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Abstract

Although the study of clustering is centered around an intuitively
compelling goal, it has been very difficult to develop a unified
framework for reasoning about it at a technical level, and pro-
foundly diverse approaches to clustering abound in the research
community. Here we suggest a formal perspective on the difficulty
in finding such a unification, in the form of an impossibility theo-
rem: for a set of three simple properties, we show that there is no
clustering function satisfying all three. Relaxations of these prop-
erties expose some of the interesting (and unavoidable) trade-offs
at work in well-studied clustering techniques such as single-linkage,
sum-of-pairs, k-means, and k-median.

1 Introduction

Clustering is a notion that arises naturally in many fields; whenever one has a het-
erogeneous set of objects, it is natural to seek methods for grouping them together
based on an underlying measure of similarity. A standard approach is to represent
the collection of objects as a set of abstract points, and define distances among the
points to represent similarities — the closer the points, the more similar they are.
Thus, clustering is centered around an intuitively compelling but vaguely defined
goal: given an underlying set of points, partition them into a collection of clusters so
that points in the same cluster are close together, while points in different clusters
are far apart.

The study of clustering is unified only at this very general level of description, how-
ever; at the level of concrete methods and algorithms, one quickly encounters a be-
wildering array of different clustering techniques, including agglomerative, spectral,
information-theoretic, and centroid-based, as well as those arising from combinato-
rial optimization and from probabilistic generative models. These techniques are
based on diverse underlying principles, and they often lead to qualitatively different
results. A number of standard textbooks [1, 4, 6, 9] provide overviews of a range of
the approaches that are generally employed.

Given the scope of the issue, there has been relatively little work aimed at reasoning
about clustering independently of any particular algorithm, objective function, or
generative data model. But it is not clear that this needs to be the case. To take
a motivating example from a technically different but methodologically similar set-



ting, research in mathematical economics has frequently formalized broad intuitive
notions (how to fairly divide resources, or how to achieve consensus from individual
preferences) in what is often termed an axiomatic framework — one enumerates a
collection of simple properties that a solution ought to satisfy, and then studies how
these properties constrain the solutions one is able to obtain [10]. In some striking
cases, as in Arrow’s celebrated theorem on social choice functions [2], the result is
impossibility — there is no solution that simultaneously satisfies a small collection
of simple properties.

In this paper, we develop an axiomatic framework for clustering. First, as is stan-
dard, we define a clustering function to be any function f that takes a set S of n
points with pairwise distances between them, and returns a partition of S. (The
points in S are not assumed to belong to any ambient space; the pairwise distances
are the only data one has about them.) We then consider the effect of requir-
ing the clustering function to obey certain natural properties. Our first result is
a basic impossibility theorem: for a set of three simple properties — essentially
scale-invariance, a richness requirement that all partitions be achievable, and a
consistency condition on the shrinking and stretching of individual distances — we
show that there is no clustering function satisfying all three. None of these prop-
erties is redundant, in the sense that it is easy to construct clustering functions
satisfying any two of the three. We also show, by way of contrast, that certain
natural relaxations of this set of properties are satisfied by versions of well-known
clustering functions, including those derived from single-linkage and sum-of-pairs.
In particular, we fully characterize the set of possible outputs of a clustering function
that satisfies the scale-invariance and consistency properties.

How should one interpret an impossibility result in this setting? The fact that it
arises directly from three simple constraints suggests a technical underpinning for
the difficulty in unifying the initial, informal concept of “clustering.” It indicates a
set of basic trade-offs that are inherent in the clustering problem, and offers a way
to distinguish between clustering methods based not simply on operational grounds,
but on the ways in which they resolve the choices implicit in these trade-offs. Ex-
ploring relaxations of the properties helps to sharpen this type of analysis further
— providing a perspective, for example, on the distinction between clustering func-
tions that fix the number of clusters a priori and those that do not; and between
clustering functions that build in a fundamental length scale and those that do not.

Other Axiomatic Approaches. As discussed above, the vast majority of ap-
proaches to clustering are derived from the application of specific algorithms, the
optima of specific objective functions, or the consequences of particular probabilis-
tic generative models for the data. Here we briefly review work seeking to examine
properties that do not overtly impose a particular objective function or model.

