SF2729 Groups and Rings Problem set 11

due: Monday Feb 24 in class.

Write clear, clean, brief, and complete solutions and use whole sentences. Solutions without proper reasoning score worse. You can submit hand-written or typed solutions and turn them in in class or send them by email to tilmanb@kth. se. I will not accept late homework except under extraordinary circumstances that you need to discuss with me before the deadline.

Problem 1. Let p be a prime number with $p \equiv 1(\bmod 4)$. We have shown that there exist $a, b \in \mathbf{Z}$ such that $p=a^{2}+b^{2}$. Show that a and b are unique up to order and signs.
Problem 2. Let R be an integral domain and $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in R[x]$ be indecomposable. Show that then also the polynomial $q(x)=a_{0} x^{n}+\cdots+a_{n-1} x+a_{n}$ is indecomposable.

Problem 3. Show that the polynomial $x^{4}+4 x^{3}+6 x^{2}+9 x+11$ is indecomposable in $\mathbf{Z}[x]$.

