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Matematiska Institutionen
KTH

Exam to the course Discrete Mathematics, SF2736, March 13, 2014, 08.00-
13.00.

Observe:

1. Nothing else than pencils, rubber, rulers and papers may be used.

2. Bonus marks from the homeworks will be added to the sum of marks on part I. The
maximum number of marks on part I is 15.

3. Grade limits: 13-14 points will give Fx; 15-17 points will give E; 18-21 points will
give D; 22-27 points will give C; 28-31 points will give B; 32-36 points will give A.

Part I

1. (3p) Find all solutions in the ring Z56 to the system of equations{
4x + 7y = 5
3x + 2y = 8

Solution. Gauss eliminations give the following systems with the same solution set
as the system above{

x + 5y = −3
3x + 2y = 8

⇐⇒
{

x + 5y = −3
0x − 13y = 17

The inverse of 13 in the ring Z56 is found by using the algorithm of Euclid:

56 = 4·13+4, 13 = 3·4+1, ⇒ 1 = 13−3·4 = 13−3(56−4·13) = 13·13−3·56

Thus, 13 · 13 = 1 in the ring Z56, so

y = −13 · 17 = −221 = −4 · 56 + 3,

and consequently
x = −3− 5y = −3− 5 · 3 = −18 = 38.

ANSWER: (x, y) = (38, 3).

2. (3p) Solve, by using the technique with generating functions, the recursion

an = 3an−1 + 2n, n = 1, 2, . . . , a0 = 1.

Solution. Let A(t) =
∑∞

n=0 ant
n. From the sequence of equalities below

ant
n = 3tan−1t

n−1 + 2ntn, n = 1, 2, 3, . . .
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we deduce that
∞∑
n=0

ant
n − a0 = 3t

∞∑
n=0

ant
n +

∞∑
n=1

(2t)n

Hence, as a0 = 1

(1− 3t)A(t) = 1 +
2t

1− 2t
=

1

1− 2t

or equivalently, expanding in partial fractions

A(t) =
1

(1− 2t)(1− 3t)
=

3

1− 3t
− 2

1− 2t
.

Hence,

A(t) = 3
∞∑
n=0

(3t)n − 2
∞∑
n=0

(2t)n =
∞∑
n=0

(3n+1 − 2n+1)tn.

ANSWER: 3n+1 − 2n+1.

3. (3p) Find the number of ways to distribute 18 identical marbles in the boxes no. 1,
no. 2, ..., no. 6, such that the total number of marbles distributed in box no. 1 to
no. 4 is twice as many as the number of marbles distributed in the boxes no. 5 and
no. 6.

Solution. Trivially, twelve of the marbles are distributed in the first four boxes
and the remaining six in the remaining two. As the number of ways to distribute n
identical objects in k distinct boxes is equal to(

n+ k − 1

k − 1

)
we get

ANSWER: (
15

3

)(
7

1

)
=

15 · 14 · 13

1 · 2 · 3
· 7 = 3185.

4. (3p) Find the number of cyclic subgroups to the group (Z2,+)× (Z3,+)× (Z4,+).

Solution. The group (Z3,+) × (Z4,+) is a cyclic group of order 12, which thus is
isomorphic to the group (Z12,+), (as cyclic groups of the same order are isomorphic).

We thus count the number of cyclic subgroups of the group G = (Z2,+)× (Z12,+).

In order to simplify our enumeration of all cyclic subgroups, we will use the fact
that if the cyclic group H = 〈g〉 generated by g has size, or order, n, then

〈g〉 = 〈gk〉 ⇐⇒ gcd(n, k) = 1.

Furthermore, g is a generator of the cyclic subgroup H of G if and only if the element
g has order |H|.
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We thus get the following cyclic subgroups of G:

Ht,1 = 〈(t, 1)〉 = 〈(t, 5)〉 = 〈(t, 7)〉 = 〈(t, 11)〉, Ht,2 = 〈(t, 3)〉 = 〈(t, 9)〉,

Ht,3 = 〈(t, 2)〉 = 〈(t, 10)〉, Ht,4 = 〈(t, 4)〉 = 〈(t, 8)〉, Ht,5〈(t, 6)〉 Ht,6 = 〈(t, 0)〉,

where t ∈ (Z2,+). Hence,

ANSWER: There are in total 12 cyclic subgroups.

5. (3p) Show that a graph with 2n−3 vertices cannot be connected if n of the vertices
have valency 1 and the remaining vertices have either valency 2 or 3.

