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Chapter 10

projective toric varieties and
polytopes: definitions

10.1 Introduction

Tori varieties are algebraic varieties related to the study of sparse poly-
nomials. A polynomial is said to be sparse if it only contains prescribed
monomials.

Let A= {my,...,mg} C Z" be a finite subset of integer points. We will use
the multi-exponential notation:

an

xt = ot xg? - al where x = (xq,...,2,) and a = (ay,...,a,) € Z"

Sparse polynomials of type A are polynomials in n variables of type:

p(z) = Z Col”

acA
For example if A = {(i,j) € Z2 such that i + j < k} then the polynomials
of type A are all possible polynomials of degree up to k.

Toric varieties admit equivalent definitions arising naturally in many math-
ematical areas such as: Algebraic Geometry, Symplectic Geometry, Combi-
natorics, Statistics, Theoretical Physics etc.

We will present here an approach coming from Convex geometry and will see
that toric varieties represent a natural generalization of projective spaces.

There are two main features we will try to emphasise:
(1) toric varieties, X, are prescribed by sparse polynomials, in the sense

that they are mapped in projective space via these pre-assigned mono-
mials, whose exponents span an integral polytope polytope Px. You



can think at a parabola parametrized locally by ¢ — (¢,¢?). The mono-
mials are prescribed by the points 1,2 € Z. The polytope spanned by
these points is a segment of length 1, [1, 2]. Discrete data A (i.e. points
in Z™ ) gives rise to a polytope P4 and in turn to a torc variety X4
allowing a geometric analysis of the original data. This turns out to be
very useful in Statistics or Bio-analysis for example.

(2) Toric varieties are defined by binomial ideals, i.e. ideals generated
by polynomials consisting of two monomials: z* — 2. In the example
of the parabola all the points in the image are zeroes of the binomial:
y — x2. This feature is particularly useful in integer programming when
one wants to find a vertex (of the associated polytope) that minimises
a certain (cost) function.

10.2 Recap example

Consider the ideal (z* — y?) € Clx, y].

(a) The generating polynomial is irreducible and thus the corresponding
affine variety X = Z(z3 — y?) C C? is an irreducible affine variety.

(b) Consider now the algebraic torus C* = C\ {0} C C. Notice that
C* = C\ Z(x), a Zariski-open subset of C. Consider now the map
¢ : C* — C? defined as ¢(t) = (¢3,t3). Observe that Im(¢) C X and
that ¢ : Im(¢) — C* defined as ¢(x,y) = (y/z) is an inverse. It follows
that C* = Im(¢), i.e. C* C X.

(c) The open set C* is also a multiplicative group. We can define a group
action on X as follows:

C x X = X, (t, (2,y)) = (t*z,%y).

Notice that, by definition, the action restricted to C* C X is the mul-
tiplication in the group.

We will call such a variety, i.e. a variety satisfying (a), (b) and (c), an affine
toric variety

10.3 Algebraic tori

Definition 10.3.1. A linear algebraic group is a Zariski-open set G hav-
ing the structure of a group and such that the multiplication map and the
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INVETSE Map:
m:GxG—G,i:G—=>G
are morphisms of affine varieties.

Let G,G be two linear algebraic groups, a morphism G — G’ of linear
algebraic groups is a map which is a morphism of affine varieties and a
homomorphism of groups.

We will indicate the SET of such morphisms with Hom e (G, G").

FEzxcercise 10.3.2. Show that when G,G’ are abelian Homag(G,G') is an
abelian group.

Ezample 10.3.3. The classical examples of algebraic groups are:(C*)", GL,,, SL,.

Definition 10.3.4. An n-dimensional algebraic torus is a Zariski-open set
T, isomorphic to (C*)™.

An algebraic torus is a group, with the group operation that makes the
isomorphism (of affine varieties) a group-homomorphism. Hence an algebraic
torus is a linear algebraic group.

From now on we will drop the adjective algebraic in algebraic torus.

Definition 10.3.5. Let T be a torus.

e An element of the abelian group Homag(C*,T) is called a one param-
eter subgroup of T

o An element of the abelian group Homag(T,C*) is called a character of
T.

Lemma 10.3.6. Let T' = (C*)" be a torus.
HomAg(T, C*) = 7"
Proof. Because Homag(T,C*) = (Hom g (C*, C*))™ it suffices to prove that
Homag(C*,C*) = Z. Let F': C* — C* be an element of Hom,o(C*, C*).
Then F(t) is a polynomial such that £'(0) = 0 Moreover it is a multiplicative
group homomorphism, e.g. F(t?) = F(t)2. It follows that F(t) = t* for some
keZ. [
A Laurent monomial in n variables is defined by
t¢ =t" -t . .-t where a = (ay,...,a,) € Z"

Observe that t* defines a function (C*)* — C*, i.e. t® is a character of
the torus (C*)™. Such character is usually denoted by x* : T — C* where

XA(t) =t
Another important fact, whose proof can be found in [H] is that:

3



Lemma 10.3.7. Any irreducible closed subgroup of a torus (i.e. an irre-
ducible affine sub-variety which is a subgroup) is a sub-torus.

10.4 Toric varieties

Definition 10.4.1. A (affine or projective) toric variety of dimension n is
an irreducible (affine or projective) variety X such that

(1) X contains an n-dimensional torus T = (C*)" as Zariski-open subset.

(2) the multiplicative action of (C*)™ on itself extends to an action of (C*)"
on X.

Example 10.4.2. C" is an affine toric variety of dimension n.

