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Chapter 7

Affine Varieties

7.1 The polynomial ring

Let C denote the field of complex numbers, and let C[x1, . . . , xn] denote the
polynomial ring in n variables x1, . . . , xn with coefficients in C. Elements f
in C[x1, . . . , xn] are polynomials in x1, . . . , xn, that is finite expressions of the
form

f =
∑

cαx
α1
1 · · ·xαn

n

with cα in C. Polynomials are added and multiplied in the obvious way, and
C[x1, . . . , xn] indeed forms a ring; a commutative unital ring.

7.2 Hypersurfaces

To any f ∈ C[x1, . . . , xn] we let Z(f) denote the zero set of the element f ,
that is

Z(f) = {(a1, . . . , an) ∈ Cn | f(a1, . . . , an) = 0}.

For non-constant polynomials f the zero set Z(f) is referred to as a hyper-
surface. Clearly we have that the union satisfies

Z(f) ∪ Z(g) = Z(fg).

In order to describe intersections of hypersurfaces it is convenient to use
ideals, a notion we recall next.
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7.3 Ideals

A non-empty subset I ⊆ C[x1, . . . , xn] that is closed under sum, and closed
under multiplication by elements of C[x1, . . . , xn], is called an ideal. The zero
element is an ideal, and the whole ring is an ideal.

If {fα}α∈A is a collection of elements in C[x1, . . . , xn] they generate the ideal
I(fα)α∈A that consists of all finite expressions of the form

I(fα)α∈A = {
∑
α∈A

gαfα | gα ∈ C[x1, . . . , xn], gα 6= 0 finite indices α}.

The zero ideal is generated by the element 0, and this is the only element that
generates the zero ideal. We have that (1) = C[x1, . . . , xn], so the element 1
generates the whole ring.

Noetherian ring

The polynomial ring C[x1, . . . , xn] is an example of a Noetherian ring which
means that any ideal is in fact finitely generated. Thus, if I is an ideal gen-
erated by the collection {fα}α∈A , then there exists a finite subset f1, . . . , fm
of the collection that generates the ideal I(fα)α∈A = I(f1, . . . , fm).

7.4 Algebraic sets

Let I ⊆ C[x1, . . . , xn] be an ideal. We let Z(I) denote the intersection of the
zero sets of the elements in I, that is

Z(I) = ∩f∈IZ(f).

A subset of Cn of the form Z(I) for some ideal I ⊆ C[x1, . . . , xn] is called an
algebraic set. One verifies that if the ideal I is generated by f1, . . . , fm then
we have that

Z(I) = Z(f1) ∩ Z(f2) ∩ · · · ∩ Z(fm).

In particular we have that Z(f) = Z(I(f)), where I(f) is the ideal generated
by f .

Union and intersection

Let {Iα}α∈A be a collection of ideals in C[x1, . . . , xn]. Their set theoretic
intersection is an ideal we denote by ∩α∈A Iα. Their union I(∪αIα) is the
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ideal generated by their set theoretic union. If the collection is finite, we
have the product I1 · · · Im, which denotes the ideal where the elements are
finite sums of products f1 · · · fm, with fi ∈ Ii, for i = 1, . . . ,m.

7.5 Zariski topology

Lemma 7.5.1. We have that the algebraic sets in Cn satisfy the following
properties.

(1) Finite unions ∪mi=1Z(Ii) = Z(I1 · · · Im) = Z(∩mi=1Ii).

(2) Arbitrary intersections ∩αZ(Iα) = Z(I(∪αIα)).

We have furthermore that Z(1) = ∅ and that Z(0) = Cn.

Proof. This is an excellent exercise.

The lemma above shows that the collection of algebraic sets satisfy the axioms
for the closed sets of a topology. This particular topology where the closed
sets are the algebraic sets is called the Zariski topology.

Open sets

When defining the topology on a set, it is customary to define what the open
sets are. The open sets are the complements of the closed sets, so having
defined what the closed sets are we also know what the open sets are. But, we
could have started the other way around. A collection {Uα}α∈A of subsets of
a set X that contains X and ∅, and which is closed under finite intersections,
and arbitrary unions, define the open sets of a topology on X.

7.6 Affine varieties

Definition 7.6.1. We let An denote the vector space Cn endowed with the
Zariski topology. The space An is called the affine n-space.

Example 7.6.2. The affine plane is our favourite example. For any element
f ∈ C[x, y] the zero zet Z(f) is by defintion a closed set. The intersection of
two hypersurfaces - or curves - is

Z(f) ∩ Z(g) = Z(f, g),
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the collection of points corresponding to their common intersections - which
typically is a finite set of points. For instance, let f = x−y+1 and g = y2−x3.
Example 7.6.3. Show that the open sets D(f) = An \ Z(f), with f ∈
C[x1, . . . , xn] form a basis for the topology. That is, any open can be written
as a union of the basic opens D(f). In the usual, strong, topology, the open
balls form a basis for the topology.

Example 7.6.4. The open sets in An are big: Show that any two non-empty
opens U and V in An has a non-empty intersection. In particular we get that
An is not a Hausdorff space.

Example 7.6.5. Show that An is compact; for any open cover {Uα} of An a
finite subcollection will be a covering.

Definition 7.6.6. A (non-empty) topological space X is called irreducible if
X can not be written as the union X = X1 ∪X2 of two proper closed subsets
X1 and X2 of X.

Example 7.6.7. The affine line A1 is irreducible. Because any non-zero poly-
nomial f is such that Z(f) is a collection of finite points. It follows that
closed, proper, subsets of A1 are collections of finite points. And in particu-
lar we can not write A1 as a union of two finite sets, hence A1 is irreducible.

