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Matematiska Institutionen
KTH

Solutions of the exam to the course Discrete Mathematics, SF2736,
January 17, 2014, 08.00-13.00.

Observe:

1. Nothing else than pencils, rubber, rulers and papers may be used.

2. Bonus marks from the homeworks will be added to the sum of marks on
part I. The maximum number of marks on part I is 15.

3. Grade limits: 13-14 points will give Fx; 15-17 points will give E; 18-21
points will give D; 22-27 points will give C; 28-31 points will give B; 32-36
points will give A.

Part I

1. (a) (1p) Find gcd(1111, 1234).

Solution. The Euclidian algorithm gives

1111 = 1234 − 123
1234 = 10 · 123 + 4
123 = 31 · 4 − 1

and thus

ANSWER: 1.

(b) (2p) Find 739962(mod 360).

Solution. As 360 = 5 · 23 · 32 we get that the value of the Eulerian
ϕ-function in the point 360 is equal to

ϕ(360) = 360(1− 1

5
)(1− 1

2
)(1− 1

3
) = 12 · 4 · 2 = 96.

Thus by the theorem of Euler

739962 ≡360 (73996)10 · 7392 ≡360 110 · 192 ≡360 1 · 361 ≡360 1

ANSWER: 1.

2. (3p) Are there any graphs G with 231 vertices and 234 edges, and contai-
ning exactly two cycles. The graph is assumed to have no multiple edges
or loops. (A loop is an edge ending in the same vertex.)

Solution. Deleting one edge in each cycle gives a graph that has no cycles.
Such graphs are forests. A forest consists of one or more trees, and each
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tree has exactly one more vertex than the number of edges in the tree. A
graph without cycles, with 231 vertices and 232 edges can thus not exist.

ANSWER: No.

3. (3p) Find the number of colorings of a necklace with seventeen beans. The
beans are either white or black. The necklace can be rotated and flipped.

Solution. We use the lemma of Burnside. We enumerate the elements of
the group G consisting of all rotations and flips of the necklace. We count
the number of colorings of the necklace that are fixed by these operations:

g ∈ G |Fix(g)|
Id. 217

ϕ = (1 2 3 . . . 17) 21

ϕ2 = (1 3 5 . . . 16) 21

...
...

ϕ16 = (1 17 16 . . . 2) 21

ψ1 = (1)(2 17)(3 16) · · · (9 10) 29

...
...

ψ17 = (17)(1 16)(2 15) · · · (8 9) 29

ANSWER:

1

34
(217 + 16 · 2 + 17 · 29).

4. Let A = {1, 2, 3, 4, 5} and B = {1, 2, 3, 4, 5, 6, 7}

(a) (1.5p) Find the number of injective maps from A to B such that

|{x ∈ A | f(x) ∈ {1, 2, 3}}| = 2.

Solution. We first find two elements a, b of A that maps to elements
in the set {1, 2, 3}. They can be chosen in

(
5
2

)
= 10 distinct ways.

The number of injective maps from {a, b} to {1, 2, 3} is equal to
3 · 2 = 6. The number of injective maps from the set A \ {a, b} to
the set {4, 5, 6, 7} is equal to 4 · 3 · 2 = 24. We thus get by using the
principle of multiplication the

ANSWER: 10 · 6 · 24 = 1440.

(b) (1.5p) Find the number of surjective maps from B to A such that
f(1) 6= f(2).

Solution. The total number of surjective maps from B to A is
5!S(7, 5), while those when f(1) = f(2) is equal to 5! · S(6, 5). Hence
the answer is given by

5!(S(7, 5)− S(6, 5)).
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Any division of a set of size 6 into 5 non-empty subsets results in one
set of size 2 and the remaining four subsets of size 1. Thus

S(6, 5) =

(
6

2

)
= 15.