Ezxample 10.4.3. P™ is a projective toric variety of dimension n. The map
(C*)™ — P" defined as (ty,...,t,) — (1,t1,...,t,) identifies the torus (C*)"
as a subset of the affine patch C™ C IP". The action:

(tl, Ce ,tn) . (.1’0,33‘1, Ce ,l’n) = ($0,t13§’1, Ce ,tn.’ll'n)

is an extension of the multiplicative action on the torus.

Example 10.4.4. Consider the Segre embedding seg : P! x P! — P3 given
by ((zo,21), (Yo,v1)) — (ZoYo, Toy1, T1Yo, T1y1). Consider now the map ¢ :
(C*)? — (C*)* given by ¢(ty,t2) = (1,11, ta,t1ts). Observe that if one iden-
tifies (C*)? with the Zariski open P! x P!\ (V(x¢g — 1) U V(yo — 1)) then
it is ¢ = seg|(c-y2. By Lemma 10.3.7 this image is a torus which shows
that the torus (C*)? can be identified with a Zariski open of the Segre
variety Im(seg) C P3. The torus action of (C*)* on Im(seg) defined by
(t1,t2) - (x0, 21,23, 24) = (To, L1711, Laws, titoxy) is by definition an extension
of the multiplicative self-action.

10.5 Discrete data: polytopes

Definition 10.5.1. A subset M C R" is called a lattice if it satisfies one
of the following equivalent statements.

(1) M is an additive subgroup which is discrete as subset, i.e. there exists
a positive real number € such that for each y € M the only element x
such that d(x,y) < € is given by y = x.
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(2) There are R-linearly independent vectors by, ..., b, such that:
M = ZZ[)Z = {Z Cibi,Ci S Z}
1 1

A lattice of rank n is then isomorphic to Z™.

Definition 10.5.2. Let A = {mq,...,mq} € Z" be a finite set of lattice
points. A combination of the form

d
Z a;m;, such that Zai =1,a; € Q>

is called a convex combination. The set of all conver combinations of
points in A is called the convex hull of A and is denoted by Conv(A).

Definition 10.5.3. A convex lattice polytope P C R" is the convex hull
of a fine subset A C Z". The dimension of P is the dimension of the smallest
affine space containing P.

In what follows the term polytope will always mean a lattice convex polytope.
Example 10.5.4. Let eq,...,e, be the standard basis of R". The polytope

Conv(0,eq,...,e,) is called the n-dimensional regular simplex and it is de-
noted by A,,.
Given a polytope P = Conv(mg, my, ..., my).

Let kP ={m;+...+my € R" s.t. m; € P}.

o o
Ay =Conv(0,1) A, x A

Ay = Conv((0,0),(0,1),(1,0)) 2As = Conv((0,0),(0,2),(2,0))

10.6 faces of a polytope

Let P C R™ be an n-dimensional lattice polytope. It can be described as the
intersection of a finite number of upper-half planes.
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Definition 10.6.1. Let £ € Z" be a vector with integer coordinates and let
b € Z. Define:

H,={m e R"[| <m,&>> b}, Hep = {m € R"|| <m,{ >= b}
Hgfb is called an upper half plane and H¢j is called an hyperplane.

Definition 10.6.2. Let P C R" be a convex lattice polytope. We say that
Hey, is a supporting hyperplane for P if He, NP # () and P C H{,.

It is immediate to see that a polytope has a finite number of supporting
hyperplanes and that:

P = ﬁ Hgi_»bi
=1

Definition 10.6.3. A face of a polytope P is the intersection of P with a
supporting hyperplane. P is considered an (improper) face of itself.

Faces are convex lattice polytopes as Conv(S) N Hep = Conv(S N Hey).

The dimension of the face is equal to the dimension of the corresponding
polytope.

Let F' be a face, then

e [ is a facet if dim(F') = dim(P) — 1.
o [ is a edge if dim(F') = 1.
o F is a vertex if dim(F) = 0.
Remark 10.6.4. Observe (and try to justify) that:
e All polytopes of dimesnsion one are segments.
e All the edges of a polytope contain two vertices.
e Conv(S) contains all the segments between two points in S.

e Every convex lattice polytope P is the convex hull of its vertices.

Definition 10.6.5. Let P, P’ C R" be two n-dimensional polytopes. They
are affinely equivalent if there is a lattice-preserving affine isomorphism ¢ :
R™ — R™ that maps P to P’ and thus biectely P NZ" to P' NZ".

Definition 10.6.6. Let P be a lattice polytope of dimension n.

e P is said to be simple if through avery vertex there are exactly n vertices.
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e P is said to be smooth if it is simple and for every vertexr m the set of
vectors (vy —m, ..., v, —m), where v; is the first lattice point on the
1-th edge, forms a basis for the lattice Z".

Remark 10.6.7. All the polygons are simple.

Lemma 10.6.8. a set of vectors {vy,...,v,} € R" is a basis for the lattice
Z™ if and only if the associated matriz B (having the v; as columns) has
determinant £1.

Proof. Let {vy,...,v,} € R" is a basis for the lattice Z™. Then there is an
integral matrix U such that I, = UB. Moreover one can observe that the
matrix U defines a lattice isomorphism and thus, because the determinant of
the inverse has to be an integer, det(U) = £1. O

10.7 Assignment: exercises

(1) Consider a minimal hyperplane description of a lattice polytopes P. In
other words let P = (;_, H, g+ »; Where s is the the minimum number of
half-spaces necessary to cut out P. Show that P has s facets and that
the vectors & are normal vectors to the associated facet. Moreover
show that the pairs (&;, b;) are uniquely determined up to enumeration
( the vectors &; are unique up to positive scalar factors).

(2) Classify, up to affine equivalence, all the smooth polygons containing
at most 8 lattice points.
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