
1. CHAIN COMPLEXES

Definition. A sequence of abelian groups

. . . C−2, C−1, C0, C1, . . .

with homomorphisms ∂i : Ci+1 → Ci is called a (homological) chain complex if
∂i−1 ◦ ∂i = 0 for all i ∈ Z.

A cohomological chain complex is almost the same thing, but with reversed
grading: a sequence of abelian groups

. . . C−2, C−1, C0, C1, . . .

together with homomorphisms di : Ci−1 → Ci such that di ◦ di−1 = 0 for all i ∈ Z.
We will concentrate on homological chain complexes; all results hold analogously

for cohomological chain complexes.
A chain complex (or just a sequence of abelian groups with homomorphisms)

is called bounded below (bounded above) if Ci = 0 for i � 0 (resp. i � 0). It
is called non-negatively graded (non-positively graded) if Ci = 0 for i < 0 (resp.
i > 0).

Definition. We call the subgroup Zi(C•) = ker(∂i−1 : Ci → Ci−1) < Ci the sub-
group of i-cycles and the subgroup Bi(C•) = im(∂i : Ci+1 → Ci) < Ci the subgroup
of i-boundaries.

Lemma 1.1. For any chain complex C•, Bi(C•) is a subgroup of Zi(C•).

Definition. The ith homology group of a chain complex C• is defined as the quo-
tient group

Hi(C•) = Zi(C•)/Bi(C•).
If Zn = Bn for all n (and thus Hn = 0), we call C• exact or acyclic. An exact chain
complex is more usually called exact sequence. An exact sequence of the form

0→ A′ → A→ A′′ → 0

is often called a short exact sequence.

Lemma 1.2. Let A, B, C be abelian groups and f : A → B and g : B → C homomor-
phisms.

(1) 0→ A
f−→ B is exact iff f is injective.

(2) A
f−→ B→ 0 is exact iff f is surjective.

(3) 0→ A
f−→ B→ 0 is exact iff f is an isomorphism.

(4) 0→ A
f−→ B

g−→ C → 0 is exact iff f is injective, g is surjective, and ker g = im f .

Definition. Let A•, B• be sequences of abelian groups and homomorphisms (or
chain complexes). A map of sequences (or map of chain complexes) is a commu-
tative diagram

· · · An+1 An An−1 · · ·

· · · Bn+1 Bn Bn−1 · · ·

∂A
n

∂B
n

∂A
n−1

∂B
n−1

fn+1 fn fn−1

1
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Lemma 1.3. A map of chain complexes f : C• → D• induces maps

Z( f ) : Zn(C•)→ Zn(D•) of n-cycles,
B( f ) : Bn(C•)→ Bn(D•) of n-boundaries, and

Hn( f ) = f∗ : Hn(C•)→ Hn(D•) on homology.

Lemma 1.4 (Five-lemma). Let

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

f1 f2 f3 f4 f5

be a commutative diagram of abelian groups with exact rows. Then:

(1) if f2, f4 are surjective and f5 is injective then f3 is surjective.
(2) if f2, f4 are injective and f1 is surjective then f3 is injective.
(3) in particular, if f1, f2, f4, f5 are isomorphisms then so is f3.

Definition. A short exact sequence of the form 0→ A′ → A′ ⊕ A′′ → A′′, where
the first map is the inclusion into the first summand and the second map is the
projection onto the second, is called split exact.

See homework problem 1.2 for characterizations of split exact sequences.

Definition. Let f : A→ B be a homomorphism between abelian groups. Define its
cokernel coker( f ) to be the quotient group B/ im( f ) and its coimage coim( f ) to
be A/ ker( f ).

Lemma 1.5. For any homomorphism f : A→ B of abelian groups, we have:

(1) f : coim( f )→ im( f ) is an isomorphism;

(2) 0→ ker( f )→ A
f−→ B→ coker( f )→ 0 is exact.

