ωKv(F)σF◦(z)

=
∑

v a vertex of ∆

αKv(z) . ut
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11.3 Solid-Angle Reciprocity and the Brianchon–Gram
Relations

With the help of Theorems 11.5 and 11.6, we can now prove the solid-angle
analogue of Ehrhart–Macdonald reciprocity (Theorem 4.1):

Theorem 11.7 (Macdonald’s reciprocity theorem). Suppose P is a ra-
tional convex polytope. Then the quasipolynomial AP satisfies

AP(−t) = (−1)dimPAP(t) .

Proof. We give the proof for an integral polytope P and invite the reader to
generalize it to the rational case. The solid-angle counting function of P can
be computed through the generating function:

AP(t) = αtP(1, 1, . . . , 1) = lim
z→1

αtP(z) .

By Theorem 11.6,

AP(t) = lim
z→1

∑
v a vertex of P

αtKv(z) ,

where Kv is the tangent cone of P at the vertex v. We write Kv = v +K(v),
where K(v) := Kv − v is a rational cone with the origin as its apex. Then
tKv = tv + K(v) because a cone whose apex is the origin does not change
under dilation. Hence we obtain, with the help of Exercise 11.4,

AP(t) = lim
z→1

∑
v a vertex of P

αtv+K(v)(z) = lim
z→1

∑
v a vertex of P

ztvαK(v)(z) .

The rational functions αK(v)(z) on the right-hand side do not depend on t. If
we think of the sum over all vertices as one big rational function, to which we
apply L’Hôpital’s rule to compute the limit as z→ 1, this gives an alternative
proof that AP(t) is a polynomial, in line with our proof for the polynomiality
of LP(t) in Section 9.4. At the same time, this means we can view the identity

AP(t) = lim
z→1

∑
v a vertex of P

ztvαK(v)(z)

in a purely algebraic fashion: on the left-hand side we have a polynomial that
makes sense for any complex t, and on the right-hand side we have a rational
function of z, whose limit we compute, for example, by L’Hôpital’s rule. So
the right-hand side, as a function of t, makes sense for any integer t. Hence
we have the algebraic relation, for integral t,

AP(−t) = lim
z→1

∑
v a vertex of P

z−tvαK(v)(z) .
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But now by Theorem 11.5, αK(v)(z) = (−1)dαK(v)

(
1
z

)
, and so

AP(−t) = lim
z→1

∑
v a vertex of P

z−tv(−1)d αK(v)

(
1
z

)

= (−1)d lim
z→1

∑
v a vertex of P

(
1
z

)tv
αK(v)

(
1
z

)
= (−1)d lim

z→1

∑
v a vertex of P

αtv+K(v)

(
1
z

)
= (−1)d lim

z→1
αtP

(
1
z

)
= (−1)dAP(t) .

In the third step we used Exercise 11.4 again.
This proves Theorem 11.7 for integral polytopes. The proof for rational

polytopes follows along the same lines; one deals with rational vertices in the
same manner as in our second proof of Ehrhart’s theorem in Section 9.4. We
invite the reader to finish the details in Exercise 11.7. ut

We remark that throughout the proof, we cannot simply take the limit
inside the finite sum over the vertices of P, since z = 1 is a pole of each rational
function αK(v). It is precisely the magic of Brion’s theorem that makes these
poles cancel each other, to yield AP(t).

If P is an integral polytope, then AP is a polynomial, and Theorem 11.7
tells us that AP is always even or odd:

AP(t) = cd t
d + cd−2t

d−2 + · · ·+ c0 .

We can say more.

Theorem 11.8. Suppose P is a rational convex polytope. Then AP(0) = 0.

This is a meaningful zero. We note that the constant term of AP is given by

AP(0) =
∑
F⊆P

ωP(F)LF◦(0) =
∑
F⊆P

ωP(F) (−1)dimF ,

by Lemma 11.2 and Ehrhart–Macdonald reciprocity (Theorem 4.1). Hence
Theorem 11.8 implies a classical and useful geometric identity:

Corollary 11.9 (Brianchon–Gram relation). For a rational convex poly-
tope P, ∑

F⊆P

(−1)dimFωP(F) = 0 .
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Example 11.10. Consider a triangle T in R2 with vertices v1,v2,v3 and
edges E1, E2, E3. The Brianchon–Gram relation tells us that for this triangle,

ωT (v1) + ωT (v2) + ωT (v3)− (ωT (E1) + ωT (E2) + ωT (E3)) + ωT (T ) = 0 .

Since the solid angles of the edges are all 1
2 and ωT (T ) = 1, we recover

our friendly high-school identity “the sum of the angles in a triangle is 180
degrees”:

ωT (v1) + ωT (v2) + ωT (v3) =
1
2
.

Thus the Brianchon–Gram relation is the extension of this well-known fact to
any dimension and any convex polytope. ut

Proof of Theorem 11.8. It suffices to prove A∆(0) = 0 for a rational simplex
∆, since solid angles of a triangulation simply add, by (11.1). Theorem 11.7
gives A∆(0) = 0 if dim ∆ is odd.

So now suppose ∆ is a rational d-simplex, where d is even, with vertices
v1,v2, . . . ,vd+1. Let P(n) be the (d+ 1)-dimensional pyramid that we obtain
by taking the convex hull of (v1, 0) , (v2, 0) , . . . , (vd+1, 0), and (0, 0, . . . , 0, n),
where n is a positive integer (see Figure 11.1). Note that, since d+ 1 is odd,

x1

x2

x3

n

Fig. 11.1. The pyramid P(n) for a triangle ∆.

AP(n)(0) =
∑

F(n)⊆P(n)

(−1)dimF(n)ωP(n)(F(n)) = 0 .

We will conclude from this identity that
∑
F⊆∆(−1)dimFω∆(F) = 0, which

implies that A∆(0) = 0. To this end, we consider two types of faces of P(n):

(a) those that are also faces of ∆, and
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(b) those that are not contained in ∆.

We start with the latter: Aside from the vertex (0, 0, . . . , 0, n), every face F(n)
of P(n) that is not a face of ∆ is the pyramid over a face G of ∆; let’s denote
this pyramid by Pyr (G, n). Further, as n grows, the solid angle of Pyr (G, n)
(in P(n)) approaches the solid angle of G (in ∆):

lim
n→∞

ωP(n) (Pyr (G, n)) = ω∆ (G) ,

since we’re forming ∆×[0,∞) in the limit. On the other hand, a face F(n) = G
of P(n) that is also a face of ∆ obeys the following limit behavior:

lim
n→∞

ωP(n) (F(n)) =
1
2
ω∆ (G) .

The only face of P(n) that we still have to account for is the vertex v :=
(0, 0, . . . , 0, n). Hence

0 =
∑

F(n)⊆P(n)

(−1)dimF(n)ωP(n)(F(n))

= ωP(n)(v) +
∑
G⊆∆

(−1)dimG+1ωP(n) (Pyr (G, n))

+
∑
G⊆∆

(−1)dimGωP(n) (G) .

Now we take the limit as n→∞ on both sides; note that limn→∞ ωP(n)(v) =
0, so that we obtain

0 =
∑
G⊆∆

(−1)dimG+1ω∆ (G) +
∑
G⊆∆

(−1)dimG 1
2
ω∆ (G)

=
1
2

∑
G⊆∆

(−1)dimG+1ω∆ (G) ,

and so
A∆(0) =

∑
G⊆∆

(−1)dimGω∆(G) = 0 . ut

The combination of Theorems 11.7 and 11.8 implies that summing solid
angles in a polygon is equivalent to computing its area:

Corollary 11.11. Suppose P is a 2-dimensional integral polytope with area
A. Then AP(t) = A t2.
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11.4 The Generating Function of Macdonald’s
Solid-Angle Polynomials

We conclude this chapter with the study of the solid-angle analogue of Ehrhart
series. Given an integral polytope P, we define the solid-angle series of P as
the generating function of the solid-angle polynomial, encoding the solid-angle
sum over all dilates of P simultaneously:

SolidP(z) :=
∑
t≥0

AP(t) zt.

The following theorem is the solid-angle analogue to Theorems 3.12 and 4.4,
with the added bonus that we get the palindromy of the numerator of SolidP
for free.

Theorem 11.12. Suppose P is an integral d-polytope. Then SolidP is a ra-
tional function of the form

SolidP(z) =
adz

d + ad−1z
d−1 + · · ·+ a1z

(1− z)d+1
.

Furthermore, we have the identity

SolidP

(
1
z

)
= (−1)d+1 SolidP(z)

or, equivalently, ak = ad+1−k for 1 ≤ k ≤ d
2 .