Solution. If the graph with 2n− 3 vertices is connected then it has a spanning tree
with 2n− 4 edges. We estimate the number of edges |E|

2|E| =
∑
v∈V

δ(v) ≤ n · 1 + (n− 3) · 3 = 4n− 9 < 2(2n− 4).

This proves the statement.

Part II

6. (3p) How many arrangements are there of a, a, a, b, b, b, c, c, c, d, d, d without three
consecutive letters the same.

Solution. We use the principle of inclusion-exclusion. Let X denote the set of words
with the three consecutive letters xxx, for x = a, b, c, d. By considering xxx as one
letter we deduce the following

|A| = |B| = |C| = |D| =
(

10

1, 3, 3, 3

)
.

For X 6= Y , we get

|X ∩ Y | =
(

8

1, 1, 3, 3

)
,

and similarly for the remaining cases to consider. Thus

ANSWER:(
12

3, 3, 3, 3

)
−
(

4

1

)(
10

1, 3, 3, 3

)
+

(
4

2

)(
8

1, 1, 3, 3

)
−
(

4

3

)(
6

1, 1, 1, 3

)
+

(
4

1, 1, 1, 1

)
.

7. Let S5 denote the group of all permutations of the elements in the set {1, 2, 3, 4, 5}
and let M denote the following subset of S5:

M = {(1 2 3), (2 4), (2 5), (3 5)}.



4

(a) (2p) Find the least, according to size, subgroup H of S5 that contains the
set M.

Solution. We first note the following:

(x y)(x z)(x y) = (y z). (1)

Hence we may deduce that

(2 4)(2 5)(2 4) = (4 5) ∈ H.

We also note that H contains the element

(1 2 3)(3 5)(1 3 2) = (1 5)

Thus, we may deduce from relation (1), as (5 x) ∈ H, for x = 1, 2, 3, 4, that

{(x y) | x, y ∈ {1, 2, 3, 4, 5}} ⊆ H.

As every permutation can be written as a product of 2-cycles we get that H is
the full group S5.
ANSWER: H = S5

(b) (1p) Is there a subset ofM that gives the same result as in the problem above.

Solution. Yes, we can delete the permutation (3 5) from the setM. As above
we can deduce that

(1 2 3)(2 5)(1 3 2) = (3 5) ∈ H.

Then we can continue as above.

8. (5p) Find all positive integers n less than 1 000 such that 1241 ≡ 1(mod n) and
75 ≡ 1(mod n).

Solution. We first observe that gcd(n, 12) = 1 and gcd(7, n) = 1, as the elements 7
and 12 in the ring Zn are invertible. So for n < 12 the only possible candidates are
n = 5 and n = 11. We note that

75 ≡5 25 ≡5 2 6= 1, 75 ≡11 (−4)2(−4)2(−4) ≡11 5 · 5 · (−4) ≡11 −12 ≡11 −1 6= 1.

Thus, neither n = 5 nor n = 11 satisfies all given conditions on n.

We now consider the rings Zn where n ≥ 13, and consider 7 and 12 as elements of
these rings. The elements 7 and 12 are invertible in these rings. The set of invertible
elements in Zn constitute a group U(Zn). The size of U(Zn) is ϕ(n), the number of
elements of Zn relatively prime to n. It is well known that

n = pe11 · · · p
ek
k =⇒ ϕ(n) = pe1−11 · · · pek−1k (p1 − 1) · · · (pk − 1), (2)

where p1, p2, ..., pk are distinct prime numbers. We also know that the order of
an element in a group divides the size of the group. As 12 has the order 41 and
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7 has order 5 in U(Zn) we can conclude that both 41 and 5 divides ϕ(n). From
Equation (2) we thus deduce that either pi = 41 and ei ≥ 2 for some i and/or 41
divides pi − 1, and similarly for the prime number 5.

We note that 412 > 1 000 and 25 · 42 > 1 000. Hence, as we assume that n ≤ 1 000
we can conclude that the only possibility is that 41 divides pi − 1 for some i, and 5
divides pj − 1 for some j not necessarily distinct from i.

If i 6= j we get that pi ≥ 83 and pj ≥ 11, which gives the only possible value of
n < 1000 to be n = 11 · 83 = 913. If i = j then we look for a prime number pi
such that 41 · 5 divides pi − 1. Candidates are thus n = k · 205 + 1 which gives the
integers 206, 411, 616, and 821 to check whether or not they are prime numbers.
As 3 divides 411, and 2 divides both 206 and 616, it remains to check n = 821. (A
trivial check of divisibility for primes less than 29 gives that none of the primes 3,
5, 7, 11, 13, 17, 19 and 23 divides 821 confirming that 821 is a prime number. This
is not a necessary check, see below.)