Example 7.6.8. If X is irreducible, then any non-empty open U ⊆ X is also
irreducible (Excercise 7.6.13). In particular if we let U = A1 \ (0), then U
is irreducible even if the picture you draw indicates that the space U is not
even connected. A topological space X is not connected if it can be written
as a union X = X1 ∪X2 of two proper closed subsets where X1 ∩X2 = ∅. In
particular a space that is not connected is in particular not irreducible.

Definition 7.6.9. An irreducible algebraic set is an affine algebraic variety.

Example 7.6.10. Let I = (xy) ⊆ C[x, y] denote the ideal generated by the
element f = xy. Then the algebraic set

Z(xy) = Z(x) ∪ Z(y),

where the two sets Z(x) ⊂ Z(xy) and Z(y) ⊂ Z(xy) are proper subsets.
Hence Z(xy) is not an algebraic variety.

Example 7.6.11. Let I = (x2 + y3) ⊆ C[x, y]. The ideal I is generated by
f = x2 + y3, which is an irreducible element - which means that the element
f can not be written as a product f = f1 · f2 in a non-trivial way. It follows
that Z(f) is an algebraic variety.
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Noetherian spaces

A topological space X is called Noetherian space if any descending chain of
closed subsets

X ⊇ X1 ⊇ · · ·Xn ⊇ Xn+1 · · ·

stabilizes, that is there exists an integer n such that Xn = Xn+i, for all
integers i ≥ 0.

Excercise 7.6.12. Show that An is a Noetherian space.

Excercise 7.6.13. Let U ⊆ X be a non-empty open set, with X irreducible.
Show that U is also irreducible.

Excercise 7.6.14. Show that any topological space X can be written as a
union of irreducible subsets, called irreducible components of the space X.
If X is an algebraic variety it has only a finite set of irreducible components.

7.7 Prime ideals

Definition 7.7.1. Let I ⊂ C[x1, . . . , xn] be a proper ideal. The ideal I is
said to be a prime ideal if

gf ∈ I implies that f or g is in I.

Example 7.7.2. Let I = (xy) ⊆ C[x, y] denote the ideal generated by the
element f = xy. Then any element in I can be written as F · f , with
F ∈ C[x, y]. In particular we get that neither x nor y is in I, but clearly xy
is. Thus I = (xy) is not a prime ideal.

Example 7.7.3. Let I = (x2 + y3) ⊆ C[x, y]. The ideal I is generated by f =
x2+y3, which is an irreducible element. It follows that the ideal I = (x2+y3)
is a prime ideal.

Excercise 7.7.4. A non-zero element f ∈ C[x1, . . . , xn] is irreducible if f =
f1 · f2 implies that at least one of the factors f1 or f2 is a unit. Show that
an ideal I generated by an irreducible element f implies that the algebraic
set Z(I) is irreducible. Give an example of an irreducibel hypersurface Z(f)
where f is not an irreducible element.

Excercise 7.7.5. Show that an ideal I ⊆ C[x1, . . . , xn] is a prime ideal if and
only if the quotient ring C[x1, . . . , xn]/I is an integral domain. Recall that a
ring A is called an integral domain if A is not the zero ring, and if f · g = 0
then either f = 0 or g = 0. Show furthermore that an ideal I ⊆ C[x1, . . . , xn]
is a maximal ideal if and only if the quotient ring C[x1, . . . , , xn]/I is a field.

5



Recall that an integral domain A is called a field if every non-zero element is
invertible, and that a prime ideal not properly contained in any other prime
ideal is maximal ideal.

Example 7.7.6. Ideals of the form I = (x1− a1, . . . , xn− an) ⊆ C[x1, . . . , xn],
with (a1, . . . , an) ∈ Cn, are prime ideals. For instance, the quotient ring
C[x1, . . . , xn]/I = C, is a field (see Exercise 7.7.5). Note that

Z((x1 − a1, . . . , xn − an)) = ∩ni=1Z(xi − ai) = (a1, . . . , an).

Excercise 7.7.7. The ideal I = (xy) ⊆ C[x, y] is not prime, but the ideals (x)
and (y) are prime ideals. Show that I = (x) ∩ (y), and use this to describe
the irreducible components of Z(I).

7.8 Radical ideals

Definition 7.8.1. The radical of an ideal I ⊆ C[x1, . . . , xn] is the set

√
I = {f ∈ C[x1, . . . , xn] | fm ∈ I some m ≥ 0}.

One shows that the radical
√
I is also an ideal. Clearly we have an inclusion

I ⊆
√
I. We say that the ideal I is radical if I =

√
I.

Example 7.8.2. That any prime ideal I ⊆ C[x1, . . . , xn] is a radical ideal,
follows almost directly from the definitions. The converse is not the case.
Consider for instance the ideal I = (xy) ⊆ C[x, y] discussed in Example
7.7.2. The ideal I = (xy) is not prime, but radical.

Example 7.8.3. The ideal I = (x2) ⊆ C[x, y] is not prime, nor radical. The
element x is not in I, but x2 is in I. Note that the set Z(x2) is an irreducibel
hypersurface (see Exercise 7.7.4).

Theorem 7.8.4 (Hilberts Nullstellenzats). Algebraic sets in An are in one
to one correspondance with the set of radical ideal in C[x1, . . . , xn]. Further-
more, we have that an algebraic set is irreducible if and only if its correspond-
ing radical ideal is a prime ideal.

Corollary 7.8.5. Let I ⊆ C[x1, . . . , xn] be any proper ideal. Then we have
that its radical ideal

√
I =

⋂
I⊆(x1−a1,...,xn−an)

(x1 − a1, . . . , xn − an)

where the intersection is taken over the set of maximal ideals containing I.
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Proof. The radical of an ideal I is the intersection of all prime ideals con-
taining I, which is a standard fact. The polynomial ring C[x1, . . . , xn] is
an example of a Jacobson ring, which means that any intersection of prime
ideals is in fact given by the corresponding intersection of maximal ideals.
Thus, the radical of I is the intersection of all maximal ideals containing I.
By the Nullstellenzats, or the weak version of it, the maximal ideals are all
of the form (x1 − a1, . . . , xn − an), with ai ∈ C, i = 1, . . . , n.

