Institutionen för matematik, KTH.

Chapter 10

projective toric varieties and polytopes: definitions

10.1 Introduction

Tori varieties are algebraic varieties related to the study of sparse polynomials. A polynomial is said to be sparse if it only contains prescribed monomials.
Let $A=\left\{m_{0}, \ldots, m_{d}\right\} \subset \mathbb{Z}^{n}$ be a finite subset of integer points. We will use the multi-exponential notation:

$$
x^{a}=x_{1}^{a_{1}} \cdot x_{2}^{a_{2}} \cdots x_{n}^{a_{n}} \text { where } x=\left(x_{1}, \ldots, x_{n}\right) \text { and } a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}
$$

Sparse polynomials of type A are polynomials in n variables of type:

$$
p(x)=\sum_{a \in A} c_{a} x^{a}
$$

For example if $A=\left\{(i, j) \in \mathbb{Z}_{+}^{2}\right.$ such that $\left.i+j \leq k\right\}$ then the polynomials of type A are all possible polynomials of degree up to k.
Toric varieties admit equivalent definitions arising naturally in many mathematical areas such as: Algebraic Geometry, Symplectic Geometry, Combinatorics, Statistics, Theoretical Physics etc.
We will present here an approach coming from Convex geometry and will see that toric varieties represent a natural generalization of projective spaces.
There are two main features we will try to emphasise:
(1) toric varieties, X, are prescribed by sparse polynomials, in the sense that they are mapped in projective space via these pre-assigned monomials, whose exponents span an integral polytope polytope P_{X}. You
can think at a parabola parametrized locally by $t \mapsto\left(t, t^{2}\right)$. The monomials are prescribed by the points $1,2 \in \mathbb{Z}$. The polytope spanned by these points is a segment of length $1,[1,2]$. Discrete data A (i.e. points in \mathbb{Z}^{n}) gives rise to a polytope P_{A} and in turn to a torc variety X_{A} allowing a geometric analysis of the original data. This turns out to be very useful in Statistics or Bio-analysis for example.
(2) Toric varieties are defined by binomial ideals, i.e. ideals generated by polynomials consisting of two monomials: $x^{u}-x^{v}$. In the example of the parabola all the points in the image are zeroes of the binomial: $y-x^{2}$. This feature is particularly useful in integer programming when one wants to find a vertex (of the associated polytope) that minimises a certain (cost) function.

10.2 Recap example

Consider the ideal $\left(x^{3}-y^{2}\right) \in \mathbb{C}[x, y]$.
(a) The generating polynomial is irreducible and thus the corresponding affine variety $X=Z\left(x^{3}-y^{2}\right) \subset \mathbb{C}^{2}$ is an irreducible affine variety.
(b) Consider now the algebraic torus $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\} \subset \mathbb{C}$. Notice that $\mathbb{C}^{*}=\mathbb{C} \backslash Z(x)$, a Zariski-open subset of \mathbb{C}. Consider now the map $\phi: \mathbb{C}^{*} \rightarrow \mathbb{C}^{2}$ defined as $\phi(t)=\left(t^{2}, t^{3}\right)$. Observe that $\operatorname{Im}(\phi) \subseteq X$ and that $\psi: \operatorname{Im}(\phi) \rightarrow \mathbb{C}^{*}$ defined as $\phi(x, y)=(y / x)$ is an inverse. It follows that $\mathbb{C}^{*} \cong \operatorname{Im}(\phi)$, i.e. $\mathbb{C}^{*} \subset X$.
(c) The open set \mathbb{C}^{*} is also a multiplicative group. We can define a group action on X as follows:

$$
\mathbb{C}^{*} \times X \rightarrow X,(t,(x, y)) \mapsto\left(t^{2} x, t^{3} y\right) .
$$

Notice that, by definition, the action restricted to $\mathbb{C}^{*} \subset X$ is the multiplication in the group.

We will call such a variety, i.e. a variety satisfying (a), (b) and (c), an affine toric variety

10.3 Algebraic tori

Definition 10.3.1. A linear algebraic group is a Zariski-open set G having the structure of a group and such that the multiplication map and the
inverse map:

$$
m: G \times G \rightarrow G, i: G \rightarrow G
$$

are morphisms of affine varieties.
Let G, G^{\prime} be two linear algebraic groups, a morphism $G \rightarrow G^{\prime}$ of linear algebraic groups is a map which is a morphism of affine varieties and a homomorphism of groups.