Summarizing, it remains just two candidates for n, n = 821 and n = 913.

Now 75−1 = 16806 which is not divisible 913, as it is not divisible by 11. Furthermore

16806 = 20 · 821 + 386.

Thus 75 is not congruent to 1 modulo n for neither n = 821 nor n = 913.

ANSWER: No integer in the interval 1 ≤ n ≤ 1000 satisfies the given condition.

Part III

9. (a) (1p) Explain why the two parity-check matrices H and H′ below define the
same 1-error-correcting code:

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 H′ =

 0 0 0 1 1 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1


Solution. Denote by C, the 1-error-correcting code with the parity-check
matrix H. The row space of the two matrices above are the same, as the
matrix H′ is obtained from H by adding the first row of H to the second row.
As the code C is defined to be the null space of the matrix H, elementary linear
algebra arguments give that C also is the null space of the matrix H′.

(b) (2p) Assume that the 1-error-correcting code C of length n = 2k − 1 is defined
by its parity-check matrix H of size k × n. Every permutation ϕ of the set of
coordinate positions induces a permutation of the set of words of C, by

ϕ : c̄ = (c1, c2, . . . , cn) 7→ ϕ(c̄) = (cϕ−1(1), cϕ−1(2), . . . , cϕ−1(n)).

Explain why if ϕ(C) = C then there is a k × k-matrix A such that column
number i of H′ = AH is equal to column number ϕ−1(i) of H. (No formal
proofs are needed, good explanations are enough.)
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Solution. Let H′ be the parity-check matrix obtained from H using the per-
mutation ϕ. If H and H′ define the same 1-error-correcting code, then their
row spaces are the same. The rows of each of these two matrices constitute a
basis for the row spaces. If the rows of H are r̄i, for i = 1, 2, . . . , k, then, as the
rows of H is a basis for the row space of H, we may conclude that the rows of
H′ are

r̄′j = aj,1r̄1 + aj,2r̄2 + · · ·+ aj,kr̄k, j = 1, 2, . . . , k

for elements ai,j ∈ Z2. This means that

H′ =


a1,1 a1,2 · · · a1,k
a2,1 a2,2 · · · a2,k

...
...

...
ak,1 ak,2 · · · ak,k

H

As the rows of H′ are linearly independent, it follows that the k × k-matrix
above is non-singular, a fact that will be used in the next subproblem.

(c) (2p) Find the number of distinct linear 1-error-correcting codes C of length 15
and size |C| = 211.

Solution. We use the theory behind the lemma of Burnside.

Any parity-check matrix of a code with the given parameters can be obtained
from another parity-check matrix by one of the all 15! distinct permutations of
the coordinate positions. This because every possible non-zero column appears
exactly once in the parity-check matrix. Thus every 1-error-correcting code
with the given parameters is contained in the same orbit of 1-error-correcting
codes under the group of all 15! permutations of the coordinate positions. It
is thus sufficient to count the number N of permutations that fix a 1-error-
correcting code C. Then from the theory of Burnside, the number of distinct
1-error-correcting codes with the given parameters is given by 15!/N .

From the solution of the previous subproblem we know that every permutation
ϕ that fixes a given code C corresponds to a non-singular matrix A of size
4× 4, and vice versa. We count the number of such matrices. The first column
can be chosen in 15 ways, as every possible column except the zero column will
do. The second column can be any except the zero column or the first column,
thus 14 choices. The third cannot belong to the linear span of the first two
columns, which contains four columns, thus 12 choices in this case. Finally, the
last column can be chosen in 16− 8 = 8 distinct ways.

Thus,

ANSWER: The number of distinct 1-error-correcting codes with the given
parameters is

15!

15 · 14 · 12 · 8
.

10. (5p) Let χ(G) denote the chromatic number of a graph G and let Ḡ denote the
complement of G, (so we assume that has no multiple edges or loops). Show that

χ(G) + χ(Ḡ) ≥ 2
√
n,
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where n denotes the number of vertices of G.

Solution. Assume that χ(G)χ(Ḡ) = k. Then

χ(G) + χ(Ḡ) ≥ 2
√
k,

as the function x + k/x attends its minimum when x =
√
k. It is thus sufficient to

prove that k ≥ n. Assume that k < n. Then two vertices a and b will both have the
same color in a min coloring of G and in a min coloring of Ḡ. However this is an
impossibility as either in G or in Ḡ there is an edge between a and b.