Excercise 7.8.6. Let I ⊆ C[x1, . . . , xn] be an ideal. Show that for any integer
n we have that

Z(I) = Z(In).

Excercise 7.8.7. Show that for any ideal I we have Z(I) = Z(
√
I).

Excercise 7.8.8. Let I ⊂ C[x1, . . . , xn] be a proper, radical ideal. Assume
that I is not prime. Show that there exists elements f and g such that

Z(I) = Z(I + f) ∪ Z(I + g)

is a union of proper subsets. Here I + f means the ideal generated by f
and elements of I. Thus if f1, . . . , fm generate I, then f, f1, . . . , fm generate
I + f .

Excercise 7.8.9. Let Z ⊆ A3 be the algebraic set defined by the ideal

I = (x2 − yz, xz − x) ⊂ C[x, y, z].

Show that Z has three components, and describe their corresponding prime
ideals.

Excercise 7.8.10. We identify C2 with C×C. Show that the Zariski topology
on C2 is not given by the product topology of A1 with A1.

7.9 Polynomial maps

Lemma 7.9.1. Let Fi = Fi(x1, . . . , xm) be an ordered sequence of n poly-
nomials in m variables (i = 1, . . . , n). The induced map F : Am −→ An,
sending a = (a1, . . . , am) to (F1(a), . . . , Fn(a)) is a continuous map.

Proof. We show that the map is continuous by showing that the inverse image
of closed sets are closed. Let f(y1, . . . , yn) be a polynomial in n variables.
Let f ◦ F = f(F1(x), . . . , Fn(x)), which is a polynomial in the m variables
x = x1, . . . , xm. Note that

F−1(Z(f)) = {a ∈ Am | (F1(a), . . . , Fn(a)) ∈ Z(f)},
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which means that

F−1(Z(f)) = {a ∈ Am | f(F1(a), . . . , Fn(a)) = 0} = Z(f ◦ F ).

It follows that if I ⊆ C[y1, . . . , yn] is an ideal generated by f1, . . . , fN , then
F−1(Z(I)) is the algebraic set given by the ideal J ⊆ k[x1, . . . , xm] generated
by f1 ◦ F, . . . , fN ◦ F .

A map F : Am −→ An given by polynomials as in the Lemma, is a polynomial
map.

7.10 Maps of affine algebraic sets

If F : Am −→ An is a polynomial map that would factorize through an al-
gebraic set Y ⊆ An, then we have a map F : An −→ Y . Restricting such a
map to an algebraic set X ⊆ Am gives a map F : X −→ Y , which is how we
will define a map of algebraic sets.

Remark

Note that our definition of a map between affine algebraic sets, requires an
embedding into affine spaces.

Example 7.10.1. The two polynomials F1(t) = t2 and F2(t) = t3 determine
the polynomial map F : A1 −→ A2. The map F then sends a point a 7→
(a2, a3). Let Y ⊆ A2 be the curve given by the polynomial f(x, y) = y2 − x3
in C[x, y], that is Y = Z(f). For any scalar a we have that the pair (a2, a3)
is such that f(a2, a3) = 0. In order words we get an induced map

F : A1 −→ Y.

Definition 7.10.2. Two affine algebraic sets X and Y are isomorphic, or
simply equal, if there exists polynomial maps F : X −→ Y and G : Y −→ X
such that F ◦G = id and G ◦ F = id.

Example 7.10.3. The map F : A1 −→ Y = Z(y2 − x3) ⊆ A2 discussed in
Example 7.10.1 is a homeomorphism (see Exercise 7.10.5). However, even if
the map F gives a homeomorphism between A1 and the curve Y ⊆ A2, these
two varieties are not considered as equal. The inverse G : Y −→ A1 to F is
not a polynomial map.
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Example 7.10.4. Let p : A2 −→ A1 be the projection on the first factor, thus
p(a, b) = a. Which is a polynomial map. The fiber over a point a ∈ A1 is the
“vertical” line Z(x − a), where the hypersurface x − a ∈ C[x, y]. Consider
now the polynomial

G(x, y) = y3 + g1(x)y2 + g2(x)y + g3(x).

We get an induced projection map p1 : Z(G) −→ A1. The fiber over a point
a ∈ A1 is Z(x− a,G), which is given by

g(y) = y3 + g1(a)y2 + g2(a)y + g3(a) ∈ C[y].

The three roots of g(y) are the three points lying above a.

Excercise 7.10.5. Verify that the map F : A1 −→ Y in Example 7.10.1 is a
homeomorphism, and that the inverse map is not a polynomial map: You
first check that the map is bijective, and from Lemma 7.9.1 you have that it
is contineous. Then to be able to conclude that the map is a homeomorphism
it suffices to verify that the map F gives a bijection between the closed sets
of A1 and Y . The closed sets on Y are the intersection of closed sets on A2

with Y . The non-trivial closed sets are given by a finite collection of points,
and then you have verified that F is a homeomorphism. Then you need to
convince yourself that the inverse map G is not a polynomial map.

Excercise 7.10.6. Show that the variety Z(xy − 1) ⊆ A2 is isomorphic to
A1 \ 0.

Excercise 7.10.7. Show that a basic open An \ Z(f) is an algebraic variety
by identifying it with Z(tf − 1) ⊆ An+1.
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Chapter 8

Projective varieties

We will define the projective space as a certain quotient space where we
identify lines in affine space.