Lemma 1.6 (Snake lemma). Given a diagram of abelian groups

(1.7)

A1 A2 A3 0

0 B1 B2 B3

with exact rows. Let Ki denote the kernel of Ai → Bi and Ci its cokernel. Then there is a
“snake homomorphism” K3 → C1 such that the sequence

K1 → K2 → K3 → C1 → C2 → C3
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is exact:

0 0 0

K1 K2 K3

A1 A2 A3 0

0 B1 B2 B3

C1 C2 C3.

0 0 0

If A1 → A2 is injective then so is K1 → K2, and if B2 → B3 is injective then so is
C2 → C3.

Furthermore, the snake map is natural, meaning that if we have a map (Ai, Bi) →
(A′i, B′i) of diagrams of the type (1.7) then the following square commutes:

K3 C1

K′3 C′1.

Theorem 1.8. Let 0→ A•
i−→ B•

p−→ C• → 0 be a short exact sequence of chain complexes
(meaning 0→ An → Bn → Cn → 0 is exact for each n ∈ Z). Then there is a connecting
homomorphism δn : Hn+1(C•) → Hn(A•) such that the following long sequence is
exact:

· · · p∗−→ Hn+1(C•)
δn−→ Hn(A•)

i∗−→ Hn(B•)
p∗−→ Hn(C•)

δn−1−−→ Hn−1(A•)
i∗−→ · · · .

The homomorphism δ is natural: given a map of short exact sequences of chain complexes
(A•, B•, C•)→ (A′•, B′•, C′•), the following square commutes:

Hn+1(C•) Hn(A•)

Hn+1(C′•) Hn(A′•).

δ

δ

2. CATEGORIES AND FUNCTORS

Definition. A category C consists of:
• a class ob(C) of objects;
• for each pair of objects X, Y ∈ ob(C), a set of morphisms HomC(X, Y);
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• for each object X ∈ ob(C), an element idX ∈ HomC(X, X) called identity
morphism;
• for each three objects X, Y, Z ∈ ob(C), a map

◦ : HomC(Y, Z)×HomC(X, Y)→ Hom(X, Z), (g, f ) 7→ g ◦ f

called composition.
These have to satisfy the following axioms:

(1) The composition ◦ is associative;
(2) For f ∈ HomC(X, Y), idY ◦ f = f and f ◦ idX = f .

A morphism f ∈ HomC(X, Y) is called an isomorphism (and the objects X, Y
isomorphic) if there is another morphism g ∈ HomC(Y, X) such that g ◦ f = idX
and g ◦ g = idY. If such a g exists, it is unique and is denoted by f−1.

We will often abuse notation and write X ∈ C for X ∈ ob(C), f ∈ Hom(X, Y)
or even just f : X → Y for f ∈ HomC(X, Y), and id for idX. We will also use
commutative diagrams to denote equalities between compositions of morphisms.

Definition. We use the following standard notations for familiar categories:
Set: The category of sets and functions;
Ab: The category of abelian groups and homomorphisms;
Top: The category of topological spaces and continuous maps.

Definition. Let C, D be categories. A (covariant) functor F : C → D consists of:
• a function ob(C)→ ob(D), also called F; and
• for every X, Y ∈ ob(C), a function HomC(X, Y) → HomD(F(X), F(Y))

denoted by f 7→ F( f ) or f 7→ f∗
satisfying (idX)∗ = idF(X) and (g ◦ f )∗ = g∗ ◦ f∗.

A contravariant functor F : C → D consists of:
• a function ob(C)→ ob(D), also called F; and
• for every X, Y ∈ ob(C), a function HomC(X, Y) → HomD(F(Y), F(X))

denoted by f 7→ F( f ) or f 7→ f ∗

satisfying (idX)
∗ = idF(X) and (g ◦ f )∗ = f ∗ ◦ g∗. (“It turns arrows around.”)

Definition. A natural transformation η : F → G between two functors F, G : C →
D consists of a morphism ηX ∈ HomD(F(X), G(X)) for each object X ∈ C such
that for each morphism f : HomC(X, Y), the following diagram commutes:

F(X) G(X)

F(Y) G(Y).

ηX

F( f )
ηY

G( f )

Natural transformations between contravariant functors are defined analogously.
A natural transformation η : F → G is called natural isomorphism (and F and

G isomorphic, F ' G) if ηX is an isomorphism for all X ∈ C.

