- 5. Verify parts (a), (b), and (c) of Theorem 3.4.1 for the vectors $\mathbf{u} = (4, 2, 1)$ and $\mathbf{v} = (-3, 2, 7)$.
- **6.** Verify parts (a), (b), and (c) of Theorem 3.4.2 for $\mathbf{u} = (5, -1, 2)$, $\mathbf{v} = (6, 0, -2)$, and $\mathbf{w} = (1, 2, -1)$.
- 7. Find a vector **v** that is orthogonal to the vector $\mathbf{u} = (2, -3, 5)$.
- 8. Find the scalar triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$.
 - (a) $\mathbf{u} = (-1, 2, 4), \ \mathbf{v} = (3, 4, -2), \ \mathbf{w} = (-1, 2, 5)$
 - (b) $\mathbf{u} = (3, -1, 6), \mathbf{v} = (2, 4, 3), \mathbf{w} = (5, -1, 2)$
- 9. Suppose that $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 3$. Find
 - (a) $\mathbf{u} \cdot (\mathbf{w} \times \mathbf{v})$ (b) $(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}$ (c) $\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})$
 - (d) $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{w})$ (e) $(\mathbf{u} \times \mathbf{w}) \cdot \mathbf{v}$ (f) $\mathbf{v} \cdot (\mathbf{w} \times \mathbf{w})$
- 10. Find the volume of the parallelepiped with sides \mathbf{u} , \mathbf{v} , and \mathbf{w} .
 - (a) $\mathbf{u} = (2, -6, 2), \ \mathbf{v} = (0, 4, -2), \ \mathbf{w} = (2, 2, -4)$
 - (b) $\mathbf{u} = (3, 1, 2), \mathbf{v} = (4, 5, 1), \mathbf{w} = (1, 2, 4)$
- 11. Determine whether **u**, **v**, and **w** lie in the same plane when positioned so that their initial points coincide.
 - (a) $\mathbf{u} = (-1, -2, 1), \ \mathbf{v} = (3, 0, -2), \ \mathbf{w} = (5, -4, 0)$
 - (b) $\mathbf{u} = (5, -2, 1), \ \mathbf{v} = (4, -1, 1), \ \mathbf{w} = (1, -1, 0)$
 - (c) $\mathbf{u} = (4, -8, 1), \ \mathbf{v} = (2, 1, -2), \ \mathbf{w} = (3, -4, 12)$
- 12. Find all unit vectors parallel to the yz-plane that are perpendicular to the vector (3, -1, 2).
- 13. Find all unit vectors in the plane determined by $\mathbf{u} = (3,0,1)$ and $\mathbf{v} = (1,-1,1)$ that are perpendicular to the vector $\mathbf{w} = (1,2,0)$.
- **14.** Let $\mathbf{a} = (a_1, a_2, a_3)$, $\mathbf{b} = (b_1, b_2, b_3)$, $\mathbf{c} = (c_1, c_2, c_3)$, and $\mathbf{d} = (d_1, d_2, d_3)$. Show that

$$(\mathbf{a} + \mathbf{d}) \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) + \mathbf{d} \cdot (\mathbf{b} \times \mathbf{c})$$

- 15. Simplify $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} \mathbf{v})$.
- 16. Use the cross product to find the sine of the angle between the vectors $\mathbf{u} = (2, 3, -6)$ and $\mathbf{v} = (2, 3, 6)$.
- 17. (a) Find the area of the triangle having vertices A(1, 0, 1), B(0, 2, 3), and C(2, 1, 0).
 - (b) Use the result of part (a) to find the length of the altitude from vertex C to side AB.
- 18. Show that if \mathbf{u} is a vector from any point on a line to a point P not on the line, and \mathbf{v} is a vector parallel to the line, then the distance between P and the line is given by $\|\mathbf{u} \times \mathbf{v}\|/\|\mathbf{v}\|$.
- **19.** Use the result of Exercise 18 to find the distance between the point *P* and the line through the points *A* and *B*.
 - (a) P(-3, 1, 2), A(1, 1, 0), B(-2, 3, -4) (b) P(4, 3, 0), A(2, 1, -3), B(0, 2, -1)
- **20.** Prove: If θ is the angle between \mathbf{u} and \mathbf{v} and $\mathbf{u} \cdot \mathbf{v} \neq 0$, then $\tan \theta = \|\mathbf{u} \times \mathbf{v}\|/(\mathbf{u} \cdot \mathbf{v})$
- 21. Consider the parallelepiped with sides $\mathbf{u} = (3, 2, 1)$, $\mathbf{v} = (1, 1, 2)$, and $\mathbf{w} = (1, 3, 3)$.
 - (a) Find the area of the face determined by **u** and **w**.
 - (b) Find the angle between **u** and the plane containing the face determined by **v** and **w**. **Note** The **angle between a vector and a plane** is defined to be the complement of the angle θ between the vector and that normal to the plane for which $0 \le \theta \le \pi/2$.