Proof. The form of the rational function SolidP follows by Lemma 3.9 from
the fact that AP is a polynomial. The palindromy of a1, a2, . . . , ad is equivalent
to the relation

SolidP

(
1
z

)
= (−1)d+1 SolidP(z) ,

which, in turn, follows from Theorem 11.7:

SolidP(z) =
∑
t≥0

AP(t) zt =
∑
t≥0

(−1)dAP(−t) zt = (−1)d
∑
t≤0

AP(t) z−t.

Now we use Exercise 4.6:

(−1)d
∑
t≤0

AP(t) z−t = (−1)d+1
∑
t≥1

AP(t) z−t = (−1)d+1 SolidP

(
1
z

)
.

In the last step we used the fact that AP(0) = 0 (Theorem 11.8). ut
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Notes

1. I. G. Macdonald inaugurated the systematic study of solid-angle sums in
integral polytopes. The fundamental Theorems 11.4, 11.7, and 11.8 can be
found in his 1971 paper [123]. The proof of Theorem 11.7 we give here follows
[26].

2. The Brianchon–Gram relation (Corollary 11.9) is the solid-angle analogue
of the Euler relation for face numbers (Theorem 5.2). The 2-dimensional case
discussed in Example 11.10 is ancient; it was most certainly known to Euclid.
The 3-dimensional case of Corollary 11.9 was discovered by Charles Julien
Brianchon in 1837 and—as far as we know—was independently reproved by
Jørgen Gram in 1874 [88]. It is not clear who first proved the general d-
dimensional case of Corollary 11.9. The oldest proofs we could find were from
the 1960s, by Branko Grünbaum [90], Micha A. Perles, and Geoffrey C. Shep-
hard [142, 162].

3. Theorem 11.5 is a particular case of a reciprocity relation for simple lattice-
invariant valuations due to Peter McMullen [128], who also proved a parallel
extension of Ehrhart–Macdonald reciprocity to general lattice-invariant val-
uations. There is a current resurgence of activity on solid angles; see, for
example, [52].

Exercises

11.1. Compute AP(t), where P is the regular tetrahedron with vertices
(0, 0, 0), (1, 1, 0), (1, 0, 1), and (0, 1, 1) (see Exercise 2.13).

11.2. Compute AP(t), where P is the rational triangle with vertices (0, 0),(
1
2 ,

1
2

)
, and (1, 0).

11.3. For a simplex ∆, let S(∆) denote the sum of the solid angles at the
vertices of ∆.

(a) Prove that S(∆) ≤ 1
2 .

(b) Construct a sequence ∆n of simplices in a fixed dimension, such that
limn→∞ S(∆n) = 1

2 .

11.4. ♣ Let K be a rational d-cone and let m ∈ Zd. By analogy with Exer-
cise 3.5, show that αm+K(z) = zmαK(z).

11.5. ♣ Complete the proof of Theorem 11.5: For a rational pointed d-cone
K, αK(z) is a rational function that satisfies

αK

(
1
z

)
= (−1)dαK (z) .
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11.6. ♣ Suppose ∆ is a rational simplex. Prove that∑
F⊆∆

dimF>0

ω∆(F)
∑

v a vertex of F

σKv(F)◦(z) =
∑

v a vertex of ∆

∑
F⊆Kv

dimF>0

ωKv(F)σF◦(z) .

11.7. ♣ Provide the details of the proof of Theorem 11.7 for rational poly-
topes: Prove that if P is a rational convex polytope, then the quasipolynomial
AP satisfies

AP(−t) = (−1)dimPAP(t) .

11.8. Recall from Exercise 3.1 that to any permutation π ∈ Sd on d elements
we can associate the simplex

∆π := conv
{
0, eπ(1), eπ(1) + eπ(2), . . . , eπ(1) + eπ(2) + · · ·+ eπ(d)

}
.

Prove that for all π ∈ Sn, A∆π
(t) = 1

d! t
d.

11.9. Give a direct proof of Corollary 11.11, e.g., using Pick’s theorem (The-
orem 2.8).

11.10. State and prove the analogue of Theorem 11.12 for rational polytopes.

Open Problems

11.11. Study the roots of solid-angle polynomials.

11.12. Classify all polytopes that have only rational solid angles at their ver-
tices.

11.13. Which integral polytopes P have solid-angle polynomials AP(t) ∈
Q[t]? That is, for which integral polytopes P are all the coefficients of AP(t)
rational?
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A Discrete Version of Green’s Theorem Using
Elliptic Functions

The shortest route between two truths in the real domain passes through the complex
domain.

Jacques Salomon Hadamard (1865–1963)

We now allow ourselves the luxury of using basic complex analysis. In par-
ticular, we assume that the reader is familiar with contour integration and
the residue theorem. We may view the residue theorem as yet another re-
sult that intimately connects the continuous and the discrete: it transforms a
continuous integral into a discrete sum of residues.

Using the Weierstraß ℘ and ζ functions, we show here that Pick’s theorem
is a discrete version of Green’s theorem in the plane. As a bonus, we also
obtain an integral formula (Theorem 12.5 below) for the discrepancy between
the area enclosed by a general curve C and the number of integer points
contained in C.

12.1 The Residue Theorem

We begin this chapter by reviewing a few concepts from complex analysis.
Suppose the complex-valued function f has an isolated singularity w ∈ G;
that is, there is an open set G ⊂ C such that f is analytic on G \ {w}. Then
f can be expressed locally by the Laurent series

f(z) =
∑
n∈Z

cn (z − w)n ,

valid for all z ∈ G; here cn ∈ C. The coefficient c−1 is called the residue of f
at w; we will denote it by Res(z = w). The reason to give c−1 a special name
can be found in the following theorem. We call a function meromorphic if
it is analytic in C with the exception of isolated poles.
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Theorem 12.1 (Residue theorem). Suppose f is meromorphic and C is
a positively oriented, piecewise differentiable, simple, closed curve that does
not pass through any pole of f . Then∫

C

f = 2πi
∑
w

Res(z = w) ,

where the sum is taken over all singularities w inside C. ut

If f is a rational function, Theorem 12.1 gives the same result as the
partial fraction expansion of f . We illustrate this philosophy by returning to
the elementary beginnings of Chapter 1.

Example 12.2. Recall our constant-term identity for the restricted partition
function for A = {a1, a2, . . . , ad} in Chapter 1:

pA(n) = const
(

1
(1− za1) (1− za2) · · · (1− zad) zn

)
.

Computing the constant term of the Laurent series of 1
(1−za1 )···(1−zad )zn ex-

panded about z = 0 is, naturally, equivalent to “shifting” this function by one
exponent and computing the residue at z = 0 of the function

f(z) :=
1

(1− za1) (1− za2) · · · (1− zad) zn+1
.

Now let Cr be a positively oriented circle of radius r > 1, centered at the
origin. The residue Res(z = 0) = pA(n) is one of the residues that are picked
up by the integral

1
2πi

∫
Cr

f = Res(z = 0) +
∑
w

Res(z = w) ,

where the sum is over all nonzero poles w of f that lie inside Cr. These
poles are at the ath

1 , a
th
2 , . . . , a

th
d roots of unity. Moreover, with the help of

Exercise 12.1 we can show that

0 = lim
r→∞

1
2πi

∫
Cr

f

= lim
r→∞

(
Res(z = 0) +

∑
w

Res(z = w)

)
= Res(z = 0) +

∑
w

Res(z = w) ,

where the sum extends over all ath
1 , a

th
2 , . . . , a

th
d roots of unity. In other words,

pA(n) = Res(z = 0) = −
∑
w

Res(z = w) .
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To obtain the restricted partition function pA, it remains to compute the
residues at the roots of unity, and we invite the reader to realize that this
computation is equivalent to the partial fraction expansion of Chapter 1 (Ex-
ercise 12.2). ut

Analogous residue computations could replace any of the constant-term
calculations that we performed in the earlier chapters.

12.2 The Weierstraß ℘ and ζ Functions

The main character in our play is the Weierstraß ζ-function, defined by

ζ(z) =
1
z

+
∑

(m,n)∈Z2\(0,0)

(
1

z − (m+ ni)
+

1
m+ ni

+
z

(m+ ni)2

)
. (12.1)

This infinite sum converges uniformly on compact subsets of the lattice-
punctured plane C\Z2 (Exercise 12.4), and hence forms a meromorphic func-
tion of z.

The Weierstraß ζ-function possesses the following salient properties, which
follow immediately from (12.1):

(1) ζ has a simple pole at every integer point m+ni and is analytic elsewhere.
(2) The residue of ζ at each integer point m+ ni equals 1.

We can easily check (Exercise 12.5) that

℘(z) := −ζ ′(z) =
1
z2

+
∑

(m,n)∈Z2\(0,0)

(
1

(z − (m+ ni))2 −
1

(m+ ni)2

)
,

(12.2)
the Weierstraß ℘-function. The ℘-function has a pole of order 2 at each
integer point m+ni and is analytic elsewhere, but has residue equal to zero at
each integer point m+ni. However, ℘ possesses a very pleasant property that
ζ does not: ℘ is doubly periodic on C. We may state this more concretely:

Lemma 12.3. ℘(z + 1) = ℘(z + i) = ℘(z) .