8.1 Projective n-space

Definition 8.1.1. We let Pn denote the topological space we obtain by taking
the quotient space of An+1 \ (0, . . . , 0) modulo the equivalence relation

(a0, . . . , an) ' (λa0, . . . , λan),

with non-zero scalars λ ∈ C. The space Pn is called projective n-space. The
equivalence class of a vector (a0, . . . , an) we denote by

[a0 : a1 : · · · : an].

Quotient topology

Recall the notions of quotient topology discussed in Section 1.2.

Excercise 8.1.2. Show that Pn is a Noetherian space.

8.2 Homogeneous polynomials

Let S = C[X0, . . . , Xn] denote the polynomial ring in the variablesX0, . . . , Xn.
Let Sd(X0, . . . , Xn) = Sd denote the vector space of degree d ≥ 0 forms in
X0, . . . , Xn. The monomials {Xd0

0 · · ·Xdn
n } where d = d0 + · · · + dn, form a

basis for the vector space Sd.
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We have the decomposition of vector spaces

S = C[X0, . . . , Xn] =
⊕
d≥0

Sd

into homogenous parts. An element F ∈ S is homogenous, and of degree d, if
F ∈ Sd. As the zero polynomial is in Sd for any d ≥ 0, it has no well-defined
degree.

Excercise 8.2.1. Compute the dimension of Sd(X0, . . . , Xn).

Excercise 8.2.2. The Hilbert series of graded the polynomial ring is the formal
expression H(t) =

∑
d≥0 dimSd(X0, . . . , Xn)td. Show that

H(t) =
n∏
i=0

1

1− t
.

8.3 Hypersurfaces in projective space

Any homogeneous polynomial F (X0, . . . , Xn) will satisfy

F (λa0, . . . , λan) = λdF (a0, . . . , an)

where d is the degree of F (X0, . . . , Xn), and a0, . . . , an is any vector in Cn+1.
Thus, if a = (a0, . . . , an) is an element of Z(F ) ⊆ An+1, then the whole
line spanned by a is in Z(F ). It follows that the set Z(F ) \ (0, . . . , 0) in
An+1 \ (0, . . . , 0) is invariant with respect to the equivalence relation. In
particular we get, by taking the quotient, a closed subset Z(F ) in Pn. Any
homogenous element F of degree d ≥ 1 will vanish on (0, . . . , 0) in An+1,
that is (0, . . . , 0) ∈ Z(F ). If Z(F ) contains other points as well, then we get
a non-empty subset Z(F ) in Pn, and these we refer to as hypersurfaces in
projective n-space.

Lectures 4-6

The projective curves discussed in lectures 4-6 are examples of hypersurfaces
in the projective plane.

8.4 Homogeneous ideals

An ideal I in the polynomial ring S = C[X0, . . . , Xn] is a homogeneous ideal
if there exist homogenous elements F1, . . . , Fm that generates the ideal, I =
(F1, . . . , Fm). A homogeneous ideal I can be decomposed as I =

⊕
d≥0 Id.
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Any homogenous ideal I ⊆ S defines a closed set

Z(I) = ∩mi=1Z(Fi) ⊆ Pn,

where F1, . . . , Fm is a collection of homogenous elements that generate I.
Note that any closed subset Z ⊆ Pn is of the form Z = Z(I), for some
homogeneous ideal I ⊆ C[X0, . . . , Xn]. We refer to the closed sets in Pn as
algebraic sets.

Excercise 8.4.1. Let F be a homogeneous polynomial in C[X0, . . . , Xn], and
let I be the homogeneous ideal generated by X0F,X1F, . . . , XnF . Show that

Z(F ) = Z(I)

as subsets of Pn.

Proposition 8.4.2. The projective n-space Pn has a open cover by affine
n-spaces. In particular we have identification of varieties

Pn \ Z(Xi) = An,

for every i = 0, . . . , n, and these open sets cover Pn.

Proof. Let Z(x0− 1) be the affine variety in An+1 where the first coordinate
is 1. We will prove that Z(x0 − 1) can be identified with U0 = Pn \ Z(X0).
The remaining cases are proved similarily. Restricting the projection map
π : An+1 \ 0 −→ Pn, gives a map

π| : Z(x0 − 1) −→ U0 = Pn \ Z(X0)

that sends (1, a1, . . . , an) 7→ [1 : a1 : · · · : an]. We define a map s : U0 −→
Z(x0 − 1) by sending

s([X0 : X1 : · · · : Xn]) = (1, X1/X0, . . . , Xn/X0).

It is clear that π| is a bijection, with s being its inverse. To conclude that π|
is a homeomorphism, we need to show that s is continuous. As closed sets
in An+1 are intersections of hypersurfaces, it suffices to show that the inverse
image s−1(Z(f)) is closed, for hypersurfaces. We have that s−1(Z(f)) =
π|(Z(f)). The identification of An with Z(x0 − 1) ⊆ An+1, of varieties,
is clear. Thus, the polynomial f can be considered as a polynomial in n
variables x1, . . . , xn. The polynomial

F (X0, . . . , Xn) = Xdeg f
0 f(

X1

X0

, . . . ,
Xn

X0

)
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is homogeneous, and by definition Z(F ) is closed in Pn. We have furthermore
that

π|(Z(f)) = Z(F ) ∩ U0,

hence closed in U0.

Example 8.4.3. Note that setting the first coordinate to 1, and not to say
2, is a choice that corresponds, locally, to a section of the projection map
An+1 \ 0 −→ Pn.

Example 8.4.4. Note that the construction in the proof is a bit ad hoc. We
have a homeomorphism identifying An with Pn \ Z(Xi), for each i. And we
use this identification to give the variety structure on Pn, locally. One could
ask why this particular chosen structure was right. It is, and that can be
proved using a completely different approach and a different definition of
what projective space means.

