SF2729 Groups and Rings Problem set 1

due: Tuesday Nov 12 in class.

Write clear, clean, brief, and complete solutions and use whole sentences. Solutions without proper reasoning score worse. You can submit hand-written or typed solutions and turn them in in class or send them by email to tilmanb@kth.se. I will not accept late homework except under extraordinary circumstances that you need to discuss with me before the deadline.

Problem 1. Let d be a non-negative integer and put

$$
P=\left\{(x, y) \in \mathbf{Z} \times \mathbf{Z} \mid x^{2}-d y^{2}=1\right\} .
$$

Let $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ be elements in P. Consider the following operation:

$$
\left(x_{0}, y_{0}\right) \cdot\left(x_{1}, y_{1}\right)=\left(x_{0} x_{1}+d y_{0} y_{1}, x_{0} y_{1}+x_{1} y_{0}\right) .
$$

Show that • is a binary operation on P and that P endowed with this operation is a group.
Problem 2. Complete the following table so that it is the multiplication table of a group. There is only one possibility. You do not need to write down your reasoning in this exercise.

\cdot	e	p	q	r	s	t
e	e	p	q	r	s	t
p	p	q	e	s		
q	q					
r	r			e		p
s	s					
t	t					

Problem 3. Let H be a chess board (with black and white fields) which is infinite in all directions. Let G be the group of rigid-motion symmetries of H (no reflections). Show that every element is either a rotation or a composition of two rotations in G.