Definition. A covariant functor F : C → D is called an equivalence of categories
if there is another functor G : D → C such that G ◦ F ' IdC and F ◦G ' IdD , where
IdC , IdD denote the identity functors on C and D, respectively.
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Definition. Let C be a category and (Xi)i∈I a family of objects in C, for some index
set I. An object X together with morphisms ιi : Xi → X is called coproduct of the
Xi, and is denoted by äi∈I Xi, if for each test object Y ∈ C, the map

HomC(X, Y)
HomC (ιi ,−)−−−−−−→∏

i∈I
HomC(Xi, Y)

is a bijection. The coproduct of only two objects is denoted by X1 t X2.
Similarly, an object X with morphism πi : X → Xi is called product of the Xi,

and is denoted by ∏i∈I Xi, if for each test object Y ∈ C, the map

HomC(Y, X)
HomC (−,πi)−−−−−−−→∏

i∈I
HomC(Y, Xi)

is a bijection. The product of only two objects is denoted by X1 × X2.

Lemma 2.1. In an arbitrary category C, (co-)products need not exist, but if they do, they
are unique up to isomorphism.

3. RINGS AND MODULES

Definition. A ring R is an abelian group together with a unity 1 ∈ R and an
associative bilinear map R× R → R, (x, y) 7→ xy, such that 1x = x1 = x for all
x ∈ R. A ring is called commutative if xy = yx for all x, y ∈ R.

A map f : R→ S between rings is called a ring homomorphism or map of rings
if it is linear, f (1R) = 1S, and f (xy) = f (x) f (y) for all x, y ∈ R.

Definition. A left module M over a ring R is an abelian group M together with
a bilinear multiplication map R×M → M, (r, m) 7→ r.m, such that 1.m = m and
(r1r2).m = r1.(r2.m) for all m ∈ M, ri ∈ R.

A right module is an abelian group M with a bilinear multiplication map M×
R → M, (m, r) 7→ m.r, such that m.1 = m and m.(r1r2) = (m.r1).r2 for all m ∈ M,
ri ∈ R.

When we just say “module”, we agree to mean a left module.
A map f : M→ N between two (left or right) R-modules M, N is an R-module

homomorphism if it is a abelian group homomorphism and f (r.m) = r. f (m) (resp.
f (m.r) = f (m).r) for all r ∈ R, m ∈ M.

The category of left R-modules and R-module homomorphisms is denoted by
ModR.

Definition. The product of a family (Mi)i∈I of R-modules, denoted by ∏i∈I Mi,
is the module whose underlying abelian group is the product groups, and the R-
module structure is given by r.((mi)i∈I) = (r.mi)i∈I . The direct sum of the family,
denoted by

⊕
i∈I Mi, is the submodule of families (mi)i∈I where all but finitely

many mi = 0.
An R-module M is called free if it is isomorphic to an (arbitrarily indexed) direct

sum of copies of R.

Lemma 3.1. The direct product is a product in ModR in the category-theoretic sense, and
the direct sum is a coproduct.

Definition. Let R be a ring, M a right R-module, and N a left R-module. The tensor
product M⊗R N is the abelian group obtained as follows. Denote by Fr(M× N)
the free abelian group with generators pairs (m, n) with m ∈ M, n ∈ N. Then
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M⊗R N is the quotient of Fr(M× N) with respect to an equivalence relation ∼
given by:

• (m1 + m2, n) ∼ (m1, n) + (m2, n)
• (m, n1 + n2) ∼ (m, n1) + (m, n2)
• (m.r, n) ∼ (m, r.n)

We denote the equivalence class of (m, n) in M⊗R N by m⊗ n.

Proposition 3.2. In the context of the previous definition, let T be an abelian group.
Denote by Bil(M, N; T) the set of all bilinear homomorphisms f : M × N → T with
f (m.r, n) = f (m, r.n). Then there is a natural isomorphism

Bil(M, N; T) ∼= HomZ(M⊗R N, T).

Definition (and lemma). An R-module M is called projective if it satisfies the
following equivalent conditions:

(1) For each diagram in ModR

M

N1 N2 0

with exact row, a lift (dotted arrow) exists such that the resulting diagram
commutes.