Glueing

Another way of construction the projective n-space is by glueing, and was
discussed in Section 3.2. We recall some of it here. Quite generally, if we have
a collection of topological spaces {Ui}i∈A we can glue these together along
specified intersections: Assume that we have an inclusion of open subsets
Ui,j ⊂ Ui, for all indices i, j ∈ A , and homeomorphisms ϕi,j : Ui,j −→ Uj,i
that satisfies the co-cycle condition

ϕi,k = ϕj,k ◦ ϕi,j

when restricted to Ui,j ∩ Ui,k, for all i, j, k ∈ A . Then one can check that
the data equals the data of an equivalence relation on the disjoint union tUi.
We can then form the quotient space X by identifying, or glueing, the spaces
Ui and Uj together along Ui,j = Uj,i (identified with ϕi,j).

Excercise 8.4.5. Let Ui = An, where i = 0, . . . , n is fixed. For any j = 0, . . . , n
we let Ui,j = An \ Z(xj), and we let

ϕi,j : Ui,j −→ Uj,i

be the map given by the following composition. For the fixed i, we have the
map (a1, . . . , an) 7→ (a1, . . . , ai−1, 1, ai, . . . , an) putting the 1 on the i′th coor-
dinate, for i = 0, . . . , n. As subsets of An+1 we have a natural identifications
of Ui,j with Uj,i. If j ≤ i then the j’th coordinate in Ui,j will be invertible,
and we consider the map

(a1, . . . , ai−1, 1, ai, . . . , an) 7→ a−1j (a1, . . . , ai−1, 1, ai, . . . , an)
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identifying Ui,j with Uj,i. Write up the situation with j > i, and show that
the identifications satisfy the co-cycle condition. Show furthermore that the
glueing of tni=0Ui along the identifications Ui,j with Uj,i gives Pn. In fact the
images of Ui in the quotient space are precisely the open sets An = Pn\Z(Xi)
given in Proposition 8.4.2

Definition 8.4.6. An irreducible algebraic set in Pn is a projective variety.

Proposition 8.4.7. Any projective variety Z ⊆ Pn is given by a homogenous
ideal I that is a prime ideal in C[X0, . . . , Xn].

Proof. Let π : An+1 \ 0 −→ Pn be the quotient map, where 0 = (0, . . . , 0).
A set X ⊆ An+1 is irreducible if and only if X0 = X \ 0 is irreducible
or empty in An+1 \ 0. If X0 is irreducible, then π(X0) is also irreducible
since the quotient map π is contineous. Thus we see that for any prime
ideal I ⊆ C[X0, . . . , Xn] which is also homogeneous, we have that Z(I) is
irreducible (or empty). Conversely, let Z ⊆ Pn be an irreducible set. Then
Z = Z(I) for some homogeneous radical ideal I ⊆ C[X0, . . . , Xn]. If I is
not prime, then there exists elements F and G not in I but where FG ∈ I.
One checks that we can assume the elements F and G to be homogeneous
elements. But, then we have, as in Exercise 7.8.8,

Z(I + F ) ∪ Z(I +G) = Z(I),

with proper subsets Z(I + F ) ⊂ Z(I), and Z(I +G) ⊂ Z(I). It follows that
Z(I) = Z(I+F )∪Z(I+G) is the union of two proper closed subsets. Hence
Z(I) was not irreducible after all. We can therefore conclude that the ideal
I was prime.

Excercise 8.4.8. The projective set C in P3 given by the homogeneous ideal
generated by

XW − Y Z, XZ − Y 2 and YW − Z2

in C[X, Y, Z,W ] is called the twisted cubic. If we let [t : u] be projecive
coordinates for the projective line, then the twisted cubic is the set of points
in P3 of the form [t3 : t2u : tu2 : u3].

Excercise 8.4.9. The intersection of varieties is not always a variety. Consider
the two surfaces Q1 and Q2 in P3, given by the ideals generated by the
quadratic polynomials

F = Z2 − YW and G = XY − ZW
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in C[X, Y, Z,W ]. Show that both Q1 = Z(F ) and Q2 = Z(G) are varieties.
Identify furthermore their intersection Q1∩Q2 as the union of a twisted cubic,
and a line. In fact, we have that the intersection is given as the union of the
line Z(X,W ) and the twisted cubic C = Z(F,G, Y 2 − XZ) (see Exercise
8.4.8).

Excercise 8.4.10. The ideal generated by the union does not always describe
the intersection. Let C be the curve given by the ideal I(C) = (X2 − Y Z),
and let L be the line I(L) = (Y ). Show that the intersection C ∩L is a point
P ∈ P2. Compute the homogeneous prime ideal I(P ) corresponding to the
point P , and deduce that I(C) + I(L) 6= I(P ). Draw a picture to explain
the situation.

Excercise 8.4.11. Let P = [1 : 0 : 0 : 0] and Q = [0 : 1 : 0 : 0] be points in P3.
There is a unique line L passing through P and Q. A parametric description
of the line is the set tP+uQ, with projective parameters [t : u] ∈ P1. Describe
the homogenous prime ideal I ⊆ C[x, y, z, w] defining L.

Excercise 8.4.12. Consider the quadratic surface Q ⊂ P3 given by the poly-
nomial XY − ZW in C[X, Y, Z,W ]. Show that Q contains two families of
lines LP and NP parametrized by points P = [t : u] ∈ P1, with the following
property.

LP ∩ LP ′ = NP ∩NP ′ = ∅ if P 6= P ′,

and
LP ∩NP ′ = a point for all P, P ′.

Hint, use that XY − ZW is the determinant of the matrix[
X Z
W Y

]
.
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Chapter 9

Maps of projective varieties

9.1 Quasi-projective varieties

Before we continue with what should be a map between projective varieties,
it turns out that it is convenient to define the notion of quasi-projective sets.

Definition 9.1.1. A set X ⊆ Pn is quasi-projective if it is locally closed;
meaning that there exists a (algebraic) closed set Z ⊆ Pn containing X ⊆ Z
as an open subset.