Proof. We first invite the reader to prove the following two properties of ℘′

(Exercises 12.6 and 12.7):

℘′ (z + 1) = ℘′(z) , (12.3)∫ z1

z0

℘′ (z) dz is path independent. (12.4)

By (12.3),
d

dz
(℘ (z + 1)− ℘(z)) = ℘′ (z + 1)− ℘′(z) = 0 ,
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so ℘ (z + 1)− ℘(z) = c for some constant c. On the other hand, ℘ is an even
function (Exercise 12.8), and so z = − 1

2 gives us

c = ℘
(

1
2

)
− ℘

(
− 1

2

)
= 0 .

This shows that ℘ (z + 1) = ℘(z) for all z ∈ C\Z2. An analogous proof, which
we invite the reader to construct in Exercise 12.9, shows that ℘ (z + i) = ℘(z).

ut

Lemma 12.3 implies that ℘(z + m + ni) = ℘(z) for all m,n ∈ Z. The
following lemma shows that the Weierstraß ζ-function is only a conjugate-
analytic term away from being doubly periodic.

Lemma 12.4. There is a constant α such that the function ζ(z)+αz is doubly
periodic with periods 1 and i.

Proof. We begin with w = m+ ni:

ζ (z +m+ ni)− ζ(z) = −
∫ m+ni

w=0

℘ (z + w) dw , (12.5)

by definition of ℘(z) = −ζ ′(z). To make sure that (12.5) makes sense, we
should also check that the definite integral in (12.5) is path independent (Ex-
ercise 12.10).

Due to the double periodicity of ℘,∫ m+ni

w=0

℘ (z + w) dw = m

∫ 1

0

℘ (z + t) dt+ ni

∫ 1

0

℘ (z + it) dt

= mα(z) + niβ(z) ,

where

α(z) :=
∫ 1

0

℘ (z + t) dt and β(z) :=
∫ 1

0

℘ (z + it) dt .

Now we observe that α (z + x0) = α(z) for any x0 ∈ R, so that α (x+ iy)
depends only on y. Similarly, β (x+ iy) depends only on x. But

ζ (z +m+ in)− ζ(z) = − (mα(y) + inβ(x))

must be analytic for all z ∈ C \ Z2. If we now set m = 0, we conclude that
β(x) must be analytic in C \ Z2, so that β(x) must be a constant by the
Cauchy–Riemann equations for analytic functions. Similarly, setting n = 0
implies that α(y) is constant. Thus

ζ (z +m+ in)− ζ(z) = − (mα+ inβ)

with constants α and β. Going back to the Weierstraß ℘-function, we can
integrate the identity (Exercise 12.11)
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℘(iz) = −℘(z) (12.6)

to obtain the relationship β = −α, since

β =
∫ 1

0

℘ (z + it) dt =
∫ 1

0

℘ (it) dt = −
∫ 1

0

℘ (t) dt = −α .

To summarize, we have

ζ (z +m+ in)− ζ(z) = −mα+ inα = −α
(
z +m+ in− z

)
,

so that ζ(z) + αz is doubly periodic. ut

12.3 A Contour-Integral Extension of Pick’s Theorem

For the remainder of this chapter, let C be any piecewise-differentiable, simple,
closed curve in the plane, with a counterclockwise parametrization. We let D
denote the region that C contains in its interior.

Theorem 12.5. Let C avoid any integer point, that is, C ∩ Z2 = ∅. Let I
denote the number of integer points interior to C, and A the area of the region
D enclosed by the curve C. Then

1
2πi

∫
C

(ζ(z)− πz) dz = I −A .

Proof. We have∫
C

(ζ(z) + αz) dz =
∫
C

ζ(z) dz + α

∫
C

(x− iy) (dx+ idy) ,

where α is as in Lemma 12.4. By Theorem 12.1,
∫
C
ζ(z) dz is equal to the sum

of the residues of ζ at all of its interior poles. There are I such poles, and each
pole of ζ has residue 1. Thus

1
2πi

∫
C

ζ(z) dz = I . (12.7)

On the other hand, Green’s theorem tells us that∫
C

(x− iy) (dx+ idy) =
∫
C

(x− iy) dx+ (y + ix) dy

=
∫
D

∂

∂x
(y + ix)− ∂

∂y
(x− iy)

=
∫ ∫

D

2i

= 2iA .
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Going back to (12.7), we get∫
C

(ζ(z) + αz) dz = 2πiI + α (2iA) . (12.8)

We only have to show that α = −π. Consider the particular curve C that is
a square path, centered at the origin, traversing the origin counterclockwise,
and bounding a square of area 1. Thus I = 1 for this path. Since ζ(z) + αz
is doubly periodic by Lemma 12.4, the integral in (12.8) vanishes. We can
conclude that

0 = 2πi · 1 + α (2i · 1) ,

so that α = −π. ut

Notice that Theorem 12.5 has given us information about the Weierstraß
ζ-function, namely that α = −π.

This chapter offers a detour into an infinite landscape of discrete results
that meet their continuous counterparts. Equipped with the modest tools
offered in this book, we hope we have motivated the reader to explore this
landscape further. . .

Notes

1. The Weierstraß ℘-function, named after Karl Theodor Wilhelm Weier-
straß (1815–1897),1 can be extended to any two-dimensional lattice L =
{kw1 + jw2 : k, j ∈ Z} for some w1, w2 ∈ C that are linearly independent
over R:

℘L(z) =
1
z2

+
∑

m∈L\{0}

(
1

(z −m)2 −
1
m2

)
.

The Weierstraß ℘L-function and its derivative ℘′L satisfy a polynomial rela-
tionship, namely, (℘′L)2 = 4 (℘L)3 − g2 ℘L − g3 for some constants g2 and g3

that depend on L. This is the beginning of a wonderful friendship between
complex analysis and elliptic curves.

2. Theorem 12.5 appeared in [75]. There it is also shown that one can retrieve
Pick’s theorem (Theorem 2.8) from Theorem 12.5.

Exercises

12.1. ♣ Show that for positive integers a1, ad, . . . , ad, n,

1 For more information about Weierstraß, see
http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Weierstrass.html.
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lim
r→∞

∫
Cr

1
(1− za1) · · · (1− zad) zn+1

= 0 .

This computation shows that the integrand above “has no pole at infinity.”

12.2. ♣ Compute the residues at the nontrivial roots of unity of

f(z) =
1

(1− za1) · · · (1− zad) zn+1
.

For simplicity, you may assume that a1, a2, . . . , ad are pairwise relatively
prime.

12.3. Give an integral version of Theorem 2.13.

12.4. ♣ Show that

ζ(z) =
1
z

+
∑

(m,n)∈Z2\(0,0)

(
1

z − (m+ ni)
+

1
m+ ni

+
z

(m+ ni)2

)

converges absolutely for z belonging to compact subsets of C \ Z2.

12.5. ♣ Prove (12.2), that is,

ζ ′(z) = − 1
z2
−

∑
(m,n)∈Z2\(0,0)

(
1

(z − (m+ ni))2 −
1

(m+ ni)2

)
.

12.6. ♣ Prove (12.3), that is, show that ℘′ (z + 1) = ℘′(z).

12.7. ♣ Prove (12.4), that is, show that for any z0, z1 ∈ C \ Z2,
∫ z1
z0
℘′(w) dw

is path independent.

12.8. ♣ Show that ℘ is even, that is, ℘ (−z) = ℘(z).

12.9. ♣ Finish the proof of Lemma 12.3 by showing that ℘ (z + i) = ℘(z).

12.10. ♣ Prove that the integral in (12.5),

ζ (z +m+ ni)− ζ(z) = −
∫ w=m+ni

w=0

℘ (z + w) dw ,

is path independent.

12.11. ♣ Prove (12.6), that is, ℘(iz) = −℘(z).

Open Problems

12.12. Can we get even more information about the Weierstraß ℘ and ζ func-
tions by using more detailed knowledge of the discrepancy between I and A
for special curves C?

12.13. Find a complex-analytic extension of Theorem 12.5 to higher dimen-
sions.
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Vertex and Hyperplane Descriptions of
Polytopes

Everything should be made as simple as possible, but not simpler.

Albert Einstein

In this appendix, we prove that every polytope has a vertex and a hyperplane
description. This appendix owes everything to Günter Ziegler’s beautiful ex-
position in [193]; in fact, these pages contain merely a few cherries picked from
[193, Lecture 1].

As in Chapter 3, it is easier to move to the world of cones. To be as concrete
as possible, let us call K ⊆ Rd an h-cone if

K =
{
x ∈ Rd : A x ≤ 0

}
for some A ∈ Rm×d; in this case K is given as the intersection of m halfspaces
determined by the rows of A. We use the notation K = hcone(A).