Jardine and Sibson [7] and Puzicha, Hofmann, and Buhmann [12] have considered
axiomatic approaches to clustering, although they operate in formalisms quite dif-
ferent from ours, and they do not seek impossibility results. Jardine and Sibson are
concerned with hierarchical clustering, where one constructs a tree of nested clus-
ters. They show that a hierarchical version of single-linkage is the unique function
consistent with a collection of properties; however, this is primarily a consequence
of the fact that one of their properties is an implicit optimization criterion that
is uniquely optimized by single-linkage. Puzicha et al. consider properties of cost
functions on partitions; these implicitly define clustering functions through the pro-
cess of choosing a minimum-cost partition. They investigate a particular class of
clustering functions that arises if one requires the cost function to decompose into
a certain additive form. Recently, Kalai, Papadimitriou, Vempala, and Vetta have



also investigated an axiomatic framework for clustering [8]; like the approach of Jar-
dine and Sibson [7], and in contrast to our work here, they formulate a collection
of properties that are sufficient to uniquely specify a particular clustering function.

Axiomatic approaches have also been applied in areas related to clustering — par-
ticularly in collaborative filtering, which harnesses similarities among users to make
recommendations, and in discrete location theory, which focuses on the placement
of “central” facilities among distributed collections of individuals. For collaborative
filtering, Pennock et al. [11] show how results from social choice theory, including
versions of Arrow’s Impossibility Theorem [2], can be applied to characterize recom-
mendation systems satisfying collections of simple properties. In discrete location
theory, Hansen and Roberts [5] prove an impossibility result for choosing a central
facility to serve a set of demands on a graph; essentially, given a certain collection of
required properties, they show that any function that specifies the resulting facility
must be highly sensitive to small changes in the input.

2 The Impossibility Theorem

A clustering function operates on a set S of n ≥ 2 points and the pairwise distances
among them. Since we wish to deal with point sets that do not necessarily belong
to an ambient space, we identify the points with the set S = {1, 2, . . . , n}. We then
define a distance function to be any function d : S × S → R such that for distinct
i, j ∈ S, we have d(i, j) ≥ 0, d(i, j) = 0 if and only if i = j, and d(i, j) = d(j, i). One
can optionally restrict attention to distance functions that are metrics by imposing
the triangle inequality: d(i, k) ≤ d(i, j) + d(j, k) for all i, j, k ∈ S. We will not
require the triangle inequality in the discussion here, but the results to follow —
both negative and positive — still hold if one does require it.

A clustering function is a function f that takes a distance function d on S and
returns a partition Γ of S. The sets in Γ will be called its clusters. We note that, as
written, a clustering function is defined only on point sets of a particular size (n);
however, all the specific clustering functions we consider here will be defined for all
values of n larger than some small base value.

Here is a first property one could require of a clustering function. If d is a distance
function, we write α·d to denote the distance function in which the distance between
i and j is αd(i, j).

Scale-Invariance. For any distance function d and any α > 0,
we have f(d) = f(α · d).

This is simply the requirement that the clustering function not be sensitive to
changes in the units of distance measurement — it should not have a built-in “length
scale.” A second property is that the output of the clustering function should be
“rich” — every partition of S is a possible output. To state this more compactly,
let Range(f) denote the set of all partitions Γ such that f(d) = Γ for some distance
function d.

Richness. Range(f) is equal to the set of all partitions of S.

In other words, suppose we are given the names of the points only (i.e. the indices
in S) but not the distances between them. Richness requires that for any desired
partition Γ, it should be possible to construct a distance function d on S for which
f(d) = Γ.



Finally, we discuss a Consistency property that is more subtle that the first two.
We think of a clustering function as being “consistent” if it exhibits the following
behavior: when we shrink distances between points inside a cluster and expand
distances between points in different clusters, we get the same result. To make this
precise, we introduce the following definition. Let Γ be a partition of S, and d and
d′ two distance functions on S. We say that d′ is a Γ-transformation of d if (a) for
all i, j ∈ S belonging to the same cluster of Γ, we have d′(i, j) ≤ d(i, j); and (b) for
all i, j ∈ S belonging to different clusters of Γ, we have d′(i, j) ≥ d(i, j).

Consistency. Let d and d′ be two distance functions. If f(d) = Γ,
and d′ is a Γ-transformation of d, then f(d′) = Γ.

In other words, suppose that the clustering Γ arises from the distance function d. If
we now produce d′ by reducing distances within the clusters and enlarging distance
between the clusters then the same clustering Γ should arise from d′.

We can now state the impossibility theorem very simply.

Theorem 2.1 For each n ≥ 2, there is no clustering function f that satisfies Scale-
Invariance, Richness, and Consistency.

We will prove Theorem 2.1 in the next section, as a consequence of a more general
statement. Before doing this, we reflect on the relation of these properties to one
another by showing that there exist natural clustering functions satisfying any two
of the three properties.