Example 9.1.2. Any algebraic set X ⊆ Pn is quasi-projective since X is open
in itself, and an algebraic set is by definition closed in Pn. Any open subset
U ⊆ X of an algebraic set X ⊆ Pn is by defintion quasi-projective. In
particular the affine n-space An is quasi-projective since An = Pn \ Z(X0) is
open in Pn. Any open subset U ⊆ An is quasi-projective since it will also be
open in Pn.

Excercise 9.1.3. Show that any affine algebraic set X = Z(I) ⊆ An is quasi-
projective by showing that there is a homogenous ideal J ⊆ C[X0, . . . , Xn]
such that

X = Z(J) ∩ Pn \ Z(X0).

Then X will be open in Z(J). I think you will prove something as: For
any f ∈ C[t1, . . . , tn], let h(f) = xdeg f0 f(X1

X0
, . . . , Xn

X0
). Then h(f) is a ho-

mogeneous element of C[X0, . . . , Xn]. For any homogeneous polynomial
F ∈ C[X0, . . . , Xn] we let d(F ) = F (1, t1, . . . , tn). We have that

d(h(f)) = f and h(d(F )) = xN0 F some N ≥ 0.

Excercise 9.1.4. Let Y ⊆ An be an algebraic set, and let I(Y ) be an ideal
defining Y . We view Y as a subset of Pn, by identifying An = Pn\Z(X0). The
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closure Y is the smallest closed subset containing Y , and is then by definition
an algebraic set. Show that the h(I(Y )), obtained by applying the h function
in Exercise 9.1.3 to all elements of I(Y ), generates the homogeneous ideal
I(Y ) describing Y .

Excercise 9.1.5. Let Y ⊆ A3 be the twisted cubic, that is the image of
A1 −→ A3 by the map t 7→ (t, t2, t3). Use this example to show that if
f1, . . . , fr generates an ideal I(Y ), then h(f1), . . . , h(fr) does not generate
the ideal I(Y ) of its closure in projective space (see Exercise 9.1.4).

The affine varities are the building blocks

The notion of quasi-projective sets includes both projective and affine al-
gebraic sets. Note that sets as A2 \ (0, 0) are also quasi-projective, these
are however not affine algebraic sets. At first glance it now would appear
as the notion of quasi-projective varieties is to genereous, forcing us to also
deal with sets which are not build up via affine charts. However, as we saw
in Exercise 7.10.7 the basic open sets are affine algebraic sets. So indeed
A2\ = A2 \ Z(x) ∪ A2 \ Z(y) is the union of varities.

9.2 Regular maps

Let F0, . . . , Fn be n+ 1 homogenous polynomials each of the same degree, in
m+ 1 variables. Having these polynomials we get a polynomial map

F = (F0, . . . , Fn) : Am+1 −→ An+1. (9.1)

The fact that the polynomials all have the same degree guarantees that the
map of affine spaces respects the equivalence classes defining the projective
space. In order to get an induced map of projective spaces we need further-
more that the common zero of the polynomials is the origo only.

Definition 9.2.1. Let X ⊆ Pm be a quasi-projective set. A regular map
F : X −→ Pn is a sequence F = (F0, . . . , Fn) of homogeneous polynomials in
m+ 1-variables, all of same degree, and where the polynomials F0, . . . , Fn do
not simultaneously vanish on X. The last condition is that

X ∩ Z(F0) ∩ · · · ∩ Z(Fn) = ∅.

Example 9.2.2. Consider the polynomial map A3 −→ A2 given by the two
linear polynomials F0 = X and F1 = Y − Z. So the polynomial map sends

(a, b, c) 7→ (a, b− c).
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This will respect the equivalence classes defining the projective space, but
will not induce a map from the projective plane to the projective line. This
is because the line (0, t, t) is sent to (0, 0). In order words we get an induced
map

P2 \ [0 : 1 : 1] −→ P1

defined on the complement of a point in the projective plane. The regular
map defined above can not be extended to a regular map defined on the
whole of projective plane.

Example 9.2.3. Let Q ⊂ P2 be the quadratic curve given by the equation
X2 + Y 2 + Z2. As the point [0 : 1 : 1] is not on Q, the map described in the
previous example gives a map F : Q −→ P1 that takes

[X : Y : Z] 7→ [X : Y − Z].

So the map F : Q −→ P1 is given by the homogenous polynomials F0 = X
and F1 = Y − Z in the variables X, Y, Z.

9.3 Maps of projective varieties

We are now ready to define what we mean with a map of projective varieties.

Definition 9.3.1. Let X ⊆ Pm be a quasi-projective algebraic set. A map
F : X −→ Pn is a finite collection of regular maps Fi : Xi −→ Pn (i =
1, . . . , N), where

(1) we have that Xi ⊆ X is an open subset, for each i = 1, . . . , N ,

(2) the opens cover X = ∪Ni=1Xi,

(3) restricted to intersections Xi ∩ Xj the regular maps Fi and Fj agree,
for all i, j ∈ 1, . . . , N .

Furthermore, if X ⊆ Pm and Y ⊆ Pn are two projective sets, then a map
F : X −→ Y is a map F : X −→ Pn that factors via the inclusion Y ⊆ Pn.
Note that a regular map F : X −→ Pn is in particular a map of projective
varieties.

Example 9.3.2. Let C ⊂ P2 be the quadratic curve given by the equation
X2 − Y 2 + Z2. The map in Example 9.2.2 induces, by restriction, a map

F1 : C \ [0 : 1 : 1] −→ P1
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that sends [X : Y : Z] to [X : Y − Z]. In a similar way we have a map
F2 : C \ [0 : −1 : 1] −→ P1 that sends

[X : Y : Z] 7→ [Y + Z : X].

