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Chapter 4

Curves in the projective plane

We will in this chapter study different aspects of plane curves by which we
mean curves in the projective plane defined by polynomial equations. Here
we will start with the more classical setting and consider a plane curve as
the set of solutions of one homogenous equation in three variables.

We will start by choosing a field, k, which in most cases can be thought of
as either R or C, but sometimes, it is interesting also to look at Q or finite
fields.

The first definition we might try is the following.

Definition 4.0.1. A plane curve C is the set of solutions in P2
k of a non-zero

homogeneous equation
f(x, y, z) = 0.

Example 4.0.2. The equation x2 +y2 +z2 = 0 defines a degree two curve over
C but over R it gives the empty set.

The equation x2 = 0 has a solution set consising of the line (0 : s : t) while
the degree of the equation is two.

The example above shows us that there are curves that the definition does
not give us any one-one correspondance between curves and equations.

4.1 Lines

We will start by the easiest curves in the plane, namely lines. These are
defined by linear equations

ax+ by + cz = 0 (4.1)
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where (a, b, c) 6= (0, 0, 0). Observe that any non-zero scalar multiple of (a, b, c)
has the same set of solutions, which show us that we can parametrize all the
lines in P2

k by another projective plane with coordinates [a : b : c].

Theorem 4.1.1. Any two distinct lines in P2 intersect at a single point.

Proof. The condition that the lines are distinct is the same thing as the
equations defining them being linearly independent, which gives a unique
solution to the system of equations.

Theorem 4.1.2. Any line in P2 is isomorphic to P1.

Proof. By a change of coordinates the equation of a line can be written as
x = 0 and the solutions are given by [0 : s : t] where (s, t) 6= (0, 0), which as
a set equals P1.

In fact, using this parametrization, we can define a map P1 −→ P2, which
has the given line as the image.

We will come back to what we mean by isomorphism later on in order to
make this more precise.

4.1.3 The dual projective plane (P2)∗

As mentioned above, the coefficients a, b, c of Equation 4.1, give us natural
coordinates on the space of lines in P2 and we will call this the dual projective
plane, denoted by (P2)∗.

Theorem 4.1.4. The set of lines through a given point in P2 is parametrized
by a line in (P2)∗.

Proof. Equation 4.1 is symmetric in the two sets of variables, {x, y, z} and
{a, b, c}. Thus, fixing [x : y : z] gives a line in (P2)∗.

4.1.5 Automorphisms of P2

A linear change of coordinates on P2
k is given by a non-singular 3× 3-matrix

with entries in k: x′y′
z′

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

xy
z

 .
Because of the identification [x : y : z] = [λx : λy : λz], the scalar matrices
correspond to the identity. The resulting group of automorphisms is called
PGL(3, k).
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4.2 Conic sections

We will now focus on quadratic plane curves, or conics. These are defined
by a homogeneous quadratic equation

ax2 + bxy + cy2 + dxz + eyz + fz2 = 0.

4.2.1 Conics as the intersection of a plane and a cone

The name conic is short for conic section and comes from the fact that each
such curve can be realized as the intersection of a plane and a circular cone

x2 + y2 = z2

in P3.

Figure 4.1: The circular cone

4.2.2 Parametrization of irreducible conics

The conic section is irreducible if the polynomial defining it is not a product
of two non-trivial polynomials.

Theorem 4.2.3. If C is a plane irreducible conic with at least two rational
points, then C is isomorphic to P1

k.

Proof. Let P be a rational point of C and let L denote the line in (P2)∗

parametrizing lines through P . In the coordinates of each line, the polyno-
mial equation reduces to a homogeneous quadratic polynomial in two vari-
ables with at least one rational root. Without loss of generality, we may
assume that P is [0 : 0 : 1] and the equation of C has the form

ax2 + bxy + cy2 + dxz + eyz = 0.

3



Figure 4.2: The hyperbola, parabola and ellips as a plane sections of a cone

The lines through P are parametrized by a P1 with coordinates [s : t] and
we ge the residual intersection between the curve and the line sx+ ty = 0 as

R = [est− dt2 : dst− es2 : cs2 − bst+ at2].

