Algebra and geometry through projective spaces

Problems on toric geometry

due: Monday, May 15. Please send a file.pdf to dirocco@kth.se.

Problem 1. Consider a minimal hyperplane description of a lattice polytopes *P*. In other words let $P = \bigcap_{i=1}^{s} H_{\xi_i,b_i}^+$ where *s* is the the minimum number of half-spaces necessary to cut out *P*. Show that *P* has *s* facets and that the vectors ξ_i are normal vectors to the associated facet. Moreover show that the pairs (ξ_i, b_i) are uniquely determined up to enumeration (the vectors ξ_i are unique up to positive scalar factors).

Problem 2. Classify, up to affine equivalence, all the smooth polygons containing at most 8 lattice points.

Problem 3. Let *P* be a smooth polytope. Prove that $X_v \cong \mathbb{C}^n$ for every vertex *v*.

Problem 4. Recall that $kP = \{m_1 + \ldots + m_k \text{ s.t. } m_i \in P\}$ and that if $P_1 \subset \mathbb{R}^n, P_2 \subset \mathbb{R}^t$ then $P_1 \times P_2 = \{(m, n) \text{ s.t. } m \in P_1, m \in P_2\} \subset \mathbb{R}^n \times \mathbb{R}^t$ is a polytope of dimension $\dim(P_1) + \dim(P_2)$ and whose faces are products of faces of resp. polytopes.

- (1) Describe the faces of the polytope $P = \Delta_1 \times 2\Delta_2$.
- (2) Is P smooth?
- (3) Describe the toric variety X_P as union of affine patches.
- (4) Describe the induced map $X_P \to \mathbb{P}^{11}$.

Problem 5. A rational normal curve of degree *d* is defined as the image of the degree *d* Segre embedding of \mathbb{P}^1 :

$$\mathbb{P}^1 \to \mathbb{P}^d$$
 $(x_0:x_1) \mapsto (x_0^d:x_0^{d-1}x_1:x_0^{d-2}x_1^2:\ldots:x_0x_1^{d-1}:x_1^d)$

Let *P* be a lattice polytope. Show that for every edge $L \subset P$, the toric variety V(L) is smooth and isomorphic to a rational normal curve. What is the degree of such rational curve?

Problem 6. Let a_0, \ldots, a_n be coprime positive integers. Consider the action of \mathbb{C}^* on \mathbb{C}^{n+1} given by:

$$t \cdot (x_1, \ldots, x_n) = (t^{a_0} x_0, \ldots, t^{a_n} x_n) = \mathbb{P}(a_0, \ldots, a_n).$$

The quotient $(\mathbb{C}^{n+1} - \{0\})/\mathbb{C}^*$ exists and it is called the **weighted projective space** with weights a_0, \ldots, a_n .

- (1) In which sense is this a generalisation of \mathbb{P}^n ?
- (2) We say that a polynomial p(x) = ∑_α c_αx^α ∈ C[x₀, x₁, x₂,..., x_n] is (a₀, a₁,..., a_n)-homogeneous of weighted degree *s* if every monomial x^α satisfies α · (a₀,..., a_n) = *s*. Show that f = 0 is a well defined equation on P(a₀,..., a_n) if and only if f is (a₀, a₁,..., a_n)-homogeneous.
- (3) Consider $\mathbb{P}(1,1,d)$. Show that the map $\mathbb{P}(1,1,d) \to \mathbb{P}^d + 1$ defined by $(x_0, x_1, x_2) \to (x_0^d, x_x^{d-1}x_1, \dots, x_o x_1^{d-1}, x_1^d, x_2)$ is well defined.

- (4) Show that P(1, 1, *d*) is a projective toric variety.
 (5) Construct the polytope associated to P(1, 1, *d*).
 (6) (*)[bonus point] Can you show (4) and (5) for any P(a₀,...,a_n)?
- 2