We will indicate the SET of such morphisms with $\operatorname{Hom}_{A G}\left(G, G^{\prime}\right)$.
Excercise 10.3.2. Show that when G, G^{\prime} are abelian $\operatorname{Hom}_{A G}\left(G, G^{\prime}\right)$ is an abelian group.
Example 10.3.3. The classical examples of algebraic groups are: $\left(\mathbb{C}^{*}\right)^{n}, G L_{n}, S L_{n}$.
Definition 10.3.4. An n-dimensional algebraic torus is a Zariski-open set T, isomorphic to $\left(\mathbb{C}^{*}\right)^{n}$.

An algebraic torus is a group, with the group operation that makes the isomorphism (of affine varieties) a group-homomorphism. Hence an algebraic torus is a linear algebraic group.
From now on we will drop the adjective algebraic in algebraic torus.
Definition 10.3.5. Let T be a torus.

- An element of the abelian group $\operatorname{Hom}_{A G}\left(\mathbb{C}^{*}, T\right)$ is called a one parameter subgroup of T.
- An element of the abelian group $\operatorname{Hom}_{A G}\left(T, \mathbb{C}^{*}\right)$ is called a character of T.

Lemma 10.3.6. Let $T \cong\left(\mathbb{C}^{*}\right)^{n}$ be a torus.

$$
\operatorname{Hom}_{A G}\left(T, \mathbb{C}^{*}\right) \cong \mathbb{Z}^{n}
$$

Proof. Because $\operatorname{Hom}_{A G}\left(T, \mathbb{C}^{*}\right) \cong\left(\operatorname{Hom}_{A G}\left(\mathbb{C}^{*}, \mathbb{C}^{*}\right)\right)^{n}$ it suffices to prove that $\operatorname{Hom}_{A G}\left(\mathbb{C}^{*}, \mathbb{C}^{*}\right) \cong \mathbb{Z}$. Let $F: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ be an element of $\operatorname{Hom}_{A G}\left(\mathbb{C}^{*}, \mathbb{C}^{*}\right)$. Then $F(t)$ is a polynomial such that $F(0)=0$ Moreover it is a multiplicative group homomorphism, e.g. $F\left(t^{2}\right)=F(t)^{2}$. It follows that $F(t)=t^{k}$ for some $k \in \mathbb{Z}$.

A Laurent monomial in n variables is defined by

$$
t^{a}=t^{a_{1}} \cdot t^{a_{2}} \cdot \ldots \cdot t^{a_{n}}, \text { where } a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}
$$

Observe that t^{a} defines a function $\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{C}^{*}$, i.e. t^{a} is a character of the torus $\left(\mathbb{C}^{*}\right)^{n}$. Such character is usually denoted by $\chi^{a}: T \rightarrow \mathbb{C}^{*}$ where $\chi^{a}(t)=t^{a}$.

Another important fact, whose proof can be found in $[\mathrm{H}]$ is that:

Lemma 10.3.7. Any irreducible closed subgroup of a torus (i.e. an irreducible affine sub-variety which is a subgroup) is a sub-torus.

10.4 Toric varieties

Definition 10.4.1. A (affine or projective) toric variety of dimension n is an irreducible (affine or projective) variety X such that
(1) X contains an n-dimensional torus $T \cong\left(\mathbb{C}^{*}\right)^{n}$ as Zariski-open subset.
(2) the multiplicative action of $\left(\mathbb{C}^{*}\right)^{n}$ on itself extends to an action of $\left(\mathbb{C}^{*}\right)^{n}$ on X.