Since C has another rational point, Q, we cannot have d = e = 0 since C
is irreducible. Hence the residual point R is not equal to P except for one
[s, t]. Moreover, by the next exercise, we get that the three coordinates are
never zero at the same time. Hence we have a non-trivial map from P1 to P2

whose image is in C. If the image was a line, C would be reducible and we
conclude that C is the image of the map.

Excercise 4.2.4. Let C be a conic passing throught the point [0 : 0 : 1], i.e.,
having equation of the form

ax2 + bxy + cy2 + dxz + eyz = 0.

Show that C has is reducible if and only if cd2 − bde + ae2 = 0 under the
assumption that C has at least two rational points.

Example 4.2.5. The example x2 +y2 = 0 with k a field with no square root of
−1 shows that we cannot drop the condition that C has at least two rational
points.
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4.2.6 The parameter space of conics

Exactly as for the lines, we have that the equation

ax2 + bxy + cy2 + dxz + eyz + fz2 = 0

defines the same curve when multiplied with a non-zero constant. Hence all
the conics can be parametrized by a P5 with coordinates [a : b : c : d : e : f ].

In this parameter space we can look at loci where the conics have various
properties. For example, we can look at the locus of degenerate conics that
are double lines. These are parametrized by a P2 and the locus of such curves
is the image of the Veronese embedding of P2 in P5 defined by

[s : t : u] 7→ [s2 : 2st : t2 : 2su : 2tu : u2].

If we want to look at all the curves that are degenerate as a union of two
lines, we look at the image of a map

Φ: P2 × P2 −→ P5

given by

([s1 : t1 : u1], [s2 : t2 : u2]) 7→ (s1s2 : s1t2+t1s2 : t1t2 : s1u2+u1s2 : t1u2+u1t2 : u1u2].

The image of Φ is a hypersurface in P5 which means that is is defined by one
single equation in the coordinates [a : b : c : d : e : f ].

Excercise 4.2.7. Find the equation of the hypersurface definied by the image
of the map Φ: P2 × P2 −→ P5 defined above.

4.2.8 Classification of conics

When we want to classify the possible conics up to projective equivalence,
we need to see how the group of linear automorphisms acts. One way to go
back to our knowledge of quadratic forms. If 2 is invertible in k, i.e., if k
does not have characteristic 2, we may write the equation

ax2 + bxy + cy2 + dxz + eyz + fz2 = 0

as Q(x, y, z) = 0, where Q is the quadratic form associated to the matrix

A =
1

2

2a b d
b 2c e
d e 2f

 .
Now, a matrix P from PGL(3, k) acts on A by

Q 7→ P TAP.
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Theorem 4.2.9. Up to projective equivalence, the equation of a conic can
be written in one of the three forms

x2 = 0, x2 + λy2 = 0 and x2 + λy2 + µz2 = 0.

Proof. The first thing that we observe is invariant is the rank of the matrix.
If the rank is one, we can choose two of the columns of P to be in the kernel
of A and hence after a change coordinates, the equation is λx2 = 0, but this
is equivalent to x2 = 0.

If the rank is two, we choose one of the columns to be a generator of the
kernel and we get that we can assume that d = e = f = 0. By completing
the square, we can change it into κx2 + µy2, which is equivalent to x2 + λy2,
where λ = µ/κ.

If the rank is three, proceed by completing the squares in order to write the
form as x2 + λy2 + µz2.

Remark 4.2.10. In order to further characterize the conics, we need to know
about the multiplicative group of our field. In particular, we need to know
the quotient of k∗ by the subgroup of squares.

Theorem 4.2.11. Let k = C. Then there are only three conics up to pro-
jective equivalence:

x2 = 0, x2 + y2 = 0 and x2 + y2 + z2 = 0.

Proof. Since every complex number is a square, we can change coordinates
so that λ = µ = 1 in Theorem 4.2.9.

Theorem 4.2.12. Let k = R. Then there are four conics up to projective
equivalence:

x2 = 0, x2 + y2 = 0 x2 − y2 = 0, x2 + y2 − z2 = 0.

Proof. Here, only the positive real numbers are squares and we have to dis-
tinguish between the various signs of λ and µ. If λ = µ = 1 we get the empty
curve, so there is only one non-degenerate curve x2 + y2 = z2.