To do this, we describe the single-linkage procedure (see e.g. [6]), which in fact de-
fines a family of clustering functions. Intuitively, single-linkage operates by initial-
izing each point as its own cluster, and then repeatedly merging the pair of clusters
whose distance to one another (as measured from their closest points of approach)
is minimum. More concretely, single-linkage constructs a weighted complete graph
Gd whose node set is S and for which the weight on edge (i, j) is d(i, j). It then
orders the edges of Gd by non-decreasing weight (breaking ties lexicographically),
and adds edges one at a time until a specified stopping condition is reached. Let
Hd denote the subgraph consisting of all edges that are added before the stopping
condition is reached; the connected components of Hd are the clusters.

Thus, by choosing a stopping condition for the single-linkage procedure, one obtains
a clustering function, which maps the input distance function to the set of connected
components that results at the end of the procedure. We now show that for any
two of the three properties in Theorem 2.1, one can choose a single-linkage stopping
condition so that the resulting clustering function satisfies these two properties.
Here are the three types of stopping conditions we will consider.

• k-cluster stopping condition. Stop adding edges when the subgraph first
consists of k connected components. (We will only consider this condition
to be well-defined when the number of points is at least k.)

• distance-r stopping condition. Only add edges of weight at most r.
• scale-α stopping condition. Let ρ∗ denote the maximum pairwise distance;

i.e. ρ∗ = maxi,j d(i, j). Only add edges of weight at most αρ∗.

It is clear that these various stopping conditions qualitatively trade off certain of
the properties in Theorem 2.1. Thus, for example, the k-cluster stopping condition
does not attempt to produce all possible partitions, while the distance-r stopping
condition builds in a fundamental length scale, and hence is not scale-invariant.



However, by the appropriate choice of one of these stopping conditions, one can
achieve any two of the three properties in Theorem 2.1.

Theorem 2.2 (a) For any k ≥ 1, and any n ≥ k, single-linkage with the k-cluster
stopping condition satisfies Scale-Invariance and Consistency.

(b) For any positive α < 1, and any n ≥ 3, single-linkage with the scale-α stopping
condition satisfies Scale-Invariance and Richness.

(c) For any r > 0, and any n ≥ 2, single-linkage with the distance-r stopping
condition satisfies Richness and Consistency.

3 Antichains of Partitions

We now state and prove a strengthening of the impossibility result. We say that
a partition Γ′ is a refinement of a partition Γ if for every set C ′ ∈ Γ′, there is a
set C ∈ Γ such that C ′ ⊆ C. We define a partial order on the set of all partitions
by writing Γ′ ' Γ if Γ′ is a refinement of Γ. Following the terminology of partially
ordered sets, we say that a collection of partitions is an antichain if it does not
contain two distinct partitions such that one is a refinement of the other.

For a set of n ≥ 2 points, the collection of all partitions does not form an antichain;
thus, Theorem 2.1 follows from

Theorem 3.1 If a clustering function f satisfies Scale-Invariance and Consistency,
then Range(f) is an antichain.

Proof. For a partition Γ, we say that a distance function d (a, b)-conforms to Γ if,
for all pairs of points i, j that belong to the same cluster of Γ, we have d(i, j) ≤ a,
while for all pairs of points i, j that belong to different clusters, we have d(i, j) ≥ b.
With respect to a given clustering function f , we say that a pair of positive real
numbers (a, b) is Γ-forcing if, for all distance functions d that (a, b)-conform to Γ,
we have f(d) = Γ.

Let f be a clustering function that satisfies Consistency. We claim that for any
partition Γ ∈ Range(f), there exist positive real numbers a < b such that the pair
(a, b) is Γ-forcing. To see this, we first note that since Γ ∈ Range(f), there exists a
distance function d such that f(d) = Γ. Now, let a′ be the minimum distance among
pairs of points in the same cluster of Γ, and let b′ be the maximum distance among
pairs of points that do not belong to the same cluster of Γ. Choose numbers a < b
so that a ≤ a′ and b ≥ b′. Clearly any distance function d′ that (a, b)-conforms to
Γ must be a Γ-transformation of d, and so by the Consistency property, f(d′) = Γ.
It follows that the pair (a, b) is Γ-forcing.

Now suppose further that the clustering function f satisfies Scale-Invariance, and
that there exist distinct partitions Γ0, Γ1 ∈ Range(f) such that Γ0 is a refinement
of Γ1. We show how this leads to a contradiction.