On the other hand, we call K ⊆ Rd a v-cone if

K = {B y : y ≥ 0}

for some B ∈ Rd×n, that is, K is a pointed cone with the column vectors of
B as generators. In this case we use the notation K = vcone(B).

Note that, according to our definitions, any h- or v-cone contains the origin
in its apex. We will prove that every h-cone is a v-cone and vice versa. More
precisely:

Theorem A.1. For every A ∈ Rm×d there exists B ∈ Rd×n (for some n)
such that hcone(A) = vcone(B). Conversely, for every B ∈ Rd×n there exists
A ∈ Rm×d (for some m) such that vcone(B) = hcone(A).

We will prove the two halves of Theorem A.1 in Sections A.1 and A.2. For
now, let us record that Theorem A.1 implies our goal, that is, the equivalence
of the vertex and halfspace description of a polytope:
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Corollary A.2. If P is the convex hull of finitely many points in Rd, then P
is the intersection of finitely many half-spaces in Rd. Conversely, if P is given
as the bounded intersection of finitely many half-spaces in Rd, then P is the
convex hull of finitely many points in Rd.

Proof. If P = conv {v1,v2, . . . ,vn} for some v1,v2, . . . ,vn ∈ Rd, then coning
over P (as defined in Chapter 3) gives

cone(P) = vcone
(

v1 v2 . . . vn
1 1 1

)
.

By Theorem A.1 we can find a matrix (A,b) ∈ Rm×(d+1) such that

cone(P) = hcone(A,b) =
{
x ∈ Rd+1 : (A,b) x ≤ 0

}
.

We recover the polytope P upon setting xd+1 = 1, that is,

P =
{
x ∈ Rd : Ax ≤ −b

}
,

which is a hyperplane description of P.
These steps can be reversed: Suppose the polytope P is given as

P =
{
x ∈ Rd : Ax ≤ −b

}
for some A ∈ Rm×d and b ∈ Rm. Then P can be obtained from

hcone(A,b) =
{
x ∈ Rd+1 : (A,b) x ≤ 0

}
by setting xd+1 = 1. By Theorem A.1 we can construct a matrix B ∈ R(d+1)×n

such that
hcone(A,b) = vcone(B) .

We may normalize the generators of vcone(B), that is, the columns of B, such
that they all have (d+ 1)st variable equal to one:

B =
(

v1 v2 . . . vn
1 1 1

)
.

Since P can be recovered from vcone(B) by setting xd+1 = 1, we conclude
that P = conv {v1,v2, . . . ,vn}. ut

A.1 Every h-cone is a v-cone

Suppose
K = hcone(A) =

{
x ∈ Rd : Ax ≤ 0

}
for some A ∈ Rm×d. We introduce an auxiliary m-dimensional variable y and
write
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K =
{(

x
y

)
∈ Rd+m : A x ≤ y

}
∩
{(

x
y

)
∈ Rd+m : y = 0

}
. (A.1)

(Strictly speaking, this is K lifted into a d-dimensional subspace of Rd+m.)
Our goal in this section is to prove the following two lemmas.

Lemma A.3. The h-cone
{(

x
y

)
∈ Rd+m : A x ≤ y

}
is a v-cone.

Lemma A.4. If K ⊆ Rd is a v-cone, then so is K ∩
{
x ∈ Rd : xk = 0

}
, for

any k.

The first half of Theorem A.1 follows with these two lemmas, as we can start
with (A.1) and intersect with one hyperplane yk = 0 at a time.

Proof of Lemma A.3. We start by noting that

K =
{(

x
y

)
∈ Rd+m : A x ≤ y

}
=
{(

x
y

)
∈ Rd+m : (A,−I)

(
x
y

)
≤ 0

}
is an h-cone; here I represents an m ×m identity matrix. Let us denote the
kth unit vector by ek. Then we can decompose(

x
y

)
=

d∑
j=1

xj

(
ej

A ej

)
+

m∑
k=1

(yk − (A x)k)
(

0
ek

)

=
d∑
j=1

|xj | sign (xj)
(

ej
A ej

)
+

m∑
k=1

(yk − (A x)k)
(

0
ek

)
.

Note that if
(
x
y

)
∈ K then yk− (A x)k ≥ 0 for all k, and so

(
x
y

)
can be written

as a nonnegative linear combination of the vectors sign (xj)
(

ej
Aej

)
, 1 ≤ j ≤ d,

and
(

0
ek

)
, 1 ≤ k ≤ m. But this means that K is a v-cone. ut

Proof of Lemma A.4. Suppose K = vcone(B), where B has the column vec-
tors b1,b2, . . . ,bn ∈ Rd; that is, b1,b2, . . . ,bn are the generators of K. Fix
k ≤ d and construct a new matrix Bk whose column vectors are all bj for
which bjk = 0, and the combinations bikbj − bjkbi whenever bik > 0 and
bjk < 0. We claim that

K ∩
{
x ∈ Rd : xk = 0

}
= vcone (Bk) .

Every x ∈ vcone (Bk) satisfies xk = 0 by construction of Bk, and so
vcone (Bk) ⊆ K∩

{
x ∈ Rd : xk = 0

}
follows immediately. We need to do some

more work to prove the reverse containment.
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Suppose x ∈ K∩
{
x ∈ Rd : xk = 0

}
, that is, x = λ1b1 +λ2b2 + · · ·+λnbn

for some λ1, λ2, . . . , λn ≥ 0 and xk = λ1b1k + λ2b2k + · · · + λnbnk = 0. This
allows us to define

Λ =
∑

i: bik>0

λibik = −
∑

j: bjk<0

λjbjk .

Note that Λ ≥ 0. Now consider the decomposition

x =
∑

j: bjk=0

λjbj +
∑

i: bik>0

λibi +
∑

j: bjk<0

λjbj . (A.2)

If Λ = 0 then λibik = 0 for all i such that bik > 0, and so λi = 0 for these i.
Similarly, λj = 0 for all j such that bjk < 0. Thus we conclude from Λ = 0
that

x =
∑

j: bjk=0

λjbj ∈ vcone (Bk) .

Now assume Λ > 0. Then we can expand the decomposition (A.2) into

x =
∑

j: bjk=0

λjbj +
1
Λ

− ∑
j: bjk<0

λjbjk

( ∑
i: bik>0

λibi

)

+
1
Λ

( ∑
i: bik>0

λibik

) ∑
j: bjk<0

λjbj


=

∑
j: bjk=0

λjbj +
1
Λ

∑
i: bik>0
j: bjk<0

λiλj (bikbj − bjkbi) ,

which is by construction in vcone (Bk). ut

A.2 Every v-cone is an h-cone

Suppose
K = vcone(B) = {B y : y ≥ 0}

for some B ∈ Rd×n. Then K is the projection of{(
x
y

)
∈ Rd+n : y ≥ 0, x = B y

}
(A.3)

to the subspace
{(

x
y

)
∈ Rd+n : y = 0

}
. The constraints for (A.3) can be writ-

ten as

y ≥ 0 and (I,−B)
(

x
y

)
= 0 .

Thus the set (A.3) is an h-cone, for which we can project one component of
y at a time to obtain K. This means that it suffices to prove the following
lemma to finish the second half of Theorem A.1.
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Lemma A.5. If K is an h-cone, then the projection {x− xkek : x ∈ K} is
also an h-cone, for any k.

Proof. Suppose K = hcone(A) for some A ∈ Rm×d. Fix k and consider

Pk = {x + λek : x ∈ K, λ ∈ R} .

The projection we’re after can be constructed from this set as

{x− xkek : x ∈ K} = Pk ∩
{
x ∈ Rd : xk = 0

}
,

so that it suffices to prove that Pk is an h-cone.
Suppose a1,a2, . . . ,am are the row vectors of A. We construct a new ma-

trix Ak whose row vectors are all aj for which ajk = 0, and the combinations
aikaj − ajkai whenever aik > 0 and ajk < 0. We claim that Pk = hcone (Ak).

If x ∈ K then A x ≤ 0, which implies Ak x ≤ 0 because each row of Ak is
a nonnegative linear combination of rows of A; that is, K ⊆ hcone (Ak). How-
ever, the kth component of Ak is zero by construction, and so K ⊆ hcone (Ak)
implies Pk ⊆ hcone (Ak).

Conversely, suppose x ∈ hcone (Ak). We need to find a λ ∈ R such that
A (x− λek) ≤ 0, that is,

a11x1 + · · ·+ a1k (xk − λ) + · · ·+ a1dxd ≤ 0
...

am1x1 + · · ·+ amk (xk − λ) + · · ·+ amdxd ≤ 0 .