4.2.13 The real case vs the complex case

4.2.14 Pascal’s Theorem

We will look at a classical theorem by Pascal about conics.
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Figure 4.3: Pacsal’s Theorem

Theorem 4.2.15 (Pascal’s Theorem). Let C be a plane conic and H be
a hexagon with its vertices on C. The three pairs of opposite sides of the
hexagon meet in three collinear points.

There are several ways to understand this theorem and we will now look at
one way.

Proof. Start by dividing the lines into two groups of three lines so that no
two lines in the same group intersect on the conic C.

Figure 4.4: The two groups of lines

Each group of three lines defines a cubic plane curve, given by the product
of the three linear equations defining the lines. Since each line in one group
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meets each of the lines from the other group, we have nine points of inter-
sections of lines from the two groups. Six of these are on the conic and it
remains for us to prove that the remaining three are collinear.

Choose two of the points and take the line L through them. Together with
the conic, the line defines a cubic curve, i.e., there is a cubic polynomial
vanishing on the line and the conic. In particular, this cubic curve passes
through eight of our nine points. We already have two cubic curves passing
through all nine points. If the last cubic didn’t pass through all nine points,
we would have three linearly independent cubic polynomials passing through
our eight points.

Denote the three cubic polynomials by f1, f2 and f3. They can generate seven
or eight linearly independent polynomials of degree four. If they generate
eight, we get that it will generate a space of codimension 7 in all higher
degree, by multiplication by a linear form not passing through any of the
points. If they generate only seven linearly independent forms of degree
four, we must have two linearly independent syzygies, i.e., relations of the
form {

`1f1 + `2f2 + `3f3 = 0,
`4f1 + `5f2 + `6f3 = 0.

Since there is a unique solution to this system up to multiplication by a
polynomial, we get that

(f1, f2, f3) = `(`2`6 − `3`5, `3`4 − `1`6, `1`5 − `2`4)

showing that the three cubics share a common linear factor. However, this
cannot be the case, since the two original cubics did not have a common
factor.

We conclude that the cubic passing throug eight of the nine point also pass
throug the ninth, which shows that the three that were not on the conic have
to be collinear.

The property that any cubic passing through eight of the nine points also has
to pass through the ninth point is known as the Cayley-Bacharach property
and similar consequences occur in much more general situations.

8



Chapter 5

Cubic curves

When we move to cubic curves, we have ten coefficients of the equation

a0x
3+a1x

2y+a2x
2z+a3xy

2+a4xyz+a5xz
2+a6y

3+a7y
2z+a8yz

2+a9z
3 = 0.

Thus, as in the case of lines and conics, we can use a projective space to
parametrize all cubics and in this case we get P9. As the group of auto-
morphisms of P2 has dimension 8, we expect that there should be at least a
one-dimensional family of non-isomorphic cubics.

As in the case of conics, we have a number of degenerate cases where the
cubic is reducible. We get several different ways the cubic polynomial could
factor. If we have linear factors, they could all be equal, two distinct or three
distinct. In the case when there are three distinct factors, they can share a
common zero or not. This can be summarized as

x3 = 0, x2y = 0 , xy(x+ y) = 0 or xyz = 0.

When the cubic polynomial has a linear and an irreducible quadratic factor,
we get different cases depending on whether the line is tangent to the conic
or not which gives the two possibilities

x(x2 + y2 − z2) and (x− z)(x2 + y2 − z2).

5.1 Normal forms for irreducible cubics

Definition 5.1.1. L is a tangent line to C at P if the restriction of the
equation of C to L has a root of multiplicity at least two at P .

Definition 5.1.2. A point P on a curve C is non-singular if there is a unique
tangent line of C at P .
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Definition 5.1.3. A non-singular point P of a curve C is a flex point of C
if the tangent of C at P intersect C with multiplicity at least three at P .

Theorem 5.1.4. The equation of an irreducible cubic with at flex point can
be written as

y2z = x3 + ax2z + bxz2 + cz3

after a change of coordinates.

Proof. Let C be the curve defined by the equation

a0x
3+a1x

2y +a2x
2z+a3xy

2+a4xyz+a5xz
2+a6y

3+a7y
2z+a8yz

2+a9z
3 = 0.

Assume that [0 : 1 : 0] is a flex point with tangent line z = 0. Then,
when restricting the equation to the line, we need to get x3 = 0, forcing
a1 = a3 = a6 = 0.

