SF2729 Groups and Rings Solution to Problem 2.3

Problem 3.. Show that the symmetric group S_{n} has a presentation of the form

$$
\begin{equation*}
\left.S_{n}=\left\langle a_{1}, \ldots, a_{n-1}\right| a_{i}^{2}=\mathrm{id}, a_{i} a_{j}=a_{j} a_{i} \text { for }|i-j|>1,\left(a_{i} a_{i+1}\right)^{3}=\mathrm{id}\right\rangle \tag{1}
\end{equation*}
$$

Hint: Bubble sort.
Let a_{i} be the two-cycle $(i \quad i+1)$ for $i=1, \ldots, n-1$.
The relations are satisfied: We have that $a_{i}^{2}=(i \quad i+1)^{2}=\mathrm{id}$ for any i. Furthermore, a_{i} and a_{j} are disjunct 2-cycles if $|i-j|>1$, hence they commute in this case. Lastly,

$$
\left(a_{i} a_{i+1}\right)^{3}=((i \quad i+1)(i+1 i+2))^{3}=\left(\begin{array}{ll}
i & i+1 \\
i+2
\end{array}\right)^{3}=\mathrm{id}
$$

showing that the relations are indeed satisfied.
The a_{i} generate S_{n} : We prove this by induction in n, the case $n=1$ being trivial. Let $\sigma \in S_{n}$ be a permutation with $\sigma(n)=k$. If $k=n$ then $\sigma \in S_{n-1}$ and we are done by induction. If $k<n$ then the permutation

$$
\sigma^{\prime}=(n-1 n)(n-2 n-1) \cdots(k \quad k+1) \sigma=a_{n-1} \cdots a_{k} \sigma
$$

has $\sigma^{\prime} \in S_{n-1}$, hence is a product of a_{i} by induction. Thus so is

$$
\sigma=a_{k} a_{k+1} \cdots a_{n-1} \sigma^{\prime}
$$

The list of relations is complete: It is in theory possible that there are additional relations in S_{n} we cannot derive from the three types of relations given in the problem, and we have to argue that this is not the case. This is somewhat harder and I did not expect you to give a proof, but here is one.

Let G_{n} be the group generated as in (1). We have a homomorphism $G_{n} \rightarrow S_{n}$ sending a_{k} to ($k \quad k+1$), which is surjective by what we've shown above. To see it is also injective, we prove that $\left|G_{n}\right|=n$!, which of course is also the cardinality of the symmetric group. We proceed by induction in n, the case $n=1$ being clear.

Consider the set of left cosets $X=G_{n} / G_{n-1}$. Any element is of the form $g G_{n-1}$ for some $g \in G_{n}$; in fact we will show it is of the form

$$
a_{k} a_{k+1} \ldots a_{n-1} G_{n-1} \text { or just } \quad G_{n-1}
$$

Any element $g \in G_{n}$ can be written as some string $a_{i_{1}} \cdots a_{i_{r}}$ with $i_{j} \neq i_{j+1}$. Since $a_{1}, \ldots, a_{n-2} \in G_{n-1}$, we can assume that $i_{r}=n-1$, otherwise we can absorb $a_{i_{r}}$ into G_{n-1}. Now let j be the largest index such that $i_{j} \neq i_{j+1}-1$. If $i_{j}<i_{j+1}-1$, we can apply the commutation relation to move $a_{i_{j}}$ to the right and into G_{n-1}. If $i_{j}>i_{j+1}+1$ for some j, we similarly can move $a_{i_{j}}$ to the right. Finally, if $i_{j}=i_{j+1}+1$, we have a substring $a_{i_{j}} a_{i_{j}-1} a_{i_{j}}$ to which we can apply the third relation to replace it by $a_{i_{j}-1} a_{i_{j}} a_{i_{j}-1}$. Then we can move the right hand side $a_{i_{j}-1}$ into G_{n-1} and continue normalizing.

Since all the cosets $a_{k} a_{k+1} \ldots a_{n-1} G_{n-1}$ are different and different from G_{n-1}, there are a total of n of them. Since all cosets have the same size, which by induction is $(n-1)$!, and their disjoint union is G_{n}, we have therefore seen that $\left|G_{n}\right|=n$!.