Example 10.4.2. \mathbb{C}^{n} is an affine toric variety of dimension n.
Example 10.4.3. \mathbb{P}^{n} is a projective toric variety of dimension n. The map $\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{P}^{n}$ defined as $\left(t_{1}, \ldots, t_{n}\right) \mapsto\left(1, t_{1}, \ldots, t_{n}\right)$ identifies the torus $\left(\mathbb{C}^{*}\right)^{n}$ as a subset of the affine patch $\mathbb{C}^{n} \subset \mathbb{P}^{n}$. The action:

$$
\left(t_{1}, \ldots, t_{n}\right) \cdot\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left(x_{0}, t_{1} x_{1}, \ldots, t_{n} x_{n}\right)
$$

is an extension of the multiplicative action on the torus.
Example 10.4.4. Consider the Segre embedding seg: $\mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}$ given by $\left(\left(x_{0}, x_{1}\right),\left(y_{0}, y_{1}\right)\right) \mapsto\left(x_{0} y_{0}, x_{0} y_{1}, x_{1} y_{0}, x_{1} y_{1}\right)$. Consider now the map ϕ : $\left(\mathbb{C}^{*}\right)^{2} \rightarrow\left(\mathbb{C}^{*}\right)^{4}$ given by $\phi\left(t_{1}, t_{2}\right)=\left(1, t_{1}, t_{2}, t_{1} t_{2}\right)$. Observe that if one identifies $\left(\mathbb{C}^{*}\right)^{2}$ with the Zariski open $\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash\left(V\left(x_{0}-1\right) \cup V\left(y_{0}-1\right)\right)$ then it is $\phi=\left.s e g\right|_{\left(\mathbb{C}^{*}\right)^{2}}$. By Lemma 10.3 .7 this image is a torus which shows that the torus $\left(\mathbb{C}^{*}\right)^{2}$ can be identified with a Zariski open of the Segre variety $\operatorname{Im}(\mathrm{seg}) \subset \mathbb{P}^{3}$. The torus action of $\left(\mathbb{C}^{*}\right)^{2}$ on $\operatorname{Im}(\mathrm{seg})$ defined by $\left(t_{1}, t_{2}\right) \cdot\left(x_{0}, x_{1}, x_{3}, x_{a}\right)=\left(x_{0}, t_{1} x_{1}, t_{2} x_{3}, t_{1} t_{2} x_{4}\right)$ is by definition an extension of the multiplicative self-action.

10.5 Discrete data: polytopes

Definition 10.5.1. A subset $M \subset \mathbb{R}^{n}$ is called a lattice if it satisfies one of the following equivalent statements.
(1) M is an additive subgroup which is discrete as subset, i.e. there exists a positive real number ϵ such that for each $y \in M$ the only element x such that $d(x, y)<\epsilon$ is given by $y=x$.
(2) There are \mathbb{R}-linearly independent vectors b_{1}, \ldots, b_{n} such that:

$$
M=\sum_{1}^{n} \mathbb{Z} b_{i}=\left\{\sum_{1}^{n} c_{i} b_{i}, c_{i} \in \mathbb{Z}\right\}
$$

A lattice of rank n is then isomorphic to \mathbb{Z}^{n}.
Definition 10.5.2. Let $A=\left\{m_{1}, \ldots, m_{d}\right\} \in \mathbb{Z}^{n}$ be a finite set of lattice points. A combination of the form

$$
\sum a_{i} m_{i}, \text { such that } \sum_{a}^{d} a_{i}=1, a_{i} \in \mathbb{Q}_{\geq 0}
$$

is called a convex combination. The set of all convex combinations of points in A is called the convex hull of A and is denoted by $\operatorname{Conv}(A)$.
Definition 10.5.3. A convex lattice polytope $P \subset \mathbb{R}^{n}$ is the convex hull of a fine subset $A \subset \mathbb{Z}^{n}$. The dimension of P is the dimension of the smallest affine space containing P.

In what follows the term polytope will always mean a lattice convex polytope. Example 10.5.4. Let e_{1}, \ldots, e_{n} be the standard basis of \mathbb{R}^{n}. The polytope $\operatorname{Conv}\left(0, e_{1}, \ldots, e_{n}\right)$ is called the n-dimensional regular simplex and it is denoted by Δ_{n}.
Given a polytope $P=\operatorname{Conv}\left(m_{0}, m_{1}, \ldots, m_{n}\right)$.
Let $k P=\left\{m_{1}+\ldots+m_{k} \in \mathbb{R}^{n}\right.$ s.t. $\left.m_{i} \in P\right\}$.

10.6 faces of a polytope

Let $P \subset \mathbb{R}^{n}$ be an n-dimensional lattice polytope. It can be described as the intersection of a finite number of upper-half planes.

