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Time 14:00–19:00

Present your solutions in such a way that the arguments and calculations are easy to
follow. Provide detailed arguments to your answers. An answer without explanation
will give few or no points.

Each problem is worth 6 points, for a total of 36 points. Your end score will be the
better of the exam score and the weighted average

0.75 (exam score) + 0.25 (homework score).

It is thus important that you do all problems even if you scored high on the homework.
Good luck!

Problem 1

Show for each integer a that 35 | a13 − a.

Solution

It suffices to show that a13 − a is divisible by 5 and by 7. Equivalently, we want to show
that a13 ≡ a (mod 5, 7). Using Fermat’s little theorem (ap ≡ a (mod p)) repeatedly, we
get

a13 = a7a6 ≡ aa6 = a7 ≡ a (mod 7)

and
a13 = a5a8 ≡ aa8 = a5a4 ≡ aa4 = a5 ≡ a (mod 5).

Problem 2

Let G be a group of order 340 = 22 · 5 · 17.

1. Show that G has normal cyclic subgroups of orders 5 and 17. (2p)

2. Show that G has a cyclic subgroup N of order 85 = 5 · 17. (3p)

3. Show that N is normal. (1p)



Solution

By the Sylow theorems, we have n5 ≡ 1 (mod 5) and n5 | 22 · 17. The only possibility is
n5 = 1, so we have a normal Sylow 5-subgroup S5 of order 5, which therefore is cyclic.
Similarly, n17 ≡ 1 (mod 17) and n17 | 22 · 5 gives n17 = 1, thus a unique normal Sylow
17-subgroup S17.

Now let x be a generator of the Sylow 5-subgroup and y a generator of the Sylow
17-subgroup. Then

[x, y] = xyx−1y−1 = y′y−1 ∈ S17 because S5 is normal, and

[x, y] = xyx−1y−1 = xx′ ∈ S5 because S17 is normal.

Hence [x, y] ∈ S5 ∩ S17 = {e}, so x and y commute. This shows that g = xy has order
5 · 17 and generates a cyclic subgroup S5S17 of order 85. This subgroup is also normal
because

gS5S17 = S5gS17 = S5S17g

by normality of both S5 and S17.

Problem 3

Let G be a group such that all non-identity elements are conjugate. Show that the order
of G is 1, 2, or infinite.

Solution

Assume G has finite order n > 1. Then G acts on X = G− {e} by conjugation, and by
assumption, Gx = X for all x ∈ X. By the orbit formula, the cardinality of the orbit is
the index of the stabilizer Gx and thus divides the group order. Thus n− 1 | n, which is
only possible if n = 2.

Problem 4

Let R be a commutative, unital ring and I E R an ideal. Define
√

I = {r ∈ R | rn ∈ I for some n ≥ 1}.

Show that
√

I is an ideal.

Solution

First we show that it is an abelian subgroup. If x, y ∈
√

I, say xm ∈ I and xn ∈ I, then by
the commutativity of R,

(x + y)m+n = ∑
i+j=m+n

(
m + n

i

)
xiyj.



In this sum, either i ≥ m or j ≥ n, so xiyi ∈ I for all summands.
Next we show that I is closed under multiplication with elements of R. But if xm ∈ I

then (rx)m = rmxm ∈ I, again using that R is commutative.

Problem 5

Factor the polynomial p(x) = x4 + x + 1 into indecomposable factors in the following
rings:

1. F2[x],

2. F3[x],

3. Q[x].

In each case, argue carefully why the factors you give are indeed indecomposable.

Solution

Over F2[x], p(0) = p(1) = 1, so there is no linear factor, and any decomposition would
have to have the form p(x) = (x2 + ax + 1)(x2 + bx + 1) = x4 + (a + b)x3 + abx2 + (a +
b)x + 1, which is impossible. Hence p is indecomposable.

Over F3[x], p(1) = 0, and we get p(x) = (x− 1)(x3 + x2 + x + 2). Since the degree-3
factor has no further zero in F3, it is indecomposable.

Since p is indecomposable over F2, it is also indecomposable over Z. Since it is
primitive, it is also indecomposable over Q[x] by Gauss’s lemma.

Problem 6

Let M be a finitely generated module over an integral domain R and let {x1, . . . , xn} ⊆ M
be a maximal set of linearly independent elements and N = 〈x1, . . . , xn〉 the submodule
of M generated by this set. Show that M/N is a torsion module.

Solution

We need to see that for every x ∈ M/N there is an element r ∈ R − {0} such that
rx = 0 ∈ M/N, or equivalently, that for every x ∈ M there is an r ∈ R− {0} such that
rx ∈ N.

Since {x1, . . . , xn, x} is linearly dependent in M by assumption, there is a relation

α1x1 + · · ·+ αnxn + rx = 0

with not all αi and r zero. Since the xi are linearly independent, we must have r 6= 0.
Thus

rx = −(α1x1 + · · ·+ αnxn) ∈ N.