If a7 = 0 we get that the restriction of the equation of C to the line x = 0 is
a8yz

2 + a9z
3 = 0. Thus x = 0 is a second tangent line to C at P . Since P is

a flex point, it is non-singular and we deduce that a7 6= 0.

We can now change change variables with y = y′+αx+βz so that there will
be no other terms involving y′ than (y′)2. Thus we get to the desired normal
form.

The irreducibility gives that a0 6= 0 since otherwize z = 0 would be a com-
ponent. Thus we can get the leading term on the right hand side to be
x3.

Excercise 5.1.5. Find the normal form for the Fermat cubic x3 + y3 = z3.

5.2 Elliptic curves

Definition 5.2.1. A non-singular cubic curve is called en elliptic curve.

Theorem 5.2.2. The cubic curve defined by the equation

y2z = f(x, z)

is non-singular if and only if f(x, z) has no multiple factors.

Proof. Without loss of generality, we can assume that the point is P = [0 :
y0 : 1]. The lines though P are sx + t(y − y0z) = 0, for [s : t] in P1. When
t = 0 we get the line x = 0 which is tangent to C if and only if c = y0 = 0.
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Figure 5.1: Different kinds of cubics in normal form

For t 6= 0 we substitute in y2z = x3 + ax2z + bxz2 + z3 to get

x(t2x2 + (at2 − s2)xz + (bt+ 2sy0)tz
2) = 0

which has a double root at P if and only if (bt + 2sy0)t = 0. Thus we get a
unique tangent line, unless c = y0 = b = 0, where we get x = 0 and y = y0
as tangent lines.

5.2.3 The group law on an elliptic curve

The elliptic curves are special in many ways. One of them is that there is a
commutative group law on the set of rational points of an elliptic curve.

The restriction to any line of the equation of a cubic curve gives a homo-
geneous cubic equation in two variables. If this equation has two rational
solutions, the third has to be rational as well.

Definition 5.2.4. Choose a flex point O of the elliptic curve C. If P and
Q are points on C we define the sum P +Q to be the third point on the line
throug O and the third point on the line through P and Q. Observe that if
P = Q, we take the tangent line at P .
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Figure 5.2: The addition on an elliptic curve

Theorem 5.2.5. The addition defines a commutative group law on the set
of points of C.

Proof. The commutativity is clear from the defnition. The identity element
is given by O since the line through O and P meets the curve in a point
Q and then the line through O and Q is the same as the line before, which
shows that O + P = P . The inverse of P is given as the point Q on the line
through O and P .

The associativity is more involved and we will refer to other sources for a
proof of that.

5.2.6 A one-dimensional family of elliptic curves

The normal form y2z = x3 + ax2z + bxz2 + cz3 does not specify an elliptic
curve up to isomorphism. As we have seen before, we have that the right
hand side has distinct factors. We can translate one of them to x = 0 and
scale one of them to x = z. This leaves us with the normal form

y2z = x(x− z)(x− zw)

where w 6= 0 and w 6= 1.

5.2.7 Flex points on an elliptic curve

Theorem 5.2.8. The set of flex points on C form an elementary 3-group.

Proof. The flex points can be shown to be zeroes of the Hessian form (cf.
Exercise 5.2.14), which shows that there are at most finitely many flex points.
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If P is a flex point, we have that 3P = 0 since the tangent through P meets
C only at P . The sum of two flex points is again a flex point as 3P = 0 and
3Q = 0 implies that 3(P +Q) = 0. Thus the set of flex points on an elliptic
curve form a finite subgroup where all non-trivial elements have order 3, i.e,
an elementary 3-group.

Excercise 5.2.9. Show that an elliptic curve over R cannot have more than
three flex points.

5.2.10 Singularities and the discriminant

Among the irreducible cubics, there are two kinds of singular curves; nodal
cubics and cuspidal cubics. Both of these singular curves are rational curves
and are images of a degree three map P1 −→ P3. In the normal form they
can be written as

y2z = x3 and y2z = x3 − x2z

We can localize the singularities of C by the Jacobian ideal since they corre-
spond to zeroes of the gradient of the polynomial defining C.

Example 5.2.11. Let C be then nodal cubic defined by F (x, y, z) = y2z −
x3 + x2z. The gradient is given by

∇F = (−3x2 + 2xz, 2yz, y2 + x2)

which is zero only at [0 : 0 : 1].