The jth constraint is aj · x − ajkλ ≤ 0, that is, aj · x ≤ ajkλ. This gives the
following conditions on λ:

λ ≥ ai · x
aik

if aik > 0 ,

λ ≤ aj · x
ajk

if ajk < 0 .

Such a λ exists because if aik > 0 and ajk < 0 then (since x ∈ hcone (Ak))

(aikaj − ajkai) · x ≤ 0 ,

which is equivalent to
ai · x
aik

≤ aj · x
ajk

.

Thus we can find a λ that satisfies
ai · x
aik

≤ λ ≤ aj · x
ajk

,

which proves hcone (Ak) ⊆ Pk. ut
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Triangulations of Polytopes

Obvious is the most dangerous word in mathematics.

Eric Temple Bell

The goal of this appendix is to prove Theorem 3.1. Recall that a triangula-
tion of a convex d-polytope P is a finite collection T of d-simplices with the
following properties:

• P =
⋃

∆∈T
∆ .

• For any ∆1,∆2 ∈ T , ∆1 ∩∆2 is a face common to both ∆1 and ∆2.

Theorem 3.1 says that P can be triangulated using no new vertices, that is,
there exists a triangulation T such that the vertices of any ∆ ∈ T are vertices
of P. In preparation, we first show that a triangulation of a polytope induces
a triangulation on any of its facets in a natural way.

Lemma B.1. Suppose T (P) is a triangulation of the d-polytope P, and F is
a facet of P. Then

T (F) := {S ∩ F : S ∈ T (P), dim (S ∩ F) = d− 1}

is a triangulation of F .

Proof. To avoid unnecessary notation, we write
⋃
T (F) for

⋃
∆∈T (F) ∆. We

have to show:

(i) F =
⋃
T (F) .

(ii) For any ∆1,∆2 ∈ T (F), ∆1 ∩∆2 is a face common to both ∆1 and ∆2.

(i) First,
⋃
T (F) ⊆ F by definition of T (F). Now we will show that F \⋃

T (F) = ∅, by means of contradiction. Let x ∈ F \
⋃
T (F). If there is a

neighborhood N of x in F that contains no points of
⋃
T (F), then N consists
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only of points contained in some simplices from T (P) that meet F in a set of
dimension less than d− 1, which is impossible since dimN = d− 1 and there
are only finitely many simplices in T (P). Hence any neighborhood of x in F
contains points in some ∆ ∈ T (F). However,

⋃
T (F) is closed, and so such

an x cannot exist. Hence F \
⋃
T (F) = ∅.

(ii) Given ∆1,∆2 ∈ T (F), there are S1,S2 ∈ T (P) such that

∆1 = S1 ∩ F and ∆2 = S2 ∩ F

and the intersections of both S1 and S2 with F are (d− 1)-dimensional. Now
∆1 ∩∆2 = S1 ∩ S2 ∩F , and since S1,S2 ∈ T (P), S1 ∩ S2 is a face of both S1

and S2. That is, there are hyperplanes H1 and H2 in Rd such that

S1 ∩ S2 = S1 ∩H1 and S1 ∩ S2 = S2 ∩H2 .

The (d− 1)-hyperplanes H1, H2 in Rd induce the (d− 2)-hyperplanes

h1 := H1 ∩ spanF and h2 := H2 ∩ spanF

in spanF . We claim that h1 ∩∆1 = ∆1 ∩∆2 = h2 ∩∆2, that is, ∆1 ∩∆2 is a
face of both ∆1 and ∆2. Indeed,

h1 ∩∆1 = h1 ∩ (S1 ∩ F)
= (H1 ∩ spanF) ∩ (S1 ∩ F)
= (H1 ∩ S1) ∩ (F ∩ spanF)
= (S1 ∩ S2) ∩ F
= ∆1 ∩∆2 ,

and a practically identical calculation gives h2 ∩∆2 = ∆1 ∩∆2 . ut

Proof of Theorem 3.1. We use induction on the number of vertices of the d-
polytope P. If P has d+ 1 vertices, then P is a simplex, and {P} is a trian-
gulation.

For the induction step, suppose we are given a d-polytope P with at least
d+2 vertices. Fix a vertex v of P such that Q, the convex hull of the remaining
vertices of P, is still of dimension d. By the induction hypothesis, we can
triangulate Q.

We call a facet F of Q visible from v if for any x ∈ F , the half-open line
segment (x,v] is disjoint from Q. By the Lemma, the triangulation T (Q) of
Q induces the triangulation

T (F) = {∆ ∩ F : ∆ ∈ T (Q), dim (∆ ∩ F) = d− 1}

of a facet F of Q.
Let T consist of the convex hulls of v with each (d− 1)-simplex in the tri-

angulations of the visible facets. We claim that T ∪T (Q) forms a triangulation
of P. To prove this, we have to show:
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(i) P =
⋃

(T ∪ T (Q)) .
(ii) For any ∆1,∆2 ∈ T ∪ T (Q), ∆1 ∩ ∆2 is a face common to both ∆1

and ∆2.

(i) P ⊇
⋃

(T ∪ T (Q)) follows by the definitions of T and T (Q). To prove
P ⊆

⋃
(T ∪ T (Q)), assume x ∈ P is given. If x ∈ Q then x ∈

⋃
T (Q). If

x ∈ P \Q, consider the line through v and x. This line meets Q (because P is
convex), so let y ∈ Q be the first point in Q that we meet when traveling along
the line towards Q. This point y is on a facet of Q that is, by construction,
visible from v, and hence x ∈ ∆ for some ∆ ∈ T .

(ii) Given ∆1,∆2 ∈ T ∪ T (Q), there are three cases:

(a) ∆1,∆2 ∈ T (Q);
(b) ∆1,∆2 ∈ T ;
(c) ∆1 ∈ T,∆2 ∈ T (Q).

In each case we have to show that ∆1 ∩∆2 is a face common to ∆1 and ∆2.

(a) Since T (Q) is a triangulation, ∆1 ∩∆2 is a face of both ∆1 and ∆2.

(b) Given ∆1,∆2 ∈ T , there exist S1, S2 ∈ T (F) such that ∆1 = conv {v, S1}
and ∆2 = conv {v, S2}. Since T (F) is a triangulation, S1∩S2 is a face common
to S1 and S2. By convexity, ∆1 ∩∆2 = conv {v, S1 ∩ S2}. Exercise 2.6 shows
that S1 ∩ S2 is a simplex, and that this simplex is the convex hull of some
of the common vertices of S1 and S2. But then ∆1 ∩∆2 = conv {v, S1 ∩ S2}
is the convex hull of some of the common vertices of ∆1 and ∆2 and hence,
again by Exercise 2.6, a face of both ∆1 and ∆2.

(c) Since ∆1 ∈ T , there exists S ∈ T (F) such that ∆1 = conv {v, S}. By
construction, ∆1 ∩ Q = S, and S is a face of some ∆ ∈ T (Q). Since T (Q) is
a triangulation, ∆ ∩∆2 is a face common to ∆ and ∆2. But then

∆1 ∩∆2 = S ∩∆2 = (S ∩∆) ∩∆2 = S ∩ (∆ ∩∆2)

is an intersection of two faces of ∆ and hence by Exercise 2.6 again a face of
∆ and a simplex. The vertices of ∆1 ∩ ∆2 = S ∩ (∆ ∩∆2) form a subset of
the vertices common to S and ∆2. Since S is a face of ∆1, ∆1 ∩∆2 is a face
of both ∆1 and ∆2, by Exercise 2.6. ut





Hints for ♣ Exercises

Well here’s another clue for you all.

John Lennon & Paul McCartney (“Glass Onion,” The White Album)

Chapter 1

1.1 Set up the partial fraction expansion as

z

1− z − z2
=

A

1− 1+
√

5
2 z

+
B

1− 1−
√

5
2 z

and clear denominators to compute A and B; one can do so, for example, by
specializing z.

1.2 Multiply out (1 − z)
(
1 + z + z2 + · · ·+ zn

)
. For the infinite sum, note

that limk→∞ zk = 0 if |z| < 1.

1.3 Start with the observation that there are bxc + 1 lattice points in the
interval [0, x].

1.4 (i) & (j) Write n = qm + r for some integers q, r such that 0 ≤ r < m.
Distinguish the cases r = 0 and r > 0.

1.9 Use the fact that if m and n are relatively prime, given any a ∈ Z there
exists b ∈ Z (which is unique modulo n) such that mb ≡ a (mod n). For the
second equality of sets, think about the case a = 0.

1.12 First translate the line segment to the origin and explain why this trans-
lation leaves the integer-point enumeration invariant. For the case (a, b) =
(0, 0), first study the problem under the restriction that gcd (c, d) = 1.

1.17 Given a triangle T with vertices on the integer lattice, consider the
parallelogram P formed by two fixed edges of T . Use integral translates of P
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to tile the plane R2. Conclude from this tiling that P contains only its vertices
as lattice points if and only if the area of P is 1.