There is nothing wrong with these two maps F1 and F2, both being given
by polynomials, but none of these two can be extended to a polynomial map
from the whole curve. However, together they describe a map. Note that
when X 6= 0 we have

[X : Y − Z] = [1 :
Y − Z
X

] = [1 :
Y 2 − Z2

X(Y + Z)
] = [Y + Z :

X2

X
].

In other words, the two regular maps F1 and F2 are equal when restricted to

C \ [0 : 1 : 1] ∪ [0 : −1 : 1].

Therefore, together the two maps F1 and F2 describe a map from the union

F : C −→ P1.

It should be clear from the example above that we need to accept that the
maps of projective varieties can only be locally defined by polynomials. How-
ever, when one have defined the maps locally then one can wonder how small
or local these defining charts need to be. The situation is not that bad, as
the following statement shows.

Proposition 9.3.3. A map F : X −→ Y of affine algebraic sets is given by
a polynomial map.

Proof. We do not prove it here, but we want to point out the following. Any
affine algebraic set X is a quasi-projective set (Exercise 9.1.3). Hence it
makes sense to talk about maps of affine algebraic sets, considered as quasi-
projective sets. If X ⊆ An, then X = Z(I) for some ideal I ⊆ C[x0, . . . , xn].
One shows that the maps X −→ Am are simply m elements in the quotient
ring C[x0, . . . , xn]/I. And it follows that maps of affine algebraic sets are the
same as polynomial maps.

Excercise 9.3.4. What should two isomorphic projective varieties mean? You
probably can imagine several reasonable definitions, and these are probably
all correct.

Excercise 9.3.5. The degree of a map of projective curves is the number of
points in a generic fiber. What is the degree of the map F : Q −→ P1 given
in Example 9.3.2
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9.4 The Veronese map

Let d ≥ 1 be a given integer. For each integer n ≥ 0 we will describe the
Veronese map

vd : Pn −→ PN

where N + 1 is the number of monomials in n+ 1 variables, in degree d, i.e.
N + 1 is the dimension of Sd(X0, . . . , Xn). Define the set

Dn
d = D = {d = (d0, . . . , dn) ∈ Nn+1 | d0 + · · ·+ dn = d}. (9.2)

Then clearly the monomials in X0, . . . , Xn of degree d correspond, naturally,
to the elements of D . If d ∈ D then the corresponding monomial Xd =
Xd0

0 · · ·Xdn
n .

We have the polynomial map An+1 −→ AN+1, that sends a vector (a0, . . . , an)
to (ad)d∈D . The map respects the equivalence relation defining the projective
spaces, since the monomials are all homogeneous of the same degree, and
hence gives an induced map vd : Pn −→ PN taking

[X0 : · · · : Xn] 7→ [Xd]d∈D .

Proposition 9.4.1. Let d ≥ 1 and n ≥ 0 be two given integers, and let C[XD ]
be the graded polynomial ring with variables indexed by the set D given in 9.2.
The Veronese map vd : Pn −→ PN identifies Pn with the Veronese variety Vn,d
given by the homogeneous ideal

I = (XdXd′ −XeXe′) ⊂ C[XD ],

where the quadratic equations XdXd′ −XeXe′ is formed for every quadruple
d, d′, e, e′ in D such that d+ d′ = e+ e′.

Proof. Let i denote the element in D that has the number d in coordinate i,
and zero elsewhere (with i = 0, . . . , n). Thus i corresponds to the monomial
Xd
i . For each i = 1, 0, . . . , n we let

Ui = Z(I) ∩ PN \ Z(Xi).

Then one checks that the open sets U0, . . . , Un cover the algebraic set Z(I).
We will next indicate how maps Gi : Ui −→ Pn are defined by simply giving
the definition ofG0. Let d(i) ∈ D be the element d(i) = (d−1, 0, . . . , 1, . . . , 0),
where the 1 appears in coordinate i (and i = 1, . . . , n). We define the map
G0 : U0 −→ Pn by

G0([Xd]) = [X0 : Xd(1) : · · · : Xd(n)].
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One checks that the similarily defined maps Gi and Gj coincide on Ui ∩ Uj
(for all pairs i, j), and hence we have a map

G : Z(I) −→ Pn.

Clearly the maps Gi will factor via the open inclusion Pn \Z(Xi). Let Fi be
the restriction of the Veronese map vd to the open subset Pn \ Z(Xi). Note
that since X0 6= 0 on U0, we have that

G0([Xd]) = Xd
0 [1 :

X1

X0

: · · · : Xn

X0

].

One verifies that Gi is the inverse of Fi, so G is the inverse of F , and you have
proven that the Veronese map is an isomorphism of projective varieties.

Example 9.4.2. The Veronese surface is given by the map v2 : P2 −→ P5 that
sends

[X : Y : Z] 7→ [X2 : XY : XZ : Y 2 : Y Z : Z2].

The defining equations for the Veronese surface is given by the quadratic
polynomials in C[Z0, . . . , Z5], given as the (2× 2)-minors ofZ0 Z3 Z4

Z3 Z1 Z5

Z4 Z5 Z2

 .
This is a neat way of describing all two pairs (d, d′) and (e, e′) of vectors,
among (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1) that have the same
sum d + d′ = e + e′. There are nine (2 × 2)-minors, but since the matrix is
symmetric, only six of them are relevant.

Excercise 9.4.3. Let V ⊆ P5 denote the Veronese surface, given in Example
9.4.2. Show that for any two points P and Q on V there exists a conic
curve C on V passing through the points P and Q. The curve C will be an
embedding of the projective line P1.

