
Institutionen för matematik, KTH.





Chapter 10

projective toric varieties and
polytopes: definitions

10.1 Introduction

Tori varieties are algebraic varieties related to the study of sparse poly-
nomials. A polynomial is said to be sparse if it only contains prescribed
monomials.

Let A = {m0, . . . ,md} ⊂ Zn be a finite subset of integer points. We will use
the multi-exponential notation:

xa = xa11 · xa22 · · ·xann where x = (x1, . . . , xn) and a = (a1, . . . , an) ∈ Zn

Sparse polynomials of type A are polynomials in n variables of type:

p(x) =
∑
a∈A

cax
a

For example if A = {(i, j) ∈ Z2
+ such that i + j ≤ k} then the polynomials

of type A are all possible polynomials of degree up to k.

Toric varieties admit equivalent definitions arising naturally in many math-
ematical areas such as: Algebraic Geometry, Symplectic Geometry, Combi-
natorics, Statistics, Theoretical Physics etc.

We will present here an approach coming from Convex geometry and will see
that toric varieties represent a natural generalization of projective spaces.

There are two main features we will try to emphasise:

(1) toric varieties, X, are prescribed by sparse polynomials, in the sense
that they are mapped in projective space via these pre-assigned mono-
mials, whose exponents span an integral polytope polytope PX . You
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can think at a parabola parametrized locally by t 7→ (t, t2). The mono-
mials are prescribed by the points 1, 2 ∈ Z. The polytope spanned by
these points is a segment of length 1, [1, 2]. Discrete data A (i.e. points
in Zn ) gives rise to a polytope PA and in turn to a torc variety XA

allowing a geometric analysis of the original data. This turns out to be
very useful in Statistics or Bio-analysis for example.

(2) Toric varieties are defined by binomial ideals, i.e. ideals generated
by polynomials consisting of two monomials: xu − xv. In the example
of the parabola all the points in the image are zeroes of the binomial:
y−x2. This feature is particularly useful in integer programming when
one wants to find a vertex (of the associated polytope) that minimises
a certain (cost) function.

10.2 Recap example

Consider the ideal (x3 − y2) ∈ C[x, y].

(a) The generating polynomial is irreducible and thus the corresponding
affine variety X = Z(x3 − y2) ⊂ C2 is an irreducible affine variety.

(b) Consider now the algebraic torus C∗ = C \ {0} ⊂ C. Notice that
C∗ = C \ Z(x), a Zariski-open subset of C. Consider now the map
φ : C∗ → C2 defined as φ(t) = (t2, t3). Observe that Im(φ) ⊆ X and
that ψ : Im(φ)→ C∗ defined as φ(x, y) = (y/x) is an inverse. It follows
that C∗ ∼= Im(φ), i.e. C∗ ⊂ X.

(c) The open set C∗ is also a multiplicative group. We can define a group
action on X as follows:

C∗ ×X → X, (t, (x, y)) 7→ (t2x, t3y).

Notice that, by definition, the action restricted to C∗ ⊂ X is the mul-
tiplication in the group.

We will call such a variety, i.e. a variety satisfying (a), (b) and (c), an affine
toric variety

10.3 Algebraic tori

Definition 10.3.1. A linear algebraic group is a Zariski-open set G hav-
ing the structure of a group and such that the multiplication map and the
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inverse map:
m : G×G→ G, i : G→ G

are morphisms of affine varieties.

Let G,G′ be two linear algebraic groups, a morphism G → G′ of linear
algebraic groups is a map which is a morphism of affine varieties and a
homomorphism of groups.

We will indicate the SET of such morphisms with HomAG(G,G′).

Excercise 10.3.2. Show that when G,G′ are abelian HomAG(G,G′) is an
abelian group.

Example 10.3.3. The classical examples of algebraic groups are:(C∗)n, GLn, SLn.
Definition 10.3.4. An n-dimensional algebraic torus is a Zariski-open set
T , isomorphic to (C∗)n.

An algebraic torus is a group, with the group operation that makes the
isomorphism (of affine varieties) a group-homomorphism. Hence an algebraic
torus is a linear algebraic group.