Example 5.2.12. Let C be the cuspidal cubic defined by F (x, y, z) = y2z−x3.
Then we get

∇F = (−3x2, 2yz, y2)

which again is zero only at [0 : 0 : 1].

Excercise 5.2.13. Define the rational cubic curve C as the image of the map
Φ: P1 −→ P2 given by

Φ([s : t]) = [s3 : st2 : t3], [s : t] ∈ P1.

Find the singular point of C and determine whether C is nodal or cuspidal.

As we have seen, the general cubic curve is non-singular, but there is an
eight-dimensional family of singular curves given by the nodal cubics. One
way to see that the family of singular cubics is eight dimensional is to look
at the curves that are singular at a given point [x0 : y0 : z0]. We have a
two-dimensional choice of the point and for each point, we have three linear
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conditions on the coefficients of the cubic giving us a P6 of curves singular
at the given point. We can describe this as a P6-bundle over P2.

The locus X ⊆ P9 parametrizing singular cubics is defined by a single polyno-
mial called the discriminant. It is a difficult task to compute this polynomial
which is of degree 12.

Excercise 5.2.14. Let C be a cubic plane curve over C. Show that the Hessian,
i.e., the determinant of 

∂2F
∂x2

∂2F
∂x∂y

∂2F
∂x∂z

∂2F
∂y∂x

∂2F
∂y2

∂2F
∂y∂z

∂2F
∂z∂x

∂2F
∂z∂y

∂2F
∂z2


vanishes exactly at the singular points of C and on the flex points of C.
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Chapter 6

Bézout’s Theorem

On P1 we have that any polynomial of degree d has exactly d roots counted
with multiplicity, at least when we are working over C or any algebraically
closed field. We will now look at a generalization of this called Bézouts’t
Theorem, which stated that two plane curves of degree d and e with no
common component intersect in exactly d ·e points counted with multiplicity.

There are a couple of difficulties that we have to overcome in order to prove
this. The first is to properly define what multiplicity means in the statement
of the theorem.

6.0.15 The degree of a projective curve

As we have seen before, when a homogeneous polynomial of degree d defining
a plane curce is restricted to a line with coordinates [s : t], we either get zero
or a homogeneous polynomial of degree d in s and t. In the first case, the
line was a component of C and in the second case, we get a polynomial which
factors into a product of d linear factors if our field is algebraically closed.
From now on, we will assume that this is the case. Moreover, we will assume
that the polynomial defining our curve has the lowest possible degree, so that
there are no multiple factors in the factorization into irreducible polynomials.
We call such a polynomial reduced.

With these conventions, the following definition makes sense.

Definition 6.0.16. A plane curve C has degree d if a general line in P2

intersect C in d distinct points.
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6.0.17 Intersection multiplicity

Let C1 and C2 be plane curves defined by reduced polynomials f1 and f2
with no common factors. In order to define the intersection multiplicity of
C1 and C2 at their points of intersection, we will first change coordinates in
order to move the point common point P to [0 : 0 : 1]. When looking locally
around this point, we can dehomogenize the polynomials by substituting
z = 1. Let F1 = f1(x, y, 1) and F2 = f2(x, y, 1) be the polynomials we
obtain in this way. We have F1, F2 ∈ k[x, y], but we can also see them as
formal power series in the ring k[[x, y]], which has the advantage that any
polynomial which is non-zero at the origin (0, 0) is invertible. In this way,
we can concentrate only at what happens at the origin. From F1 and F2

we get an ideal I = (F1, F2) ⊆ k[[x, y]] and we can define the quotient ring
k[[x, y]]/I.

Definition 6.0.18. The intersection multiplicity of C1 and C2 at P = [0 :
0 : 1] is given by

IP (f1, f2) = dimk k[[x, y]]/(F1, F2)

We will need a couple of properties of the intersection multiplicity.

Theorem 6.0.19. If f , g and h are homogeneous polynomials in k[x, y, z]
with no common factors, we have

(1) IP (f, gh) = IP (f, g) + IP (f, h)

(2) IP (f, g + fh) = IP (f, g) if deg g = deg f + deg h.

Proof. At the moment, we will refer to other sources for the proof of the first
statement, which requires more knowlegde in power series rings.