9.5 Veronese subvarieties

As the projective n-space Pn is identified with the Veronese variety Vd,n ⊆
PN , it means in particular that subvarities Z(I) in Pn are identified with
subvarieties in Vd,n. We will look a bit closer att that correspondance. Thus
let d ≥ 1 and n ≥ 0 be fixed integers. Note that a homogenous element
F ∈ C[X0, . . . , Xn] of degree d · e, naturally can be viewed as a polynomial
in the monomials of degree d.
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Furthermore, if G ∈ C[X0, . . . , Xn] is homogenous of degree e, then I =
(X0G, . . . , XnG) is homogeneous of degree one more, e + 1, and we have
that Z(G) = Z(I) (see Exercise 8.4.1). Hence, if I ⊆ C[X0, . . . , Xn] is a
homogeneous ideal generated by elements of degree ≤ e, then we can form
the ideal I ′ that is generated in degree equal to d ·e, and where Z(I) = Z(I ′).
However, the generators of I ′ correspond to degree e polynomials in the
degree d monomials in PN , wherein the Veronese variety Vd,n is.

Example 9.5.1. We have the Veronese map v2 : P2 −→ P5, identifying the
projective plane with the Veronese surfaces V2,2. In the plane we have the
cubic curve

C = Z(X3 + Y 3 + Z3) ⊂ P2.

We write C as the intersection of the three quartics

X4 +XY 3 +XZ3, X3Y + Y 4 + Y Z3 and X3Z + Y 3Z + Z4.

These three polynomials of degree 2 · 2, correspond to the following degree 2
polynomials in C[Z0, . . . , Zn],

Z2
0 + Z1Z3 + Z2Z5, Z0Z1 + Z2

3 + Z4Z5 and Z0Z2 + Z3Z4 + Z2
5 .

Intersecting the zero set of these three polynomials with the Veronese surface
V2,2 gives v2(C) ⊆ P5.

Excercise 9.5.2. Show that any projective variety is isomorphic to an inter-
section of a Veronese variety (vd(Pn) for some n, d), with a linear space.

9.6 The Segre maps

We let Pm × Pn denote the set of ordered pairs of points ([X], [Y ]), with [X]
in Pm and [Y ] in Pn. The Segre map

σ : Pm × Pn −→ P(m+1)(n+1)−1

is defined by sending

([X0 : · · · : Xm], [Y0 : · · · : Yn]) 7→ [· · · : XiYj : · · · ].
Proposition 9.6.1. The image of the Segre map σ : Pm×Pn −→ P(m+1)(n+1)−1

is the Segre varietey Σm,n defined by the homogeneous ideal

I = (Zi,jZk,l − Zi,lZk,j) ⊂ C[Zi,j]0≤i≤m
0≤j≤n

.

Proof.

Example 9.6.2. The image of P1×P1 in P3 by the Segre map is the quadratic
surface given by

XW − Y Z ∈ C[X, Y, Z,W ].
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Product varieties

Via the Segre map we identify Σm,n with the product Pm × Pn, and in par-
ticular we can give the product the structure of a variety. This is of course
an ad hoc construction. We can define and talk about products of varieties,
even if we do not define that concept here.

9.7 Bi-homogenous forms

A polynomial F (X, Y ) ∈ C[X0, . . . , Xn, Y0, . . . , Ym] in two set of variables X
and Y , is bihomogenous of degree (d, e), if of the form

F (X, Y ) =
∑

|α|=d, |β|=e

cα,βX
αY β,

where cα,β are complex numbers, and α = (α0, . . . , αn) is multi-index notation
with | α |=

∑n
i=0 αi. And similarily with β = (β0, . . . , βm). Note that

any bigraded polynomial F (X, Y ) gives a well-defined pair of closed subsets
Z(F ) ⊆ Pn × Pm.

Example 9.7.1. Let C ⊆ P3 be the twisted cubic, defined by the quadratic
polynomials

F = XW − Y Z, G = XZ − Y 2 and H = YW − Z2

in C[X, Y, Z,W ]. In P3 we have the Segree surface Σ being the image of
P1 × P1 (see Example 9.6.2). The surface Σ is cut out by F = XW − Y Z,
and in particular we have that our curve C ⊂ Σ. As Σ is P1×P1 we can relate
algebraic subvarieties of Σ with bihomogenous ideals in C[X0, X1, Y0, Y1]. The
polynomial G restricted to P1 × P1 is then the polynomial

X0X1Y
2 −X0Y

2
1 = X0 · g where g = X1Y

2
0 −X0Y

2
1 .

The polynomial g is bigraded of degree (1, 2). The restriction of Z(G) to Σ is
then the union of a line Z(X0) and the curve Z(g). Similarily, the polynomial
H becomes

X0X1Y
2
1 −X2

1Y
2
0 = −X1g,

so Z(H)∩Σ is a line union the curve Z(g). In other words the twisted curve
C is given by a single polynomial g, of bidegree (1, 2) over the Veronese
surface Σ.
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Excercise 9.7.2. Let X ⊆ Pn and Y ⊆ Pm be projective varieties, given by
homogeneous ideals

IX ⊆ C[X0, . . . , Xn] and IY ⊆ C[Y0, . . . , Ym].

We define the maps

i : X −→ Pm+n+1 and j : Y −→ Pm+n+1

by i(x) = [x : 0], and j(y) = [0 : y], for any point x ∈ X and y ∈ Y , and
where 0 denotes the sequence of m+ 1, respectively n+ 1, zeros. Show that
i identifies X with i(X), and describe the ideal I ′X ⊆ C[X, Y ] describing
i(X) ⊆ Pm+n+1. Show that

i(X) ∩ j(Y ) = ∅.

Let finally IeX ⊆ C[X, Y ] denote the ideal generated by IX , and similarily
with IeY . Show that the ideal IeX + IeY describes the join J(X, Y ) ⊆ Pm+n+1

consisting of all points on lines L(x, y) between a point x ∈ i(X) and a point
y ∈ j(Y ).
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