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Problem 1

Let G be a group. An automorphism ¢ : G — G is simply an isomorphism from G to itself.
A subgroup H < G is a characteristic subgroup if for any automorphism ¢ : G — G, then
¢(H) = H. Show that the center, Z(G), of G is a characteristic subgroup.

Solution:

It suffices to show ¢(Z(G)) C Z(G); for the other inclusion one can take ¢ . We thus
need to show thatif z € Z(G) then ¢(z) € Z(G). Leta € G. Then

[p(z),a] = [6(2), p(¢~"(2)] = p([z, 9 (a)]) = p(1) =1

since z € Z(G).

Problem 2

Show that a group of order 1001 cannot be simple i.e., it must have a non-trivial proper
normal subgroup.

Solution:

We have 1001 = 7-11-13. Let ny (k =7, 11, 13) be the number of k-Sylow subgroups of
the group. By the Sylow theorems, we have

ny | 143, n;=1 (mod 7)

The only divisor of 143 = 11 - 13 which is 1 modulo 7 is 1 itself, hence n; = 1 and the
7-Sylow subgroup is normal. Thus the group is not simple.

Problem 3

Let G be a group and let x,y € G. Suppose that [x,y] € Z(G); show that x"y" =
(xy)"[x y]  for all integers n > 0.



Solution:

By induction, the case n = 1 being trivial. For the inductive step, we first show by nested
induction:

[ y) = [oyl”:
Again, this is clear for n = 1. For the inductive step, we compute, using that [x, y| is in
the center,

n+1 n—1),,—1

[, y] = ey y Ty Ty = 2 ylya Ty =[xy Ly = [y

Using this, we have have

n+1

)",y = () ()" [ )@ [,y = (ey)x"y" [, y]" = ] yaty" = xxyy”

(xy

Problem 4

Let X be a set and let P(X) denote the power set of X, i. e. the set of all subsets of X. For
S, T € P(X), define

S+T=(SUT)—(SNT) and S-T=SNT.

1. Show that this defines a unital ring structure on P(X). State explicitly what the
zero element, the unity, and the negative of an element is. (3 points)

2. Denote by F(X,Z/2Z) the ring of functions from X to Z/2Z, where addition and

multiplication are defined by (f + g)(x) = f(x) + g(x) and (f - g)(x) = f(x)g(x).
Show that P(X) and F(X,Z/2Z) are isomorphic rings. (3 points)

Solution:

The zero element is @ (because @ + S = S), the unity is X (because X N S = §), and both
operations are commutative by definition. An additive inverse is given by —X := X

since
S-I-S:(SUS)—(SOS):S—S:@.

Multiplication is clearly associative, but associativity for addition has to be checked.
Note that x € S + T iff x is either in S or in T, but not in both. So x € (S+ T) + U if x is
either in U orin S + T, which means x is in either one or three of the sets S, T, U, which
is therefore seen to be the same condition as for S + (T + U).

For distributivity, an element x is in S - (T + U) iff it is in S and exactly one of T and
U, which is the same as being in exactly one of SN T and SN U.

An isomorphism ¢: P(X) — F(X,Z/2Z) is given by

1, xe€8§

#(5)(x) = {0_ >y



An inverse map is given by

Y(f) ={xeX|flx) =1}
The maps are clearly inverses of each other; we have to check that they are in fact ring
maps. For this, we compute

1; x € Sorx € Tbutnotboth
0; otherwise
$(X)(x) =1 forall x; and

1; XGSandxeT_
0; otherwise N

$(5+T)(x) = { = ¢(5)(x) + ¢(T)(x) € Z/2Z;

¢(S-T)(x) = { ¢(S)(x) - ¢(T)(x) € Z/2Z;

Problem 5

Show that for every n € N there exists an irreducible polynomial of degree n over Q.
When using a theorem from this class, write down its full statement. (6 points)

Solution:

We use Gauss’s lemma and the Eisenstein criterion to see that x” + p is irreducible over Z,
and hence over Q, for any n and any prime p. (For the statements, consult the textbook.)

Problem 6

Let A be a finitely generated abelian group. For every prime number p, the module
A/pA is a vector space over Z/pZ; denote by n, its dimension.

1. Show that if A is torsion then 1, = 0 for all but finitely many p. (3 points)

2. Show that if all n, are the same then A is a free abelian group. (3 points)

Solution:

If A is torsion then by the structure theorem,
AgApl@"‘@Apn

where p; are distinct primes and Ap, are abelian p;-groups. Thus A/pA = Ay, / piAp, if
p = pi and zero otherwise. So there are only finitely many p such that A/pA # 0.
For the second part, we know, again by the structure theorem, that

AZZ'"DA, & DA,

where the A, are as before. Assume all the n, are the same. Then 1, = n because we
can choose p to be a prime outside {p1, ..., pm}. But then, choosing p = p;, we see that
Ap, = 0foralli. Thus A = Z".