Using the recursion formula S(n, k) = S(n− 1, k− 1) + k · S(n− 1, k)
we get

S(7, 5) = S(6, 4) + 5 · S(6, 5) =

(
S(5, 3) + 4

(
5

2

))
+ 5 · 15 =(

S(4, 2) + 3

(
4

2

))
+ 115 = 7 + 18 + 115 = 140.

Thus

ANSWER: 120(140− 15) = 15000

5. (a) (1p) Find a group G that has exactly three non-trivial and distinct
subgroups H1, H2 and H3 such that H1 ⊆ H2 ⊆ H3.

Solution. We consider the group G = (Z16,+). Let

H3 = 〈2〉 = {0, 2, 4, . . . , 14}.
Any element a in the set G \ H1 generates G, (as gcd(a, 16) = 1).
Hence all other non-trivial subgroups to G1 must be subgroups to
H1. Similarly, every element b such that

b ∈ H1 \ {0, 4, 8, 12, }
generates H1. Similar arguments give the

ANSWER. The group (Z16,+) has the following three non-trivial
subgroups

{0, 8} ⊆ {0, 4, 8, 12} ⊆ {0, 2, 4, 6, 8, 10, 12, 14}.
(b) (1p) Find a group G′ that has exactly three non-trivial subgroups

H ′1, H ′2 and H ′3 such that H ′1 ∩H ′2 = H ′1 ∩H ′3 = H ′2 ∩H ′3.

Solution. The group (Z2,+)× (Z2,+), has the following three non-
trivial subgroups that satisfy the given condition

H ′1 = {(0, 0), (0, 1)}, H ′2 = {(0, 0)(1, 0)}, H ′3 = {(0, 0)(1, 1)}

(c) (1p) Find a group G′′ with two non-trivial distinct subgroups H ′′1
and H ′′2 such that for any two elements a and b of G′′ and for the
cosets aH ′′1 and bH ′′

aH ′′1 ∩ bH ′′2 6= ∅ =⇒ aH ′′1 ⊆ bH ′′2 .

Solution. The group G′′ = (Z8,+) with

H ′′1 = {0, 4}, H ′′2 = {0, 2, 4, 6}
has as easily checked the desired property.
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Part II

6. (3p) There are 14 girls and 15 boys in a class. Three teams shall be selec-
ted. How many distinct combination of teams can be found if each team
consists of exactly five children, of which at least one child is a girl.

Solution. Label the teams as the a-team, the b-team and the c-team. The
total number of possible labeled teams, without the restrictions that each
team must contain at least one girl, is equal to(

29

5, 5, 5, 14

)
Some combinations of teams are not allowed, those with no girl in team
a, b and/or c. Denote by X the set of selections into teams such that the
x-team has no girl. The number of selections into labeled teams with at
least one girl in each team is then(

29

5, 5, 5, 14

)
− |A ∪B ∪ C|.

We get,

|A| = |B| = |C| =
(

15

5

)(
24

5, 5, 14

)
as we first can choose the five boys to the x-team and then choose 5 and
5 children to the other two teams. Similarly

|A ∩B| = |A ∩ C| = |B ∩ C| =
(

15

5

)(
10

5

)(
19

5

)
and

|A ∩B ∩ C| =
(

15

5, 5, 5

)
.

From the principle of inclusion-exclusion we thus get, as we are searching
the number of selections into unlabeled teams, the

ANSWER:

1

3!

((
29

5, 5, 5, 14

)
− 3 ·

(
15

5

)(
24

5, 5, 14

)
+ 3

(
15

5

)(
10

5

)(
19

5

)
−
(

15

5, 5, 5

))
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7. (4p) The graph G is bipartite with two sets of vertices X and Y , (no edges
between vertices of X and no edges between vertices of Y ). The graph G
has an Euler circuit and an Hamiltonian cycle. All vertices of X have the
same valency (degree) and all vertices of Y have the same valency (degree).
Which are the possibilities for the 3-tuples (|X|, |Y |, |E|)?

