Homological algebra and algebraic topology Problem set 4

due: Tuesday Oct 1 in class.

Problem 1 (2pt). Show that an exact sequence of abelian groups $0 \to \mathbf{Q} \to M \to N \to 0$ with the rationals on the left hand side always splits.

Problem 2 (3pt). Let p be a prime, and denote by $\mathbf{Z}_{(p)} \subset \mathbf{Q}$ the subset of all fractions $\frac{n}{q}$ for which $p \nmid q$.

- (1) Show that $\mathbf{Z}_{(p)}$ is a subring of \mathbf{Q} .
- (2) Show that $\mathbf{Z}_{(p)}^{(p)}$ is flat as a **Z**-module (abelian group).
- (3) Show that if \tilde{l} is another prime and A is a finite abelian l-group then

$$\mathbf{Z}_{(p)} \otimes_{\mathbf{Z}} A \cong \begin{cases} A; & p = l \\ 0; & p \neq l. \end{cases}$$

Problem 3 (3pt). Let $\tau = \sqrt{-5} \in \mathbf{C}$ and let $R = \mathbf{Z}[\tau] = \{a + b\tau \in \mathbf{C} \mid a, b \in \mathbf{Z}\}$. Let $M = (2, 1 + \tau) < R$ be the ideal generated by the elements 2 and $1 + \tau$, regarded as a (sub-)*R*-module of *R*.

- (1) Show that M is not free.
- (2) Show that M is projective.

Problem 4 (2pt+2pt). Let R be a ring and M be an R-module. We say that M is **finitely generated** if there is a surjective homomorphism $p \colon R^n \to M$ for some $n \ge 0$. If n and p can be chosen such that $\ker(p)$ is also finitely generated, we call M **finitely presented**.

Denote by M^* the right R-module $\operatorname{Hom}_R(M,R)$, where the right action is given by (f.r)(m) = f(m)r.

(1) For R-modules M, N, consider the natural map

$$a: M^* \otimes_R N \to \operatorname{Hom}_R(M, N)$$

 $f \otimes n \mapsto (m \mapsto f(m)n).$

Show that a is an isomorphism if M is finitely presented and projective.

(2) (bonus +2pt) Show that finitely presented flat *R*-modules are projective.