From now on we will drop the adjective algebraic in algebraic torus.

Definition 10.3.5. Let T be a torus.

• An element of the abelian group HomAG(C∗, T ) is called a one param-
eter subgroup of T .

• An element of the abelian group HomAG(T,C∗) is called a character of
T .

Lemma 10.3.6. Let T ∼= (C∗)n be a torus.

HomAG(T,C∗) ∼= Zn.

Proof. Because HomAG(T,C∗) ∼= (HomAG(C∗,C∗))n it suffices to prove that
HomAG(C∗,C∗) ∼= Z. Let F : C∗ → C∗ be an element of HomAG(C∗,C∗).
Then F (t) is a polynomial such that F (0) = 0 Moreover it is a multiplicative
group homomorphism, e.g. F (t2) = F (t)2. It follows that F (t) = tk for some
k ∈ Z.

A Laurent monomial in n variables is defined by

ta = ta1 · ta2 · . . . · tan , where a = (a1, . . . , an) ∈ Zn

Observe that ta defines a function (C∗)n → C∗, i.e. ta is a character of
the torus (C∗)n. Such character is usually denoted by χa : T → C∗ where
χa(t) = ta.

Another important fact, whose proof can be found in [H] is that:
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Lemma 10.3.7. Any irreducible closed subgroup of a torus (i.e. an irre-
ducible affine sub-variety which is a subgroup) is a sub-torus.

10.4 Toric varieties

Definition 10.4.1. A (affine or projective) toric variety of dimension n is
an irreducible (affine or projective) variety X such that

(1) X contains an n-dimensional torus T ∼= (C∗)n as Zariski-open subset.

(2) the multiplicative action of (C∗)n on itself extends to an action of (C∗)n
on X.

Example 10.4.2. Cn is an affine toric variety of dimension n.

Example 10.4.3. Pn is a projective toric variety of dimension n. The map
(C∗)n → Pn defined as (t1, . . . , tn) 7→ (1, t1, . . . , tn) identifies the torus (C∗)n
as a subset of the affine patch Cn ⊂ Pn. The action:

(t1, . . . , tn) · (x0, x1, . . . , xn) = (x0, t1x1, . . . , tnxn)

is an extension of the multiplicative action on the torus.

Example 10.4.4. Consider the Segre embedding seg : P1 × P1 ↪→ P3 given
by ((x0, x1), (y0, y1)) 7→ (x0y0, x0y1, x1y0, x1y1). Consider now the map φ :
(C∗)2 → (C∗)4 given by φ(t1, t2) = (1, t1, t2, t1t2). Observe that if one iden-
tifies (C∗)2 with the Zariski open P1 × P1 \ (V (x0 − 1) ∪ V (y0 − 1)) then
it is φ = seg|(C∗)2 . By Lemma 10.3.7 this image is a torus which shows
that the torus (C∗)2 can be identified with a Zariski open of the Segre
variety Im(seg) ⊂ P3. The torus action of (C∗)2 on Im(seg) defined by
(t1, t2) · (x0, x1, x3, xa) = (x0, t1x1, t2x3, t1t2x4) is by definition an extension
of the multiplicative self-action.

10.5 Discrete data: polytopes

Definition 10.5.1. A subset M ⊂ Rn is called a lattice if it satisfies one
of the following equivalent statements.

(1) M is an additive subgroup which is discrete as subset, i.e. there exists
a positive real number ε such that for each y ∈ M the only element x
such that d(x, y) < ε is given by y = x.
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(2) There are R-linearly independent vectors b1, . . . , bn such that:

M =
n∑
1

Zbi = {
n∑
1

cibi, ci ∈ Z}

A lattice of rank n is then isomorphic to Zn.

Definition 10.5.2. Let A = {m1, . . . ,md} ∈ Zn be a finite set of lattice
points. A combination of the form∑

aimi, such that
d∑
a

ai = 1, ai ∈ Q≥0

is called a convex combination. The set of all convex combinations of
points in A is called the convex hull of A and is denoted by Conv(A).