The second statement follows from the definition since (f, g) = (f, g + fh)
as ideals in k[x, y, z] and hence also their images in k[[x, y]] under the map
k[x, y, z]→ k[[x, y]] sending z to 1.

Excercise 6.0.20. Show that if P is a non-singular point of C1 and C2 such
that the tangents of C1 and C2 at P are distinct, then IP (f, g) = 1 where f
and g are the homogeneous polynomials defining C1 and C2.

6.0.21 Proof of Bézout’s Theorem

Theorem 6.0.22 (Bézout’s Theorem). If C1 and C2 are plane curves defined
by homogeneous polynomials f and fg of degree d and e, they intersect in
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d · e points, counted with multiplicity, i.e.,∑
P

IP (f, g) = d · e.

Proof. If one of the polynomials splits into a product of linear factors, we
can use Theorem 6.0.19 (1) to conclude the theorem.

We will use Theorem 6.0.19 (1) to make reductions until we can assume
that one of the polynomial splits into a product of linear factors. By Theo-
rem 6.0.19 (1) we can assume that f and g are irreducible.

The basic step will be the following. Write the polynomials as

f(x, y, z) = zd
′
h0(x, y) + zd

′−1h1(x, y) + · · ·+ hd′(x, y)
g(x, y, z) = ze

′
k0(x, y) + ze

′−1k1(x, y) + · · ·+ ke′(x, y)

With no loss of generality, we may assume that d′ ≥ e′. Then we can define

f1 = k0f − h0zd
′−e′g

which will have lower degree in z than f . We have that

IP (f1, g) = IP (k0f, g) = IP (k0, g) + IP (f, g), ∀P.

Since k0 is a polynomial in two variables, it splits into a product of linear
forms. Since g was assumed to be irreducible we know that k0 is not a factor
of g. Since we know the theorem holds for k0 and g we can deduce it for f
and g if we know it holds for f1 and g. For this we can use induction on the
degree of z in the polynomials.

Excercise 6.0.23. Follow the proof of Bézout’s theorem above starting with
the curves zy2 = x3 − xz2 and x2 + y2 = z2. What are all the intersection
points and their multiplicities at the end of the reduction?

6.0.24 The homogeneous coordinate ring of a projec-
tive plane curve

As we have seen, the polynomial ring k[x, y, z] plays an important role in the
study of P2. This is the homogeneous coordinate ring of P2.

If C is defined by the homogeneous polynomial f ∈ k[x, y, z], we get the
homogeneous coordinate ring of C as RC = k[x, y, z]/(f).

Theorem 6.0.25. (1) C is irreducible if and only if RC is a domain.
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(2) C is reduced if and only of RC has no nilpotent elements.

The homogeneous coordinate ring of C is graded, i.e., we can write it as

RC =
⊕
i≥0

[RC ]i

so that [RC ]i[RC ]j ⊆ [RC ]i+j.

Definition 6.0.26. The Hilbert function of C is given by HC(i) = dimk[RC ]i,
for i = 0, 1, 2, . . . .

Theorem 6.0.27. If C has degree d, the Hilbert function of C is given by

HC(i) =

(
i+ 2

2

)
−
(
i+ 2− d

2

)
=

1

2
(di+ 3d− d2),

for i ≥ d− 1.

Proof. The Hilbert function of C is given by the vector space dimension of
k[x, y, z]/(f) in degree i. We have the following short exact sequence

0→ k[x, y, z]→ k[x, y, z]→ RC → 0

where the first map is multiplication by f . Thus the dimension of RC in
degree i is the difference between the dimension of k[x, y, z] in degree i and
degree i − d. If i ≥ d − 1, these dimensions are given by the formula in the
statement of the theorem.

Lemma 6.0.28. The homogenous polynomial g defines an injective map
RC −→ RC if and only if g doesn’t vanish completely on any component
of C.

Proof. Suppose that gh = 0 in RC for some homogeneous polynomial h. This
means that gh = kf for some homogeneous polynomial k and since k[x, y, z]
is a unique factorization domain, we conclude that each irreducible factor of
f must be a factor of either g or h. If non of them divides g, we must have
that h ∈ (f) so h = 0 in RC . Thus g defines an injective map if it doesn’t
vanish on any component of C.

If g does vanish on some component, we will be able to find h 6= 0 in RC

with gh = 0 showing that the map is not incjective.
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