Solution. Every second vertex in an Hamiltonian cycle belongs to X and
every second vertex belongs to Y . Hence |X| = |Y |. Let kx denote the
valency of the vertices of X and ky denote the valency of the vertices of
Y . As the graph has an Euler circuit kx and ky must be even integers.
The number |E| of edges in G satisfies

|X| · kx = |E| = |Y | · ky.

Thus kx = ky = 2k and (|X|, |Y |, |E|) = (n, n, 2kn) for some integers
n ≥ 2 and k = kx/2 such that 2 ≤ 2k ≤ n.

We now prove that for each such triple (n, n, 2kn) there is a bipartite
graph G that has both an Hamiltonian cycle and an Euler circuit, with
|X| = |Y | = n and such that every vertex has valency 2k.

We leet X = {x0, x1, . . . , xn−1} and Y = {y0, y1, . . . , yn−1} be the set of
vertices. We let the set of edges be the set

E = {(xi, y(i+j)( mod n)) | i = 0, 1, . . . , n− 1, j = 0, 1, . . . , 2k − 1}.

This graph has the Hamiltonian cycle

y0x0y1x2 · · · yn−1xn−1y0

It follows that the graph is connected, and furthermore, as every vertex
has even degree 2k we know that the graph has an Euler circuit.

ANSWER: The triples in the set {(n, n, 2tn) | n ≥ 2, 2 ≤ 2t ≤ n}

8. (4p) Let S14 denote the set of permutations of the elements in the set
{1, 2, . . . , 14}. Find the number of elements ϕ in S14 such that

ϕ12 = (1 2)( 3 4)(5 6)(7 8).

How many of the solutions to the equation above are odd permutations?

Solution. We write ϕ as a product of disjoint cycles ϕi, i = 1, 2, . . . , k,
and observe that

ϕ = ϕ1ϕ2 · · ·ϕk =⇒ ϕ12 = ϕ12
1 ϕ

12
2 · · ·ϕ12

k .
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We also observe that if the cycle ϕi is either a 2-, 3-, 4-, 6- or an 12-cycle
then ϕ12

i = Id.. If ϕi is an 8-cycle then we have the following

ϕi = (a1 a2 a3 · · · a8) =⇒ ϕ12
i = (a1 a5)(a2 a6)(a3 a7)(a4 a8).

If ϕi is an n-cycle where n is coprime to 12, then ϕ12
i is an n-cycle. It

remains to check 9- and 14-cycles. Such permutations raised to the power
twelve will give a product of three 3-cycles or a product of two 7-cycles,
respectively. So the only possibility is that one of the cycles, e.g. ϕ1 is an
8-cycle on the elements in the set {1, 2, . . . , 8}, and that the remaining
cycles ϕ2,. . . , ϕk are 2-, 3-, 4- and 6-cycles on the elements in the set
{9, 10, ..., 14}.
Now we search for suitable combinations of these latter cycles. The following
distinct cases can appear:

One 6-cycle: the number of 6-cycles on six elements is 5!, that is, 120.

One 4-cycle and one 2-cycle: the number of such combinations is(
6

2

)
· 3 · 2 = 90.

One 4-cycle: the number of 4-cycles equals the previous.

Two 3-cycles: the number of such combinations of permutations is

1

2
·
(

6

3

)
· 2 · 2 = 40.

One 3-cycle and one 2-cycle: the number of such combinations is(
6

3, 2, 1

)
· 2 = 120.

One 3-cycle: the number of such combinations is(
6

3

)
· 2 = 40.

Three 2-cycles: the number of such is(
6

2, 2, 2

)
= 90.

Two 2-cycles: the number of such is also 90

One 2-cycle, the number of such is
(
6
2

)
= 15

In total the number of suitable combinations of permutations of the ele-
ments in the set {9, 10, . . . , 14} is

120 + 90 + 90 + 40 + 120 + 40 + 90 + 90 + 15 = 695.
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Now to the 8-cycle. We can let any of the elements 1, 2, ..., 8 be the
element a1, for example a1 = 1. Then a5 must be equal to 2. To a2 we can
choose any of the remaining six elements 3, 4, ..., 8. If e.g. a2 = 3 then
a6 = 4. After the choice of a2 it remains four elements to a3 and then two
elements to a4. The number of possible 8-cycles is thus 6 · 4 · 2, that is, 48.