- (a) Find the components of **m** and **n** in the x'y'z'-system of Figure 3.4.10.
- (b) Compute $\mathbf{m} \times \mathbf{n}$ using the components in the xyz-system.
- (c) Compute $\mathbf{m} \times \mathbf{n}$ using the components in the x'y'z'-system.
- (d) Show that the vectors obtained in (b) and (c) are the same.
- **24.** Prove the following identities.
 - (a) $(\mathbf{u} + k\mathbf{v}) \times \mathbf{v} = \mathbf{u} \times \mathbf{v}$ (b) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{z}) = -(\mathbf{u} \times \mathbf{z}) \cdot \mathbf{v}$
- **25.** Let **u**, **v**, and **w** be nonzero vectors in 3-space with the same initial point, but such that no two of them are collinear. Show that
 - (a) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ lies in the plane determined by \mathbf{v} and \mathbf{w}
 - (b) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ lies in the plane determined by \mathbf{u} and \mathbf{v}
- **26.** Prove part (d) of Theorem 3.4.1.

Hint First prove the result in the case where $\mathbf{w} = \mathbf{i} = (1, 0, 0)$, then when $\mathbf{w} = \mathbf{j} = (0, 1, 0)$, and then when $\mathbf{w} = \mathbf{k} = (0, 0, 1)$. Finally, prove it for an arbitrary vector $\mathbf{w} = (w_1, w_2, w_3)$ by writing $\mathbf{w} = w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}$.

27. Prove part (*e*) of Theorem 3.4.1.

Hint Apply part (a) of Theorem 3.4.2 to the result in part (d) of Theorem 3.4.1.

- 28. Let $\mathbf{u} = (1, 3, -1)$, $\mathbf{v} = (1, 1, 2)$, and $\mathbf{w} = (3, -1, 2)$. Calculate $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ using the technique of Exercise 26; then check your result by calculating directly.
- 29. Prove: If a, b, c, and d lie in the same plane, then $(a \times b) \times (c \times d) = 0$.
- **30.** It is a theorem of solid geometry that the volume of a tetrahedron is $\frac{1}{3}$ (area of base) \cdot (height). Use this result to prove that the volume of a tetrahedron whose sides are the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} is $\frac{1}{6}|\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})|$ (see the accompanying figure).
- 31. Use the result of Exercise 30 to find the volume of the tetrahedron with vertices P, Q, R, S.
 - (a) P(-1,2,0), Q(2,1,-3), R(1,0,1), S(3,-2,3)
 - (b) P(0,0,0), Q(1,2,-1), R(3,4,0), S(-1,-3,4)
- **32.** Prove part (*b*) of Theorem 3.4.2.
- **33.** Prove parts (c) and (d) of Theorem 3.4.2.
- **34.** Prove parts (e) and (f) of Theorem 3.4.2.

Discussion Discovery

- 35. (a) Suppose that ${\bf u}$ and ${\bf v}$ are noncollinear vectors with their initial points at the origin in 3-space. Make a sketch that illustrates how ${\bf w}={\bf v}\times({\bf u}\times{\bf v})$ is oriented in relation to ${\bf u}$ and ${\bf v}$.
 - (b) For ${\bf w}$ as in part (a), what can you say about the values of ${\bf u}\cdot{\bf w}$ and ${\bf v}\cdot{\bf w}$? Explain your reasoning.
- 36. If $u \neq 0$, is it valid to cancel u from both sides of the equation $u \times v = u \times w$ and conclude that v = w? Explain your reasoning.
- **37.** Something is wrong with one of the following expressions. Which one is it and what is wrong?

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}), \qquad \mathbf{u} \times \mathbf{v} \times \mathbf{w}, \qquad (\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$$

- 38. What can you say about the vectors \mathbf{u} and \mathbf{v} if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$?
- 39. Give some examples of algebraic rules that hold for multiplication of real numbers but