1.20 Given an integer b, the Euclidean algorithm asserts the existence
of m1,m2, . . . ,md ∈ Z such that b can be represented as b = m1a1 +
m2a2 + · · · + mdad. Convince yourself that we can demand that in this rep-
resentation 0 ≤ m2,m3, . . . ,md < a1. Conclude that all integers beyond
(a1 − 1) (a2 + a3 + · · ·+ ad) are representable in terms of a1, a2, . . . , ad. (This
argument can be refined to yield another proof of Theorem 1.2.)

1.21 Use the setup

f(z) =
A1

z
+
A2

z2
+ · · ·+ An

zn
+

B1

z − 1
+

B2

(z − 1)2
+
a−1∑
k=1

Ck
z − ξka

+
b−1∑
j=1

Dj

z − ξjb
.

To compute Ck, multiply both sides by
(
z − ξka

)
and calculate the limit as

z → ξka . The coefficients Dj can be computed in a similar fashion.

1.22 Use Exercise 1.9 (with m = b−1) on the left-hand side of the equation.

1.24 Suppose a > b. The integer a+ b certainly has a representation in terms
of a and b, namely, 1 · a + 1 · b. Think about how the coefficient of b would
change if we changed the coefficient of a.

1.29 Use the partial fraction setup (1.11), multiply both sides by
(
z − ξka1

)
,

and take the limit as z → ξka1
.

1.31 Convince yourself of the generating-function setup∑
n≥1

p◦A(n) zn =
(

za1

1− za1

)(
za2

1− za2

)
· · ·
(

zad

1− zad

)
.

Now use the machinery of Section 1.5.

Chapter 2

2.1 Use Exercise 1.3 for the closed interval. For open intervals, you can
use Exercise 1.4(j) or the d. . . e notation of Exercise 1.4(e). To show the
quasipolynomial character, rewrite the greatest-integer function in terms of
the fractional-part function.

2.2 Write R as a direct product of two intervals and use Exercise 1.3.

2.6 Start by showing that the convex hull of a d-element subset W of V is
a face of ∆. This allows you to prove the first statement by induction (using
Exercise 2.5). For the converse statement, given a supporting hyperplane H
that defines the face F of ∆, let W ⊆ V consist of those vertices of ∆ that
are in H. Now prove that any point
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x = λ1v1 + λ2v2 + · · ·+ λd+1vd+1

in F has to satisfy λk = 0 for all vk /∈W .

2.7 First show that the linear inequalities and equations describing a rational
polytope can be chosen with rational coefficients, and then clear denominators.

2.8

(a) Prove that, as rational functions,
∑
j≥0 j

dzj = (−1)d+1
∑
j≥0 j

d
(

1
z

)j .
(b) Use the fact that

Pd
k=0 A(d,k)zk

(1−z)d+1 = z d
dz

(Pd−1
k=0 A(d−1,k)zk

(1−z)d

)
.

(c) Start by proving one of the remarks in the Notes of Chapter 2, namely,
that A (d, k) counts the permutations of {1, 2, . . . , d} with k − 1 ascents.

(d) Use the fact that
∑d
k=0A (d, k) zk = (1− z)d+1

∑
j≥0 j

dzj .

2.9 Write 1
(1−z)d+1 =

(∑
k1≥0 z

k1

)(∑
k2≥0 z

k2

)
· · ·
(∑

kd+1≥0 z
kd+1

)
and

come up with a combinatorial enumeration scheme to compute the coefficients
of this power series.

2.10 Write
(
t+k
d

)
= (t+k)(t+k−1)···(t+k−d+1)

d! and switch t to −t.

2.14 Think about the poles of the function z
ez−1 and use a theorem from

complex analysis.

2.15 Compute the generating function of Bd(1− x) and rewrite it as ze−xz

1−e−z .

2.16 Show that z
ez−1 + 1

2z is an even function of z.

2.23 Follow the steps of the proof of Theorem 2.4.

2.24 Extend T to a rectangle whose diagonal is the hypotenuse of T , and
consider the lattice points on this diagonal separately.

2.25 For the area use elementary calculus. For the number of boundary
points on tP, extend Exercise 1.12 to a set of line segments whose union
forms a simple closed curve.

2.31 Rewrite the inequality as
(⌈
ta
d

⌉
− 1
)
e+

(⌈
tb
d

⌉
− 1
)
f ≤ tr and compare

this with the definition of T .

2.32 To compute C3, multiply both sides of (2.20) by (z − 3)2 and compute
the limit as z → 1. The coefficients Aj and Bl can be computed in a similar
fashion. To compute C2, first move C3

(z−1)3 in (2.20) to the left-hand side,
then multiply by (z − 1)2 and take the limit as z → 1. A similar, even more
elaborate, computation gives C1. (Alternatively, compute the Laurent series
of the function in (2.20) at z = 1 with a computer algebra system such as
Maple or Mathematica.)

2.34 Follow the proof of Theorem 2.10. Use Exercise 2.33 to compute the ad-
ditional coefficients in the partial fraction expansion of the generating function
corresponding to this lattice-point count.
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2.36 Start with computing the constant term of

1
(1− z1z2) (1− z2

1z2) (1− z1) (1− z2) z3t
1 z

2t
2

with respect to z2 by treating z1 as a constant and setting up a partial fraction
expansion of this function with respect to z2.

Chapter 3

3.2 Write the simplicial cones as cones over simplices and use Exercise 2.6.

3.4 Write down a typical term of the product

σS (z1, z2, . . . , zm)σT (zm+1, zm+2, . . . , zm+n) .

3.5 Multiply out zmσK(z).

3.6 Write a typical term in σS

(
1
z1
, 1
z2
, . . . , 1

zd

)
= σS

(
z−1

1 , z−1
2 , . . . , z−1

d

)
.

3.8 Given the polynomial f , split up the generating function on the left-hand
side according to the terms of f and use (2.2). Conversely, if the polynomial
g is given, use (2.6).

3.13 Show that H ∩ Zd is a Z-module. Therefore it has a basis; extend this
basis to a basis of Zd.

3.14 Start by proving the result for a single hyperplane, for example, by
referring to Exercise 3.13.

3.19 Given f , split up the generating function on the left-hand side according
to the constituents of f ; then use Exercise 3.8. Conversely, given g and h,
multiply both by a polynomial to get the denominator on the right-hand side
into the form (1− zp)d+1; then use (2.6).

3.20 Start with the setup on page 73, and closely orient yourself along the
proof of Theorem 3.8.

3.29 Use Lemma 3.19.

Chapter 4

4.1 Use Exercise 2.1.

4.2 Use the explicit description of Π given by (4.3).

4.3 Consider each simplicial cone Kj separately, and look at the arrangement
of its bounding hyperplanes. For each hyperplane, use Exercise 3.13.
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4.6 For (a), convince yourself that Q(−t) is also a quasipolynomial. For (b),
use (1.3). For (c), differentiate (1.3). For (d), think about one constituent of
the quasipolynomial at a time.

4.7 In the generating function for LP(t−k), make a change in the summation
variable; then use Theorem 4.4.

4.12 Use the fact that A has only integral entries. For the second part, write
down the explicit hyperplane descriptions of (t+ 1)P◦ and tP.

4.13 Assume that there exist t ∈ Z and a facet hyperplane H of P such that
there is a lattice point between tH and (t+ 1)H. Translate this lattice point
to a lattice point that violates (4.12).

Chapter 5

5.4 Consider an interval [F ,P] in the face lattice of P: [F ,P] contains all
faces G such that F ⊆ G ⊆ P. Prove that if P is simple, any such interval is
isomorphic to a Boolean lattice.

5.5 Use Exercise 2.6 to show that the face lattice of a simplex is isomorphic
to a Boolean lattice.

Chapter 6

6.1 Think permutation matrices.

6.3 Show that the rank of (6.5) is 2n− 1.

6.5 Start by showing that all permutation matrices are indeed vertices. Then
use Exercise 6.4 to show that there are no other vertices.

6.6 Establish a bijection between semimagic squares with line sum t−n and
semimagic squares with positive entries and line sum t.

6.7 Think about the smallest possible line sum if the entries of the square
are positive integers.

6.8 Follow the computation on page 110 that led to the formula for H2.

6.9 Multiply both sides of (6.7) by
(
w − 1

zk

)
and take the limit as w → 1

zk
.

6.10 Orient yourself along the computation in (6.10).

6.16 Compute the matrix equivalent to (6.5) for the polytope describing all
magic squares of a given size. Show that this matrix has rank 2n+ 1.