Definition 10.6.1. Let $\xi \in \mathbb{Z}^{n}$ be a vector with integer coordinates and let $b \in \mathbb{Z}$. Define:

$$
H_{\xi, b}^{+}=\left\{m \in \mathbb{R}^{n} \|<m, \xi>\geq b\right\}, H_{\xi, b}=\left\{m \in \mathbb{R}^{n} \|<m, \xi>=b\right\}
$$

$H_{\xi, b}^{+}$is called an upper half plane and $H_{\xi, b}$ is called an hyperplane.
Definition 10.6.2. Let $P \subset \mathbb{R}^{n}$ be a convex lattice polytope. We say that $H_{\xi, b}$ is a supporting hyperplane for P if $H_{\xi, b} \cap P \neq \emptyset$ and $P \subset H_{\xi, b}^{+}$.

It is immediate to see that a polytope has a finite number of supporting hyperplanes and that:

$$
P=\bigcap_{i=1}^{s} H_{\xi_{i}, b_{i}}^{+}
$$

Definition 10.6.3. A face of a polytope P is the intersection of P with a supporting hyperplane. P is considered an (improper) face of itself.
Faces are convex lattice polytopes as $\operatorname{Conv}(S) \cap H_{\xi, b}=\operatorname{Conv}\left(S \cap H_{\xi, b}\right)$.
The dimension of the face is equal to the dimension of the corresponding polytope.
Let F be a face, then

- F is a facet if $\operatorname{dim}(F)=\operatorname{dim}(P)-1$.
- F is a edge if $\operatorname{dim}(F)=1$.
- F is a vertex if $\operatorname{dim}(F)=0$.

Remark 10.6.4. Observe (and try to justify) that:

- All polytopes of dimesnsion one are segments.
- All the edges of a polytope contain two vertices.
- $\operatorname{Conv}(S)$ contains all the segments between two points in S.
- Every convex lattice polytope P is the convex hull of its vertices.

Definition 10.6.5. Let $P, P^{\prime} \subset \mathbb{R}^{n}$ be two n-dimensional polytopes. They are affinely equivalent if there is a lattice-preserving affine isomorphism ϕ : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that maps P to P^{\prime} and thus biectely $P \cap \mathbb{Z}^{n}$ to $P^{\prime} \cap \mathbb{Z}^{n}$.

Definition 10.6.6. Let P be a lattice polytope of dimension n.

- P is said to be simple if through avery vertex there are exactly n vertices.
- P is said to be smooth if it is simple and for every vertex m the set of vectors $\left(v_{1}-m, \ldots, v_{n}-m\right)$, where v_{i} is the first lattice point on the i-th edge, forms a basis for the lattice \mathbb{Z}^{n}.

Remark 10.6.7. All the polygons are simple.
Lemma 10.6.8. a set of vectors $\left\{v_{1}, \ldots, v_{n}\right\} \in \mathbb{R}^{n}$ is a basis for the lattice \mathbb{Z}^{n} if and only if the associated matrix B (having the v_{i} as columns) has determinant ± 1.

Proof. Let $\left\{v_{1}, \ldots, v_{n}\right\} \in \mathbb{R}^{n}$ is a basis for the lattice \mathbb{Z}^{n}. Then there is an integral matrix U such that $I_{n}=U B$. Moreover one can observe that the matrix U defines a lattice isomorphism and thus, because the determinant of the inverse has to be an integer, $\operatorname{det}(U)= \pm 1$.

10.7 Assignment: exercises

(1) Consider a minimal hyperplane description of a lattice polytopes P. In other words let $P=\bigcap_{i=1}^{s} H_{\xi_{i}, b_{i}}^{+}$where s is the the minimum number of half-spaces necessary to cut out P. Show that P has s facets and that the vectors ξ_{i} are normal vectors to the associated facet. Moreover show that the pairs $\left(\xi_{i}, b_{i}\right)$ are uniquely determined up to enumeration (the vectors ξ_{i} are unique up to positive scalar factors).
(2) Classify, up to affine equivalence, all the smooth polygons containing at most 8 lattice points.

Bibliography

[AM] Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. $1969 \mathrm{ix}+128 \mathrm{pp}$.
[CLS] D. Cox, J. Little, H. Scenck. Toric Varieties.
[H] Humphreys, James E. Linear algebraic groups. Graduate Texts in Mathematics, No. 21. Springer-Verlag, New York-Heidelberg, 1975. xiv+247 pp.