Definition 10.5.3. A convex lattice polytope P ⊂ Rn is the convex hull
of a fine subset A ⊂ Zn. The dimension of P is the dimension of the smallest
affine space containing P.

In what follows the term polytope will always mean a lattice convex polytope.

Example 10.5.4. Let e1, . . . , en be the standard basis of Rn. The polytope
Conv(0, e1, . . . , en) is called the n-dimensional regular simplex and it is de-
noted by ∆n.

Given a polytope P = Conv(m0,m1, . . . ,mn).

Let kP = {m1 + . . .+mk ∈ Rn s.t. mi ∈ P}.

∆1 = Conv(0, 1) ∆1 ×∆1

∆2 = Conv((0, 0), (0, 1), (1, 0)) 2∆2 = Conv((0, 0), (0, 2), (2, 0))

10.6 faces of a polytope

Let P ⊂ Rn be an n-dimensional lattice polytope. It can be described as the
intersection of a finite number of upper-half planes.
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Definition 10.6.1. Let ξ ∈ Zn be a vector with integer coordinates and let
b ∈ Z. Define:

H+
ξ,b = {m ∈ Rn‖ < m, ξ >≥ b}, Hξ,b = {m ∈ Rn‖ < m, ξ >= b}

H+
ξ,b is called an upper half plane and Hξ,b is called an hyperplane.

Definition 10.6.2. Let P ⊂ Rn be a convex lattice polytope. We say that
Hξ,b is a supporting hyperplane for P if Hξ,b ∩ P 6= ∅ and P ⊂ H+

ξ,b.

It is immediate to see that a polytope has a finite number of supporting
hyperplanes and that:

P =
s⋂
i=1

H+
ξi,bi

Definition 10.6.3. A face of a polytope P is the intersection of P with a
supporting hyperplane. P is considered an (improper) face of itself.

Faces are convex lattice polytopes as Conv(S) ∩Hξ,b = Conv(S ∩Hξ,b).

The dimension of the face is equal to the dimension of the corresponding
polytope.

Let F be a face, then

• F is a facet if dim(F ) = dim(P )− 1.

• F is a edge if dim(F ) = 1.

• F is a vertex if dim(F ) = 0.

Remark 10.6.4. Observe (and try to justify) that:

• All polytopes of dimesnsion one are segments.

• All the edges of a polytope contain two vertices.

• Conv(S) contains all the segments between two points in S.

• Every convex lattice polytope P is the convex hull of its vertices.

Definition 10.6.5. Let P, P ′ ⊂ Rn be two n-dimensional polytopes. They
are affinely equivalent if there is a lattice-preserving affine isomorphism φ :
Rn → Rn that maps P to P ′ and thus biectely P ∩ Zn to P ′ ∩ Zn.

Definition 10.6.6. Let P be a lattice polytope of dimension n.

• P is said to be simple if through avery vertex there are exactly n vertices.
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• P is said to be smooth if it is simple and for every vertex m the set of
vectors (v1 −m, . . . , vn −m), where vi is the first lattice point on the
i-th edge, forms a basis for the lattice Zn.

Remark 10.6.7. All the polygons are simple.

Lemma 10.6.8. a set of vectors {v1, . . . , vn} ∈ Rn is a basis for the lattice
Zn if and only if the associated matrix B (having the vi as columns) has
determinant ±1.

Proof. Let {v1, . . . , vn} ∈ Rn is a basis for the lattice Zn. Then there is an
integral matrix U such that In = UB. Moreover one can observe that the
matrix U defines a lattice isomorphism and thus, because the determinant of
the inverse has to be an integer, det(U) = ±1.

10.7 Assignment: exercises

(1) Consider a minimal hyperplane description of a lattice polytopes P. In
other words let P =

⋂s
i=1H

+
ξi,bi

where s is the the minimum number of
half-spaces necessary to cut out P. Show that P has s facets and that
the vectors ξi are normal vectors to the associated facet. Moreover
show that the pairs (ξi, bi) are uniquely determined up to enumeration
( the vectors ξi are unique up to positive scalar factors).

(2) Classify, up to affine equivalence, all the smooth polygons containing
at most 8 lattice points.
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