6.18 Orient yourself along the computation on page 110.
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Chapter 7

7.2 Use Exercise 7.1.

7.5 Differentiate (1.3).

7.6 Use (1.3).

7.7 Write an arbitrary function on Z with period b in terms of δm(x), 1 ≤
m ≤ b.

7.8 Use the definition (7.6) of the inner product and the properties zz = |z|2
and (zw) = z · w for complex numbers z and w.

7.14 Use the definition (7.4) and simplify the fractional-part function in the
sum on the right-hand side.

7.22 Use the definition of F.

Chapter 8

8.5 Use Exercise 1.9.

8.7 Use the methods outlined in the hints for Exercises 1.21 and 2.32 to
compute the partial fraction coefficients for z = 1 in (8.3).

8.9 Multiply out all the terms on the left-hand side and make use of Exercises
1.9 and 7.14.

8.11 Use the methods outlined in the hints for Exercises 1.21 and 2.32 to
compute a partial fraction expansion of (8.7).

Chapter 9

9.1 Show that (spanF)⊥ ∩ KF is a cone. Then prove that if H is a defining
hyperplane for F , then H ∩ (spanF)⊥ is a hyperplane in the vector space
(spanF)⊥. Finally, show that this hyperplane H ∩ (spanF)⊥ defines the apex
of (spanF)⊥ ∩ KF , and that this apex is a point.

9.2 Consider the hyperplanes H1, H2, . . . ,Hd+1 that bound ∆. For each hy-
perplane Hk, denote by H+

k the closed half-space bounded by Hk that con-
tains ∆, and by H−k the open half-space bounded by Hk that does not con-
tain ∆. Show that every tangent cone of ∆ is the intersection of some of the
H+
k ’s, and conversely, that every intersection of some of the H+

k ’s, except
for ∆ =

⋂d+1
k=1H

+
k , is a tangent cone of ∆. Since H+

k ∪ H
−
k = Rd as a dis-

joint union, for each k, the point x is either in H+
k or H−k . Prove that the

intersection of those H+
k that contain x is the sought-after tangent cone.
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9.4 As in Exercise 5.5, show that the face lattice of a simplex is a Boolean
lattice. Note that any sublattice of a Boolean lattice is again Boolean.

9.6 One approach to this problem is first to dilate P and the corresponding
hyperplanes in H by a small factor. To avoid subtleties, first translate P by
an integer vector, if necessary, to ensure that none of the hyperplanes in H
contains the origin. Use Exercise 3.13.

9.7 Adjust the steps in Section 9.3 to open polytopes. Start by proving a
Brianchon–Gram identity for open simplices, by analogy with Theorem 9.5.
This implies a Brion-type identity for open simplices, as in Corollary 9.6.
Finally, adjust the proof of Theorem 9.7 to open polytopes.

Chapter 10

10.1 Use (10.3), Exercise 2.18, and (2.11).

10.3 Use the definition of unimodularity to show that the only integer point
in the fundamental parallelepiped of K is v.

10.4 Orient yourself along the proof of Theorem 10.4; instead of a sum over
vertex cones, just consider one simple cone K.

Chapter 11

11.4 Multiply out zmαK(z).

11.5 Orient yourself along the proof of Theorem 4.2. Note that for solid
angles, we do not require the condition that the boundary of K contains no
lattice point.

11.6 As a warm-up exercise, show that∑
F⊆∆

dimF>0

∑
v a vertex of F

σKv(F)◦(z) =
∑

v a vertex of ∆

∑
F⊆Kv

dimF>0

σF◦(z) .

11.7 Start with the setup of our second proof of Ehrhart’s theorem in Sec-
tion 9.4; that is, it suffices to prove that if p is the denominator of P, then
AP(−r − pt) = (−1)dimPAP(r + pt) for any integers r and t with 0 ≤ r < p
and t > 0. (Think of r as fixed and t as variable.) Now orient yourself along
the proof on page 182.

Chapter 12

12.1 Bound the integral from above, using the length of Cr and an upper
bound for the absolute value of the integrand.
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12.2 The nontrivial roots of unity are simple poles of f , for which the residue
computation boils down to a simple limit.

12.4 Start by combining the terms 1
z−(m+ni) and 1

m+ni into one fraction.

12.5 Differentiate (12.1) term by term.

12.6 Compute ℘′ explicitly.

12.7 Use a famous theorem from complex analysis.

12.8 Compute ℘ (−z) and use the fact that (−(m+ in))2 = (m+ in)2.

12.9 Repeat the proof of Lemma 12.3, but now starting with the proof of
℘′ (z + i) = ℘′(z).

12.10 Use a famous theorem from complex analysis.

12.11 Use the definition of the Weierstraß ℘ function.
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94. Martin Henk, Achill Schürmann, and Jörg M. Wills. Ehrhart polyno-
mials and successive minima. Mathematika, 52(1-2):1–16 (2006), 2005.
arXiv:math.MG/0507528.

95. Jürgen Herzog. Generators and relations of abelian semigroups and semigroup
rings. Manuscripta Math., 3:175–193, 1970.

96. Takayuki Hibi. Algebraic Combinatorics on Convex Polytopes. Carslaw, 1992.
97. Takayuki Hibi. Dual polytopes of rational convex polytopes. Combinatorica,

12(2):237–240, 1992.
98. Takayuki Hibi. A lower bound theorem for Ehrhart polynomials of convex

polytopes. Adv. Math., 105(2):162–165, 1994.
99. Dean Hickerson. Continued fractions and density results for Dedekind sums.

J. Reine Angew. Math., 290:113–116, 1977.
100. Friedrich Hirzebruch. Neue topologische Methoden in der algebraischen Ge-

ometrie. Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9.
Springer-Verlag, Berlin, 1956.

101. Friedrich Hirzebruch and Don Zagier. The Atiyah-Singer Theorem and Ele-
mentary Number Theory. Publish or Perish Inc., Boston, Mass., 1974.

102. Jeffrey Hood and David Perkinson. Some facets of the polytope of even per-
mutation matrices. Linear Algebra Appl., 381:237–244, 2004.

103. Masa-Nori Ishida. Polyhedral Laurent series and Brion’s equalities. Internat.
J. Math., 1(3):251–265, 1990.

104. Maruf Israilovich Israilov. Determination of the number of solutions of lin-
ear Diophantine equations and their applications in the theory of invariant
cubature formulas. Sibirsk. Mat. Zh., 22(2):121–136, 237, 1981.

105. Ravi Kannan. Lattice translates of a polytope and the Frobenius problem.
Combinatorica, 12(2):161–177, 1992.

106. Jean-Michel Kantor and Askold G. Khovanskĭı. Une application du théorème
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174. Bernd Sturmfels. Gröbner Bases and Convex Polytopes, volume 8 of University
Lecture Series. American Mathematical Society, Providence, RI, 1996.

175. James J. Sylvester. On the partition of numbers. Quaterly J. Math., 1:141–152,
1857.

176. James J. Sylvester. On subinvariants, i.e. semi-invariants to binary quantics of
an unlimited order. Amer. J. Math., 5:119–136, 1882.

177. James J. Sylvester. Mathematical questions with their solutions. Educational
Times, 41:171–178, 1884.
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The following table contains a list of symbols that are frequently used through-
out the book. The page numbers refer to the first appearance/definition of
each symbol.

Symbol Meaning Page
â(m) Fourier coefficient of a(n) 124
A (d, k) Eulerian number 28
A⊥ orthogonal complement of A 157
AP(t) solid-angle sum of P 178
αP(z) solid-angle generating function 180
Bk(x) Bernoulli polynomial 31
Bk Bernoulli number 32
Bn Birkhoff polytope 106
BiPyr (P) bipyramid over P 36
coneP cone over P 56
const f constant term of the generating function f 13
convS convex hull of S 25
d-cone d-dimensional cone 56
d-polytope d-dimensional polytope 26
dimP dimension of P 26
δm(x) delta function 127
EhrP(z) Ehrhart series of P 28
EhrP◦(z) Ehrhart series of the interior of P 85
ea(x) root-of-unity function e2πiax/b 127
fk face number 93
Fk(t) lattice-point enumerator of the k-skeleton 94
F(f) Fourier transform of f 127
g (a1, a2, . . . , ad) Frobenius number 6
Hn(t) number of semimagic n× n squares with line sum t 105
KF tangent cone of F ⊆ P 157
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Symbol Meaning Page
LP(t) lattice-point enumerator of P 27
LP◦(t) lattice-point enumerator of the interior of P 28
Mn(t) number of magic n× n squares with line sum t 105
ωP(x) solid angle of x (with respect to P) 177
pA(n) restricted partition function 6
polyA(n) polynomial part of pA(n) 139
P a closed polytope 25
P◦ interior of the polytope P 28
P(h) perturbed polytope 172
Pyr (P) pyramid over P 34
℘(z) Weierstraß ℘-function 191
Π fundamental parallelepiped of a cone 60
rn(a, b) Dedekind–Rademacher sum 143
s(a, b) Dedekind sum 126
sn (a1, a2, . . . , am; b) Fourier–Dedekind sum 14
SolidP(x) solid-angle series 186
spanP affine space spanned by P 26
σS(z) integer-point transform of S 58
tP tth dilation of P 27
Toddh Todd operator 166
volP (continuous) volume of P 69
VG vector space of all complex-valued functions 127

on G = {0, 1, 2, . . . , b− 1}
ξa root of unity e2πi/a 8
ζ(z) Weierstraß ζ-function 191
bxc greatest integer function 10
{x} fraction-part function 10
((x)) sawtooth function 125(
m
n