(2) There is an R-module N such that M⊕ N is free.
(3) Every shot exact sequence 0→ N1 → N2 → M→ 0 splits.
(4) The functor HomR(M,−) maps exact sequences to exact sequences (the

functor “is exact”).

Lemma 3.3. Let 0→ N′ → N → N′′ → 0 be an exact sequence of right R-modules, and
let M be a left R-module. Then the sequence of abelian groups

N′ ⊗R M→ N ⊗R M→ N′′ ⊗R M→ 0

is exact. Let 0→ N′ → N → N′′ → 0 be an exact sequence of left R-modules, and let M
be another left R-module. Then the sequence of abelian groups

0→ HomR(N′′, M)→ HomR(N, M)→ HomR(N′, M)

is exact.

Definition. A left R-module M is called flat if the functor −⊗R M from right R-
modules to abelian groups is exact. A right R-module is flat if the functor M⊗R −
from left R-modules to abelian groups is exact.

Lemma 3.4. Free modules are projective. Projective modules are flat. Not every flat module
is projective, and not every projective module is free.

4. RESOLUTIONS AND DERIVED FUNCTORS

Definition. Let R be a ring. A nonnegatively graded chain complex P• of R-
modules together with a map εP0 → M (the “augmentation”) is called a projective
resolution of M if

• For every i ≥ 0, Pi is projective;
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• The extended chain complex · · · → P1 → P0
ε−→ M is exact.

Proposition 4.1. Every R-module M has a projective resolution.

Corollary 4.2. If R is a principal ideal domain then every R-module has a projective
resolution of length 2:

0→ P1 → P0 → M→ 0

Definition. Let C•, D• be nonnegatively graded chain complexes of R-modules
and let f , g : C• → D• be two chain maps. A chain homotopy from f to g is a
sequence of R-linear maps hn : Cn−1 → Dn such that

g− f = h ◦ ∂C + ∂D ◦ h.

If such a chain homotopy exists, we call f and g chain homotopic and write f ' g.
If f : C• → D• and g : D• → C• are chain maps with chain homotopies g ◦ f '

idC• and f ◦ g ' idD• , we call f and g chain homotopy equivalences and the chain
complexes C• and D• chain homotopy equivalent.

Proposition 4.3. If f ' g then f∗ = g∗ : H∗(C•)→ H∗(D•).

Theorem 4.4. Let f : M → N be a morphism of R-modules, P• → M a chain complex
where all Pi are projective, and N• → N → 0 be an exact complex. Then

(1) The exists a chain map f• : P• → N• making the following ladder commute:

· · · P1 P0 M 0

· · · N1 N0 N 0

f1 f0 f

(2) Any two such extensions f•, g• are chain homotopic.

Corollary 4.5. Any two projective resolutions of M are chain homotopy equivalent.

Definition. Let R, S be two rings and F : ModR → ModS a (covariant or contravari-
ant) functor. We call F additive if the induced map on Hom-sets

HomR(M, N)
F−→ HomS(F(M), F(N)) (resp. HomS(F(N), F(M)))

is a homomorphism of abelian groups.
Let F be an additive covariant functor as above. Then we call F
• left exact if 0→ F(M′)→ F(M)→ F(M′′) is exact;
• right exact if F(M′)→ F(M)→ F(M′′) is exact;
• exact if it is right and left exact, i. e. if 0→ F(M′)→ F(M)→ F(M′′)→ 0

is exact
for all choices of exact sequences 0→ M′ → M→ M′′ → 0 of R-modules.

Similarly, if F is contravariant, we call it
• left exact if 0→ F(M′′)→ F(M)→ F(M′) is exact;
• right exact if F(M′′)→ F(M)→ F(M′) is exact;
• exact if it is right and left exact, i. e. if 0→ F(M′′)→ F(M)→ F(M′)→ 0

is exact
for all choices of exact sequences 0→ M′ → M→ M′′ → 0 of R-modules.
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Definition (and lemma). Let F : ModR → ModS be a covariant right exact functor,
M an R-module, and P• → M a projective resolution of M. Define the nth left
derived functor LnF : ModR → ModS by

(LnF)(N) = Hn(F(P•)).

