# SF2729 Groups and Rings <br> Final exam 

Monday, March 11, 2013

Examiner Tilman Bauer

## Allowed aids none

Time 14:00-19:00

Present your solutions in such a way that the arguments and calculations are easy to follow. Provide detailed arguments to your answers. An answer without explanation will give few or no points.

Each problem is worth 6 points, for a total of 36 points. Your end score will be the better of the exam score and the weighted average

$$
0.7 \frac{\text { exam score }}{36}+0.3 \frac{\text { passed homeworks }}{14} .
$$

It is thus important that you do all problems even if you scored high on the homework. Good luck!

## Problem 1

Let $G$ be a group. A subgroup $H$ of a group $G$ is a fully invariant subgroup if for any homomorphism $\phi: G \rightarrow G$ we have $\phi(H) \leq H$. Show that the commutator subgroup $[G, G]$ of $G$ is a fully invariant subgroup.

## Problem 2

Show that a group of order 495 cannot be simple i.e., it must have a non-trivial proper normal subgroup.

## Problem 3

Let $G$ be a group and let $x, y \in G$. Suppose that $[x, y] \in Z(G)$; show that $\left[x^{n}, y\right]=[x, y]^{n}$ for all integers $n \geq 0$.

## Problem 4

Let $A$ be an abelian group and define a multiplication on the abelian group $R=\mathbf{Z} \times A$ by

$$
(n, a) \cdot(m, b)=(n m, n b+m a)
$$

1. Show that this defines a unital ring structure on $R=\mathbf{Z} \times A$ by verifying the axioms. State explicitly what the zero and unity elements are. (3 points)
2. Show that the group of units $R^{\times}$is isomorphic to $\mathbf{Z} / 2 \times A$. (3 points)

## Problem 5

Let $R$ be a commutative ring possessing exactly three ideals $(0) \subsetneq I \subsetneq R$.

1. Show that $I=R-R^{\times}$, i. e. that $I$ consists precisely of the nonunits of $R$. (4 points)
2. Give a concrete example of such a ring. (2 points)

## Problem 6

Let $R=\mathbf{Z}[i]$ be the ring of Gaussian integers and consider the submodule $M<R^{2}$ generated by the single element $(2,1+i)$. According to the structure theorem of finitely generated modules over PIDs, the quotient module $R^{2} / M$ is isomorphic to a sum of a free module and modules of the form $R /\left(p^{n}\right)$, where $p$ is a prime element. Find this decomposition and the corresponding isomorphism.