)
binomial coefficient 27

〈f, g〉 inner product of f and g 128
(f ∗ g)(t) convolution of f and g 131
1S(x) characteristic function of S 158
#S number of elements in S 6
♣ an exercise that is used in the text VIII
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affine space, 26
affine span, 98
apex, 56, 157
area, 38
arrangement of hyperplanes, 77, 157

Barvinok’s algorithm, 162
basis, 127
Beatty sequence, 20
Bernoulli number, 32, 51, 165
Bernoulli polynomial, 31, 52, 175
binomial coefficient, 27
binomial series, 30
bipyramid over a polytope, 36
Birkhoff–von Neumann polytope, 106,

116
Boolean lattice, 94, 213
boundary, 97
Brianchon–Gram relation, 183, 187
Brion’s theorem, 159

continuous form of, 168
for solid angles, 181

complex conjugation, 128
cone, 157

pointed, 56
rational, 157
simplicial, 56
unimodular, 172

coning over a polytope, 56, 62, 73
constituent, 44, 115
contingency table, 117
continuous Fourier transform, 133
continuous volume, 69, 98, 107, 180

convex cone, 157
convex hull, 25
convex polygon, 25
convex polytope, 25, 48
convolution

of finite Fourier series, 131
of quasipolynomials, 79

cotangent, 125
cross-polytope, 35, 49
cube, 26
cyclotomic polynomial, 134

Dedekind η-function, 148
Dedekind sum, 126, 130, 138, 145
Dedekind’s reciprocity law, 141
Dedekind–Rademacher sum, 143
degenerate hyperplane, 26
degree

of a polytope, 86
of a quasipolynomial, 44

Dehn–Sommerville relations, 93
delta function, 127, 134
Delzant polytope, 172
denominator, 73
dihedral angle, 178
dilate, 7
dimension

of a pointed cone, 56
of a polytope, 26

discrete volume, 27, 29, 36, 71, 81, 178
distance, 128
doubly periodic function, 191
doubly stochastic matrix, 106
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dual polytope, 88

edge
of a pointed cone, 57
of a polytope, 26

Ehrhart polynomial, 62, 65, 86, 96, 145
constant term of, 68
interpolation of, 71
leading coefficient of, 70
second coefficient of, 100

Ehrhart quasipolynomial, 73
Ehrhart series, 28, 48, 66, 85, 147
Ehrhart’s theorem, 62, 64, 73, 107
Ehrhart–Macdonald reciprocity, 82, 94,

107, 143
Euler φ-function, 134
Euler characteristic, 75
Euler relation, 94
Eulerian number, 28, 48

face
lattice, 94
number, 93
of a pointed cone, 57
of a polytope, 26

facet
of a pointed cone, 57
of a polytope, 26

Farey sequence, 53
Fibonacci sequence, 3, 150
finite Fourier series, 121
finite Fourier transform, 127
finite geometric series, 17, 128, 153
Fourier coefficient, 124
Fourier transform, 127
Fourier–Dedekind sum, 14, 137
fractional-part function, 10, 18, 125
frequency, 124
Frobenius number, 6
Frobenius problem, 3
fundamental parallelepiped, 60

Gauß sum, 135
gcd algorithm, 141, 145
generating function, 3, 8, 13, 28, 58, 62,

109
constant term of, 8, 13, 42, 115, 140,

146
generator of a pointed cone, 56

geometric series, 4, 17, 60, 122
graded algebra, 48
greatest-integer function, 10, 17, 81, 125

h-cone, 197
half-space, 26
Hibi’s palindromic theorem, 86
Hilbert–Poincaré series, 48
hyperplane, 26, 57

degenerate, 26
rational, 77

hyperplane arrangement, 77, 157
central, 157
rational, 157

hyperplane description, 26, 48, 197
hypersimplex, 77

indicator function, 158
infinite sequence, 3
inner product, 128, 134
integer-point transform, 58, 63, 82, 153,

155
of a simplicial cone, 60

integral polygon, 38
integral polytope, 26, 62, 99, 186
interior, 28, 81, 85

relative, 94, 107, 177
interpolation, 70, 107
isolated singularity, 189

Jacobi symbol, 148

Khovanskĭı–Pukhlikov theorem, 173

Lagrange interpolation formula, 71
Laguerre polynomial, 49
latin square, 116
lattice, 25, 74, 194
lattice basis, 20
lattice point, 19, 25, 33, 58
lattice-point enumerator, 27, 45
Laurent series, 8, 189
line segment, 11, 19, 26
linear Diophantine problem of

Frobenius, 6
local Riemann hypothesis, 49
Luo Shu square, 104

Möbius function, 135
magic square, 104
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traditional, 104
magic sum, 103
metric space, 128
moment, 170
moment generating function, 58

northeast lattice path, 20

octahedron, 36
order polytope, 49
orthogonal complement, 157
orthogonality relations, 128

palindromy
of the Ehrhart series of a reflexive

polytope, 86
of the solid-angle generating function,

186
Parseval identity, 129
part of a partition, 6
partial fractions, 4, 8, 13, 43, 122, 139,

146
partition, 6
period, 44, 73
periodic function, 44, 121, 127
periodic sequence, 123
permutation matrix, 107
Pick’s theorem, 38, 193
Plancherel theorem, 129
pointed cone, 56, 157

rational, 56
polar polytope, 88
polygon, 25

integral, 38
rational, 40, 45

polyhedron, 157
polynomial, 27, 30, 33, 40, 62, 68–70,

76, 99, 107, 132, 153
interpolation of, 71, 107

polytope, 7, 25
Delzant, 172
dual, 89
integral, 26, 62, 99, 186
normal, 48
polar, 89
rational, 26, 45, 73, 180
simple, 93, 168
smooth, 172
unimodular, 172

Popoviciu’s theorem, 11
power series, 8
primitive root of unity, 134
pyramid, 33, 49, 185

over a polytope, 34

quasipolynomial, 44, 73, 78, 114, 180
constituent of, 44, 115
degree of, 44
period of, 44, 73

Rademacher reciprocity, 142
rational pointed cone, 56
rational polygon, 40, 45
rational polytope, 26, 45, 73, 180
reciprocity law

for the classical Dedekind sum, 141
for the Dedekind–Rademacher sum,

143
for the Fourier–Dedekind sum, 140,

142
reciprocity theorem

for integer-point transforms, 84
for lattice-point enumeration, 82
for solid-angle generating functions,

181
for solid-angle sums, 182

regular tetrahedron, 51, 187
relative interior, 94, 107, 177
relative volume, 98
representable, 6
residue, 189
residue theorem, 190
restricted partition function, 6, 13, 139

polynomial part of, 139
Riemann zeta function, 32
root, 69
root of unity, 8

primitive, 134

sawtooth function, 125, 144
semigroup, 76
semimagic square, 104

symmetric, 118
shelling, 100
simple polytope, 93, 168
simplex, 26, 55, 73

faces of, 50
simplicial cone, 56
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skewed orthants, 155
slack variable, 29, 42, 45
smooth polytope, 172
solid angle, 177

generating function, 180
of a face, 177
polynomial, 183
series, 186
sum of, 179

standard simplex, 29, 178
Stanley’s nonnegativity theorem, 66
Stanley’s reciprocity theorem, 84
Stirling number of the first kind, 31, 51
sublattice, 98
supporting hyperplane, 26, 57
Sylvester’s theorem, 6
symmetric semimagic square, 118

tangent cone, 157
tetrahedron, 26, 146
Todd operator, 166, 172
toric variety, 48
traditional magic square, 104
transportation polytope, 117
triangle, 20, 26, 41
triangulation

of a pointed cone, 58

of a polygon, 39
of a polytope, 55, 203

trigonometric identities, 131
trivial, 113

unimodular
cone, 172
polytope, 172

unit cube, 26, 33
unitary transformation, 133

v-cone, 197
valuation, 187
Vandermonde matrix, 77
vector partition function, 49
vector space, 127
vertex, 26, 117
vertex cone, 157
vertex description, 25, 48, 197
visible, 204
volume, 26, 69, 81, 98, 107, 172, 180

Weierstraß ℘-function, 191
Weierstraß ζ-function, 191

Zagier reciprocity, 140
zero, 183


