
SF2729 Groups and Rings
Make-up exam: solutions

Tuesday, June 4, 2013, 08:00–13:00

Problem 1

Let G be a group. An automorphism φ : G → G is simply an isomorphism from G to itself.
A subgroup H ≤ G is a characteristic subgroup if for any automorphism φ : G → G, then
φ(H) = H. Show that the center, Z(G), of G is a characteristic subgroup.

Solution:

It suffices to show φ(Z(G)) ⊆ Z(G); for the other inclusion one can take φ−1. We thus
need to show that if z ∈ Z(G) then φ(z) ∈ Z(G). Let a ∈ G. Then

[φ(z), a] = [φ(z), φ(φ−1(a))] = φ([z, φ−1(a)]) = φ(1) = 1

since z ∈ Z(G).

Problem 2

Show that a group of order 1001 cannot be simple i.e., it must have a non-trivial proper
normal subgroup.

Solution:

We have 1001 = 7 · 11 · 13. Let nk (k = 7, 11, 13) be the number of k-Sylow subgroups of
the group. By the Sylow theorems, we have

n7 | 143, n7 ≡ 1 (mod 7)

The only divisor of 143 = 11 · 13 which is 1 modulo 7 is 1 itself, hence n7 = 1 and the
7-Sylow subgroup is normal. Thus the group is not simple.

Problem 3

Let G be a group and let x, y ∈ G. Suppose that [x, y] ∈ Z(G); show that xnyn =

(xy)n[x, y]
n(n−1)

2 for all integers n ≥ 0.



Solution:

By induction, the case n = 1 being trivial. For the inductive step, we first show by nested
induction:

[xn, y] = [x, y]n :

Again, this is clear for n = 1. For the inductive step, we compute, using that [x, y] is in
the center,

[xn+1, y] = xnxyx−1y−1yx−(n−1)y−1 = xn[x, y]yx−(n−1)y−1 = [x, y][xn−1, y] = [x, y]n.

Using this, we have have

(xy)n+1[x, y](
n+1

2 ) = (xy)(xy)n[x, y](
n
2)[x, y]n = (xy)xnyn[x, y]n = x[x, y]nyxnyn = xxnyyn.

Problem 4

Let X be a set and let P(X) denote the power set of X, i. e. the set of all subsets of X. For
S, T ∈ P(X), define

S + T = (S ∪ T)− (S ∩ T) and S · T = S ∩ T.

1. Show that this defines a unital ring structure on P(X). State explicitly what the
zero element, the unity, and the negative of an element is. (3 points)

2. Denote by F(X, Z/2Z) the ring of functions from X to Z/2Z, where addition and
multiplication are defined by ( f + g)(x) = f (x) + g(x) and ( f · g)(x) = f (x)g(x).
Show that P(X) and F(X, Z/2Z) are isomorphic rings. (3 points)

Solution:

The zero element is ∅ (because ∅ + S = S), the unity is X (because X ∩ S = S), and both
operations are commutative by definition. An additive inverse is given by −X := X
since

S + S = (S ∪ S)− (S ∩ S) = S− S = ∅.

Multiplication is clearly associative, but associativity for addition has to be checked.
Note that x ∈ S + T iff x is either in S or in T, but not in both. So x ∈ (S + T) + U if x is
either in U or in S + T, which means x is in either one or three of the sets S, T, U, which
is therefore seen to be the same condition as for S + (T + U).

For distributivity, an element x is in S · (T + U) iff it is in S and exactly one of T and
U, which is the same as being in exactly one of S ∩ T and S ∩U.

An isomorphism φ : P(X)→ F(X, Z/2Z) is given by

φ(S)(x) =

{
1; x ∈ S
0; x 6∈ S.

.



An inverse map is given by

ψ( f ) = {x ∈ X | f (x) = 1}.

The maps are clearly inverses of each other; we have to check that they are in fact ring
maps. For this, we compute

φ(S + T)(x) =

{
1; x ∈ S or x ∈ T but not both
0; otherwise

= φ(S)(x) + φ(T)(x) ∈ Z/2Z;

φ(X)(x) = 1 for all x; and

φ(S · T)(x) =

{
1; x ∈ S and x ∈ T
0; otherwise

= φ(S)(x) · φ(T)(x) ∈ Z/2Z;

Problem 5

Show that for every n ∈ N there exists an irreducible polynomial of degree n over Q.
When using a theorem from this class, write down its full statement. (6 points)

Solution:

We use Gauss’s lemma and the Eisenstein criterion to see that xn + p is irreducible over Z,
and hence over Q, for any n and any prime p. (For the statements, consult the textbook.)

Problem 6

Let A be a finitely generated abelian group. For every prime number p, the module
A/pA is a vector space over Z/pZ; denote by np its dimension.

1. Show that if A is torsion then np = 0 for all but finitely many p. (3 points)

2. Show that if all np are the same then A is a free abelian group. (3 points)

Solution:

If A is torsion then by the structure theorem,

A ∼= Ap1 ⊕ · · · ⊕ Apn

where pi are distinct primes and Api are abelian pi-groups. Thus A/pA ∼= Api /pi Api if
p = pi and zero otherwise. So there are only finitely many p such that A/pA 6= 0.

For the second part, we know, again by the structure theorem, that

A ∼= Zn ⊕ Ap1 ⊕ · · · ⊕ Apn ,

where the Api are as before. Assume all the np are the same. Then np = n because we
can choose p to be a prime outside {p1, . . . , pm}. But then, choosing p = pi, we see that
Api = 0 for all i. Thus A ∼= Zn.