Let (a0, b0) be a Γ0-forcing pair, and let (a1, b1) be a Γ1-forcing pair, where a0 < b0

and a1 < b1; the existence of such pairs follows from our claim above. Let a2 be any
number less than or equal to a1, and choose ε so that 0 < ε < a0a2b

−1
0 . It is now

straightforward to construct a distance function d with the following properties:
For pairs of points i, j that belong to the same cluster of Γ0, we have d(i, j) ≤ ε; for
pairs i, j that belong to the same cluster of Γ1 but not to the same cluster of Γ0,
we have a2 ≤ d(i, j) ≤ a1; and for pairs i, j the do not belong to the same cluster
of Γ1, we have d(i, j) ≥ b1.



The distance function d (a1, b1)-conforms to Γ1, and so we have f(d) = Γ1. Now set
α = b0a

−1
2 , and define d′ = α ·d. By Scale-Invariance, we must have f(d′) = f(d) =

Γ1. But for points i, j in the same cluster of Γ0 we have d′(i, j) ≤ εb0a
−1
2 < a0,

while for points i, j that do not belong to the same cluster of Γ0 we have d′(i, j) ≥
a2b0a

−1
2 ≥ b0. Thus d′ (a0, b0)-conforms to Γ0, and so we must have f(d′) = Γ0. As

Γ0 (= Γ1, this is a contradiction.

The proof above uses our assumption that the clustering function f is defined on
the set of all distance functions on n points. However, essentially the same proof
yields a corresponding impossibility result for clustering functions f that are defined
only on metrics, or only on distance functions arising from n points in a Euclidean
space of some dimension. To adapt the proof, one need only be careful to choose
the constant a2 and distance function d to satisfy the required properties.

We now prove a complementary positive result; together with Theorem 3.1, this
completely characterizes the possible values of Range(f) for clustering functions f
that satisfy Scale-Invariance and Consistency.

Theorem 3.2 For every antichain of partitions A, there is a clustering function f
satisfying Scale-Invariance and Consistency for which Range(f) = A.

Proof. Given an arbitrary antichain A, it is not clear how to produce a stopping
condition for the single-linkage procedure that gives rise to a clustering function f
with Range(f) = A. (Note that the k-cluster stopping condition yields a clustering
function whose range is the antichain consisting of all partitions into k sets.) Thus,
to prove this result, we use a variant of the sum-of-pairs clustering function (see
e.g. [3]), adapted to general antichains. We focus on the case in which |A| > 1,
since the case of |A| = 1 is trivial.

For a partition Γ ∈ A, we write (i, j) ∼ Γ if both i and j belong to the same cluster in
Γ. The A-sum-of-pairs function f seeks the partition Γ ∈ A that minimizes the sum
of all distances between pairs of points in the same cluster; in other words, it seeks
the Γ ∈ A minimizing the objective function Φd(Γ) =

∑
(i,j)∼Γ d(i, j). (Ties are

broken lexicographically.) It is crucial that the minimization is only over partitions
in A; clearly, if we wished to minimize this objective function over all partitions,
we would choose the partition in which each point forms its own cluster.

It is clear that f satisfies Scale-Invariance, since Φα·d(Γ) = αΦd(Γ) for any partition
Γ. By definition we have Range(f) ⊆ A, and we argue that Range(f) ⊇ A as
follows. For any partition Γ ∈ A, construct a distance function d with the following
properties: d(i, j) < n−3 for every pair of points i, j belonging to the same cluster
of Γ, and d(i, j) ≥ 1 for every pair of points i, j belonging to different clusters of
Γ. We have Φd(Γ) < 1; and moreover Φd(Γ′) < 1 only for partitions Γ′ that are
refinements of Γ. Since A is an antichain, it follows that Γ must minimize Φd over
all partitions in A, and hence f(d) = Γ.

It remains only to verify Consistency. Suppose that for the distance function d,
we have f(d) = Γ; and let d′ be a Γ-transformation of d. For any partition Γ′, let
∆(Γ′) = Φd(Γ′) − Φd′(Γ′). It is enough to show that for any partition Γ′ ∈ A, we
have ∆(Γ) ≥ ∆(Γ′).

But this follows simply because ∆(Γ) =
∑

(i,j)∼Γ d(i, j) − d′(i, j), while

∆(Γ′) =
∑

(i,j)∼Γ′

d(i, j) − d′(i, j) ≤
∑

(i,j)∼Γ′ and (i,j)∼Γ

d(i, j) − d′(i, j) ≤ ∆(Γ),

where both inequalities follow because d′ is a Γ-transformation of d: first, only



terms corresponding to pairs in the same cluster of Γ are non-negative; and second,
every term corresponding to a pair in the same cluster of Γ is non-negative.