Similarly, if F is a contravariant left exact functor, define the n right derived functor
RnF : ModR → ModS by

(RnF)(N) = Hn(F(P•)).

This is independent of the choice of resolution and extends to a functor by defining
it on morphisms as follows: if f : M→ M′ is a morphism of R-modules, extend it
to a morphism f• : P• → P′• by Thm. 4.4 and set

Ln(F)( f ) = Hn(F( f•));

similarly for right derived functors.

Lemma 4.6. If F is covariant right exact then L0F = F. If F is contravariant left exact
then R0F = F.

Lemma 4.7. If R is a principal ideal ring and F : ModR → ModS a right exact covariant
or left exact contravariant functor. Then LnF = 0 (resp. RnF = 0) if n ≥ 2.

Lemma 4.8. Let F be a covariant left exact functor. Then LnF = 0 for all n ≥ 1 if and
only if F is exact.

Definition. Let R be a ring, M a right R-module, and N a left R-module. Define
TorR

n (M, N) to be the nth left derived functor of the functor −⊗R N : R Mod→ Ab,
applied to M:

TorR
n (M, N) = [Ln(−⊗R N)] (M).

Let M and N be left modules. Define Extn
R(M, N) to be the nth right derived functor

of the functor HomR(−, N), applied to M:

Extn
R(M, N) = [Rn Hom(−, N)] (M)

Proposition 4.9. (symmetric of Tor) The functor TorR
n coincides with the nth left derived

functor of the functor M⊗R − : ModR → Ab, applied to N:

TorR
n (M, N) = [Ln(M⊗R −)] (N).

5. HOMOLOGY OF SPACES

Definition. Denote by Top the category of topological spaces and continuous maps.
We also write Top∗ for the category of pointed spaces. Its objects are pairs (X, x0)
where X is a topological spaces and x0 ∈ X. Morphisms from (X, x0) to (Y, y0) in
Top∗ are continuous maps f : X → Y such that f (x0) = y0.

Definition (recollection). Two maps f , g : X → Y are called homotopic ( f ' g)
if there exists a homotopy between them, i.e. a map H : X × [0, 1] → Y with
H(x, 0) = f (x) and H(x, 1) = g(x) for all x ∈ X. We call two spaces X and
Y homotopy equivalent if there are maps f : X → Y and g : Y → X such that
g ◦ f ' idX and f ◦ g ' idY.
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5.1. Cones, mapping cones, and suspensions.

Definition. Let X be a space. Its (unreduced) cone is the space

CX = X× [0, 1]/ ∼,

where (x, 1) ∼ (x′, 1) for all x, x′ ∈ X. If x0 is a fixed base point of X, we also
denote its reduced cone by CredX; it is defined by

CX = X× [0, 1]/sim,

where (x, 1) ∼ (x′, 1) as before but also (x0, t) = (x0, t′) for all t, t′ ∈ [0, 1].

Lemma 5.1. A map f : X → Y is homotopic to a constant map (“null-homotopic”) iff it
extends to a map f̃ : CX → Y from the unreduced cone on X to Y.

A pointed map f : (X, x0) → (Y, y0) is homotopic to the constant map with value y0
via a homotopy that does not move x0 iff it extends to a map f̃ : CredX → Y from the
reduced cone on X to Y.

Definition. Given a map f : A→ X, define its (unreduced) mapping cone by

C f = (A× [0, 1] t X)/ ∼,

where (a, 1) ∼ (a′, 1) for all a, a′ ∈ A and (a, 0) ∼ f (a) for a ∈ A. Similarly, if f
is a pointed map with f (a0) = x0, the reduced mapping cone Cred

f is obtained by
adding

(a0, t) ∼ (a0, t′) ∼ x0

to the equivalence relation, for all t, t′ ∈ [0, 1].

Lemma 5.2. Let f : A → X, g : X → Y be maps. Then g extends to g̃ : C f → Y iff the
composite g ◦ f is homotopic to a constant map.

