SF2729 Groups and Rings Solution to Problem 2.3

Problem 3.. Show that the symmetric group S_n has a presentation of the form (1) $S_n = \langle a_1, \ldots, a_{n-1} | a_i^2 = id, a_i a_j = a_j a_i$ for |i - j| > 1, $(a_i a_{i+1})^3 = id \rangle$ *Hint:* Bubble sort.

Let a_i be the two-cycle $(i \ i+1)$ for $i = 1, \ldots, n-1$.

The relations are satisfied: We have that $a_i^2 = (i \ i+1)^2 = id$ for any *i*. Furthermore, a_i and a_j are disjunct 2-cycles if |i-j| > 1, hence they commute in this case. Lastly,

$$(a_i a_{i+1})^3 = ((i \ i+1)(i+1 \ i+2))^3 = (i \ i+1 \ i+2)^3 = \mathrm{id},$$

showing that the relations are indeed satisfied.

The a_i generate S_n : We prove this by induction in n, the case n = 1 being trivial. Let $\sigma \in S_n$ be a permutation with $\sigma(n) = k$. If k = n then $\sigma \in S_{n-1}$ and we are done by induction. If k < n then the permutation

$$\sigma' = (n-1 \ n)(n-2 \ n-1)\cdots(k \ k+1)\sigma = a_{n-1}\cdots a_k\sigma$$

has $\sigma' \in S_{n-1}$, hence is a product of a_i by induction. Thus so is

$$\sigma = a_k a_{k+1} \cdots a_{n-1} \sigma'.$$

The list of relations is complete: It is in theory possible that there are additional relations in S_n we cannot derive from the three types of relations given in the problem, and we have to argue that this is not the case. This is somewhat harder and I did not expect you to give a proof, but here is one.

Let G_n be the group generated as in (1). We have a homomorphism $G_n \to S_n$ sending a_k to $(k \ k+1)$, which is surjective by what we've shown above. To see it is also injective, we prove that $|G_n| = n!$, which of course is also the cardinality of the symmetric group. We proceed by induction in n, the case n = 1 being clear.

Consider the set of left cosets $X = G_n/G_{n-1}$. Any element is of the form gG_{n-1} for some $g \in G_n$; in fact we will show it is of the form

$$a_k a_{k+1} \dots a_{n-1} G_{n-1}$$
 or just G_{n-1} .

Any element $g \in G_n$ can be written as some string $a_{i_1} \cdots a_{i_r}$ with $i_j \neq i_{j+1}$. Since $a_1, \ldots, a_{n-2} \in G_{n-1}$, we can assume that $i_r = n - 1$, otherwise we can absorb a_{i_r} into G_{n-1} . Now let j be the largest index such that $i_j \neq i_{j+1} - 1$. If $i_j < i_{j+1} - 1$, we can apply the commutation relation to move a_{i_j} to the right and into G_{n-1} . If $i_j > i_{j+1} + 1$ for some j, we similarly can move a_{i_j} to the right. Finally, if $i_j = i_{j+1} + 1$, we have a substring $a_{i_j-1}a_{i_j}$ to which we can apply the third relation to replace it by $a_{i_j-1}a_{i_j}a_{i_j-1}$. Then we can move the right hand side a_{i_j-1} into G_{n-1} and continue normalizing.

Since all the cosets $a_k a_{k+1} \dots a_{n-1} G_{n-1}$ are different and different from G_{n-1} , there are a total of n of them. Since all cosets have the same size, which by induction is (n-1)!, and their disjoint union is G_n , we have therefore seen that $|G_n| = n!$.