4 Centroid-Based Clustering and Consistency

In a widely-used approach to clustering, one selects k of the input points as centroids,
and then defines clusters by assigning each point in S to its nearest centroid. The
goal, intuitively, is to choose the centroids so that each point in S is close to at least
one of them. This overall approach arises both from combinatorial optimization
perspectives, where it has roots in facility location problems [9], and in maximum-
likelihood methods, where the centroids may represent centers of probability density
functions [4, 6]. We show here that for a fairly general class of centroid-based
clustering functions, including k-means and k-median, none of the functions in the
class satisfies the Consistency property. This suggests an interesting tension between
between Consistency and the centroid-based approach to clustering, and forms a
contrast with the results for single-linkage and sum-of-pairs in previous sections.

Specifically, for any natural number k ≥ 2, and any continuous, non-decreasing,
and unbounded function g : R+ → R+, we define the (k, g)-centroid clustering
function as follows. First, we choose the set of k “centroid” points T ⊆ S for
which the objective function Λg

d(T ) =
∑

i∈S g(d(i, T )) is minimized. (Here d(i, T ) =
minj∈T d(i, j).) Then we define a partition of S into k clusters by assigning each
point to the element of T closest to it. The k-median function [9] is obtained
by setting g to be the identity function, while the objective function underlying
k-means clustering [4, 6] is obtained by setting g(d) = d2.

Theorem 4.1 For every k ≥ 2 and every function g chosen as above, and for n
sufficiently large relative to k, the (k, g)-centroid clustering function does not satisfy
the Consistency property.

Proof Sketch. We describe the proof for k = 2 clusters; the case of k > 2 is similar.
We consider a set of points S that is divided into two subsets: a set X consisting
of m points, and a set Y consisting of γm points, for a small number γ > 0. The
distance between points in X is r, the distance between points in Y is ε < r, and
the distance from a point in X to a point in Y is r + δ, for a small number δ > 0.
By choosing γ, r, ε, and δ appropriately, the optimal choice of k = 2 centroids
will consist of one point from X and one from Y , and the resulting partition Γ will
have clusters X and Y . Now, suppose we divide X into sets X0 and X1 of equal
size, and reduce the distances between points in the same Xi to be r′ < r (keeping
all other distances the same). This can be done, for r′ small enough, so that the
optimal choice of two centroids will now consist of one point from each Xi, yielding
a different partition of S. As our second distance function is a Γ-transformation of
the first, this violates Consistency.

5 Relaxing the Properties

In addition to looking for clustering functions that satisfy subsets of the basic prop-
erties, we can also study the effect of relaxing the properties themselves. Theo-
rem 3.2 is a step in this direction, showing that the sum-of-pairs function satisfies
Scale-Invariance and Consistency, together with a relaxation of the Richness prop-
erty. As an another example, it is interesting to note that single-linkage with the
distance-r stopping condition satisfies a natural relaxation of Scale-Invariance: if
α > 1, then f(α · d) is a refinement of f(d).



We now consider some relaxations of Consistency. Let f be a clustering function,
and d a distance function such that f(d) = Γ. If we reduce distances within clusters
and expand distances between clusters, Consistency requires that f output the same
partition Γ. But one could imagine requiring something less: perhaps changing
distances this way should be allowed to create additional sub-structure, leading to
a new partition in which each cluster is a subset of one of the original clusters. Thus,
we can define Refinement-Consistency, a relaxation of Consistency, to require that
if d′ is an f(d)-transformation of d, then f(d′) should be a refinement of f(d).

We can show that the natural analogue of Theorem 2.1 still holds: there is no cluster-
ing function that satisfies Scale-Invariance, Richness, and Refinement-Consistency.
However, there is a crucial sense in which this result “just barely” holds, render-
ing it arguably less interesting to us here. Specifically, let Γ∗

n denote the par-
tition of S = {1, 2, . . . , n} in which each individual element forms its own clus-
ter. Then there exist clustering functions f that satisfy Scale-Invariance and
Refinement-Consistency, and for which Range(f) consists of all partitions except
Γ∗

n. (One example is single-linkage with the distance-(αδ) stopping condition, where
δ = mini,j d(i, j) is the minimum inter-point distance, and α ≥ 1.) Such func-
tions f , in addition to Scale-Invariance and Refinement-Consistency, thus satisfy a
kind of Near-Richness property: one can obtain every partition as output except
for a single, trivial partition. It is in this sense that our impossibility result for
Refinement-Consistency, unlike Theorem 2.1, is quite “brittle.”

To relax Consistency even further, we could say simply that if d′ is an f(d)-
transformation of d, then one of f(d) or f(d′) should be a refinement of the other.
In other words, f(d′) may be either a refinement or a “coarsening” of f(d). It is
possible to construct clustering functions f that satisfy this even weaker variant of
Consistency, together with Scale-Invariance and Richness.
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