If all maps are pointed then g extends to g̃ : Cred
f → Y iff the composite g ◦ f is homotopic

to the constant map with value y0 via a homotopy that does not move x0.

Definition. The unreduced suspension SX of a space X is the unreduced mapping
cone of the unique map X → ∗; the reduced suspension ΣX of a pointed space X
is the reduced mapping cone of the unique pointed map X → ∗.
Remark 5.3. For “good” spaces X and base points x0 ∈ X, the quotient maps
CX → CredX, SX → ΣX, and, for based maps A → X, C f → Cred

f , are homotopy
equivalences. “Good” here means “well-pointed”, which is implied for instance if
x0 has a contractible neighborhood in X.

5.2. The Eilenberg-Steenrod axioms. Let R be a ring, A an R-module, and

Hn : Top→ ModR

be a sequence of functors. We write H̃n(X) = ker (Hn(X)→ Hn(∗)), where the
map is induced by the unique map X → ∗.

Then (Hn)n∈Z is called a homology theory with coefficients in A if the follow-
ing axioms hold:

homotopy: if f ' g then Hn( f ) = Hn(g) for all n ∈ Z.
additivity: if X = äi∈I Xi then

⊕
i∈I Hn(Xi) ∼= Hn(X); the isomorphism is

given by the canonical inclusions Xi ↪→ X.

dimension: Hn(∗) =
{

0; n 6= 0
A; n = 0.

In particular, Hn(X) ∼= H̃n(X) for n 6= 0.
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exactness: Let f : A→ X be a map and g : X → C f be the standard inclusion.
Then there is a natural long exact sequence

· · · → Hn(A)
f∗−→ Hn(X)

g∗−→ H̃n(C f )→ Hn−1(A)→ · · ·
Mayer-Vietoris: Let X = U ∪V, where U and V are open subsets of X, and

Z = U ∩V. Then there is a long exact sequence

· · · → Hn(Z)
i∗−j∗−−−→ Hn(U)⊕ Hn(V)

p∗+q∗−−−→ Hn(X)→ Hn−1(Z)→ · · · ,

where the map i : Z ↪→ U, j : Z ↪→ V, p : U ↪→ X, q : V ↪→ X are all the
standard inclusions.

Theorem 5.4. For every ring R and every R-module A, there exists (up to equivalence of
functors) precisely one homology theory with coefficients in A.

5.3. Beginning calculations. For simplicity, let R = Z, A = Z.

Lemma 5.5. If X is discrete then Hn(X) ∼=
{

0; n 6= 0⊕
x∈X Z; n = 0.

Lemma 5.6. Denote by Sk the standard k-dimensional sphere. Then

H̃n(Sk) ∼=
{

0; n 6= k
Z; n = k.

Lemma 5.7. For any pointed space X, Hn+1(ΣX) ∼= H̃n(X).

Lemma 5.8. Let Dn+1 be the (n + 1)-dimensional disk, which has Sn as boundary. There
is no continuous function Dn+1 → Sn which is the identity, or even homotopic to the
identity, on Sn.

Corollary 5.9 (Brouwer’s fixed point theorem). Every continuous self-map of Dn has
a fixed point.

5.4. Mapping degrees. A map f : Sn → Sn gives a homomorphism of homology
groups Hn(Sn) ∼= Z, so it’s multiplication by a number d, called the mapping
degree of f , deg( f ).

Lemma 5.10. If f : Sn → Sn is homotopic to a constant map then deg( f ) = 0. �

Lemma 5.11. deg(id) = 1

Lemma 5.12. deg( f ◦ g) = deg( f )deg(g).

Lemma 5.13. If f ∈ O(n + 1) then deg( f ) = det( f ).

Corollary 5.14. The map x 7→ −x on Sn has degree (−1)n+1. (This map is called the
antipodal map.)

Corollary 5.15. If f : Sn → Sn has no fixed points then deg f = (−1)n+1.

Theorem 5.16 (Hairy ball theorem). Let n be even and f : Sn → Rn+1 be a continuous
map such that f (x) ⊥ x for all x. Then f (x) = 0 for some x ∈ Sn.


