
Matematiska Institutionen
KTH

Solutions to homework number 3 to SF2736, fall 2013.

Please, deliver this homework at latest on Monday, December 2.
The homework must be delivered individually, and, in general, just hand-

written notes are accepted. You are free to discuss the problems below with
your class mates, but you are not allowed to copy the solution of another
student.

1. (0.2p) Let H(n, k) denote the number of ways to partition a set with n
elements into k subsets of the same size. Derive a formula for H(n, k).

Solution. We first note that k must divide n, that is, n = kd for some
integer d, the size of the subsets. If we regard the subsets as labeled
then the number of partitions is the multinomial coefficient(

n

d, d, . . . , d

)
=

n!

d! d! · · · d!
=

n!

(d!)k

There are k! ways to label the subsets, thus

ANSWER:

H(n, k) =

{
n!/(k!(d!)k) if n = kd,
0 else.

2. (a) (0.1p) Find a formula for the number of words of length n+k you
can form by using n a’s and k b’s and such that no two a’s are
adjacent.

Solution. First put the b:s in a row, then we place the a:s in the
spaces between the b:s, or in front of, or after all b:s, and at most
one a in each such spaces. We thus have to select n out of k + 1
such spaces between the b:s. Consequently

ANSWER: Zero unless n ≤ k + 1 and in that case(
k + 1

n

)
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(b) (0.2p) Find the number of words of length 21 you can form by
using eight a’s, seven b’s and six c’s such that no two a’s are
adjacent.

Solution. We first form words by using the b:s and the c:s. Such
words have length 13, choosing the position for the seven b:s in
such words gives (

13

7

)
such words. Then as in the previous problem we put the a:s in
the spaces between the letters in such words. So

ANSWER: (
13

7

)(
14

8

)

3. Find the number of equivalence relations ∼ on the set {1, 2, 3, . . . , 7}
such that

(a) (0.1p) 1 ∼ 2 and 3 ∼ 4. Remark. The answers to the two
problems above must, beside explanations, be given as an integer,
that is, as an element in Z.

Solution. We can regard 1 and 2 as the same element, as well as
3 and 4. There is a one to one correspondence between the equiv-
alence relations on the set M = {12, 34, 5, 6, 7} and the number
of ways to partition the set M into subsets, subsets constituting
the equivalence classes induced by the equivalence relation.

The number of ways to partition a set with n elements into k non-
empty subsets the Stirling number denoted by S(n, k). Hence the
answer is given by

S(5, 1) + S(5, 2) + S(5, 3) + S(5, 4) + S(5, 5).

Using the recursion S(n, k) = S(n− 1, k − 1) + k S(n− 1, k), and
the values

S(4, 2) = 7, S(4, 3) =

(
4

2

)
= 6

we get

S(5, 2) = 1 + 2 · 7 = 15, S(5, 3) = 7 + 3 · 6 = 25
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and hence

ANSWER:

1 + 15 + 25 +

(
5

2

)
+ 1 = 52.

(b) (0.2p) 1 6∼ 2, 1 6∼ 3 and 3 6∼ 2. Remark. The answers to the two
problems above must, beside explanations, be given as an integer,
that is, as an element in Z.

Solution. We use the principle of inclusion exclusion. Let A
denote the family of equivalence relations such that 1 ∼ 2, B the
set of equivalence relations such that 1 ∼ 3 and C the family, or
set, of equivalence relations such that 2 ∼ 3. The answer is then
given by

7∑
k=1

S(7, k)− |A ∪B ∪ C|.

As in the previous problem we get

|A| = |B| = |C| =
6∑

k=1

S(6, k).

We get from the recursion for Stirling numbers

S(6, 2) = 1 + 2 · 15 = 31, S(6, 3) = 15 + 3 · 25 = 90,

S(6, 4) = 25 + 4 · 10 = 75, S(6, 5) =

(
6

2

)
= 15,

Thus

|A| =
6∑

k=1

S(6, k) = 1 + 31 + 90 + 75 + 15 + 1 = 213.

We also get that A ∩B = A ∩ C = B ∩ C = A ∩B ∩ C, and

|A ∩B ∩ C| =
5∑

k=1

S(5, k) = 52

We also need S(7, k), for k = 1, 2, . . . , 6. We get

S(7, 2) = 1 + 2 · 31 = 63, S(7, 3) = 31 + 3 · 90 = 301,
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S(7, 4) = 90 + 4 · 75 = 390, S(7, 5) = 75 + 5 · 15 = 150.

Thus

ANSWER:

(1 + 63 + 301 + 390 + 150 +

(
7

2

)
+ 1)− 3 · 138 + 3 · 52− 52 = 372.

4. (0.2p) In the class we recently proved the following formula by deriving
the number of positive integer solutions to the equation x1 + x2 + x3 +
x4 = 10 in two distinct ways:(

9

3

)
=

(
13

3

)
− 4

(
12

2

)
+ 6

(
11

1

)
− 4.

Generalize this formula to a “new” equality for binomial coefficients.

Solution. The left side of the equality above was obtained by first
distributing a “one” to each xi, i = 1, 2, 3, 4, and then use the for-
mula for the number of ways to distribute 10− 4 identical objects into
four distinct boxes. The right side was obtained using the principle of
inclusion-exclusion, as is described below.

So we consider the number of positive integer solutions to the equation

x1 + x2 + · · ·+ xn = k. (1)

where k ≥ n.

We distribute a “one” to each xi. The remaining k−n identical “ones”
are then distributed to the yi:s. The number of non-negative solutions
to

y1 + y2 + · · ·+ yn = k − n,

is then given by (
k − n + n− 1

n− 1

)
.

Now to the inclusion exclusion way to find the number of positive so-
lutions of the given equation. The number of solutions to Equation (1)
when t of the indeterminates xi are equal to zero is equal to(

k + n− t− 1

n− t− 1

)
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There are (
n

t

)
choices of t indeterminates xi. Inclusion exclusion then also gives that
the number of positive integer solutions to Equation (1) is(

k + n− 1

n− 1

)
+

n∑
t=1

(−1)t
(
n

t

)(
k + n− t− 1

n− t− 1

)

Consequently

ANSWER: (
k − 1

n− 1

)
=

n∑
t=0

(−1)t
(
n

t

)(
k + n− t− 1

n− t− 1

)
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