The principle of multiplication thus gives that the total number of solu-
tions to the given equation is

695 · 48 = 33360.

In order to find the number of odd permutations we use the fact that a
cycle of odd length is an even permutation and a cycle of even length is
an odd permutation. As “odd times odd is even” and “odd times even
is odd” we get when analyzing the possible combinations above that the
number of odd permutations is equal to the sum of the following integers

0 + 90 + 0 + 40 + 0 + 40 + 0 + 90 + 0 = 260.

The number odd permutations ϕ that satisfies the equation is thus equal
to

260 · 48 = 12480

ANSWER: 33360 and 12480, respectively.

Part III

9. We consider codes of length 8 over the alphabet Z3, i.e., subsets C of Z8
3 ,

the direct product of eight identical copies of the ring Z3.

(a) (1p) Give an upper bound for the size of a 2-error-correcting code C
of length 8 over the alphabet Z3.

Solution. The number of words at distance at most 2 from a given
code word c̄ is equal to

1 + 8 · 2 +

(
8

2

)
22 = 1 + 16 + 28 · 4 = 129.

As the total number of words with letters from Z3 is 38 and spheres
with centers at code words must be mutually disjoint we get that

|C| ≤ 38

129
=

81 · 81

129
=

6561

129
.

As 50 · 129 = 6450 = 6561 − 111 and so 50 < 6561/129 < 51 we
conclude that

ANSWER: |C| < 50.
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(b) (1p) Generalize the concept linear binary error-correcting code to
linear error-correcting codes over the alphabet Z3.

Solution. We may consider Z8
3 as a vector space over Z3. We define

a linear code as a subspace of this vector space.

(c) (3p) Find a linear 2-error-correcting code C of length 8 over the
alphabet Z3. The more words in C the more marks.

Solution. We let C be the null space of a matrix H with digits in
Z3 and where we count as in the ring Z3. The distance between any
two words must be at least equal to five. Hence no linear combination
of four or less columns in H may be equal to the zero column. The
number of words of C will be a power of 3. The best we can do is
then, by problem a), with a matrix H with 8 columns and 5 rows,
as then the dimension of C will be 3, and thus the size of C equal
to 33 = 27. By some trial and error we find the following matrix
satisfying these conditions

H =


1 0 0 0 0 1 0 2
0 1 0 0 0 1 2 0
0 0 1 0 0 1 2 1
0 0 0 1 0 1 1 2
0 0 0 0 1 0 2 2


10. (5p) There are k containers C1, C2, ..., Ck, and each container Ci con-

tains k marbles in the color ci. For every integer k ≥ 2, the number of
distinct samples of size k you can get using marbles from the containers is
equal to

(
a
b

)
, for some positive integers a = a(k) and b = b(k). Find a(k)

and b(k).

Solution. The answer is given by the coefficient ak of xk in the polynomial

1 + a1x+ a2x
2 + · · ·+ akx

k + · · ·+ x(k
2) = (1 + x+ x2 + · · ·+ xk)k

which is equal to the coefficient of xk in the function

1 + a1x+ a2x
2 + · · ·+ akx

k + · · · = (1 + x+ x2 + · · ·+ xk + xk+1 + · · ·)k.

The above equality can be expressed as

1 + a1x+ a2x
2 + · · ·+ akx

k + · · · = (1− x)−k.

We differentiate both sides k times and get the equality

akk! + ak+1(k + 1)!x+ · · · = (−k)(−1) · · · (−k − (k − 1))(−1)(1− x)−2k.

Substituting x by 0 we get

ak =
k(k + 1) · · · (2k − 1)

k!
=

(
2k − 1

k

)
ANSWER: a(k) = 2k − 1 and b(k) = k (or b(k) = k − 1).


