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Chapter 11

Construction of toric varieties

11.1 Recap example

Ezample 11.1.1. Consider the Segre embedding seg : P! x P! < P3 given by
((zo, 1), (yo,v1)) = (Toyo, Toy1, 1Yo, 21%1). Consider now the map ¢ : (C*)? —
(C*)* given by ¢(t1,t2) = (1,t1,t2,t1t2). Observe that if one identifies (C)? with
the Zariski open P! x P*\ (V(x0) UV (yo)) then it is ¢ = seg|(c-)2. This image is
a torus which shows that the torus (C*)? can be identified with a Zariski open of
the Segre variety Im(seg) C P3. The torus action of (C*)? on Im(seg) defined by
(t1,t2) - (o, x1, 3, 24) = (0, t121, tox3, t1tax4) is by definition an extension of the
multiplicative self-action.

Notice that in Example 11.1.1 the map defining the toric embedding and the
torus action was given by characters associated to the vertices of the polytope
A; x A;. Observe moreover that for this polytope the vertices coincide with
all the lattice points in the polytope.

This is of course not always the case, the polytope 2A, for example is the
convex hull of 3 vertices, but it contains [2A, N Z?| = 6 lattice points.

Example 11.1.2. Let A = 2A, N Z% = {(0,0), (0, 1), (1,0), (1,1)(0,2), (2,0)}.
Consider the map defined by the associated characters and the following
composition:

ba:(C) = CO =P (t,t) = (1,1, to, tito, 11, 13).

Observe that this map is the restriction of the 2-Veronese embedding. One
sees as above that such a variety is a two dimensional projective toric variety.

The previous examples suggest a general construction:



11.2 Toric varieties from polytopes

Let T' be an n-dimensional torus with character group M = Z" and let
A= {my,...,my} C M. Consider the following action of T'on C**!

t-(zo,...,xq) = (X™(t)xo, ..., X" (t)xy).

This action yields an action on the projective space P? as t- (Azg, ..., \1gq) =
A(X™ (B g, ..oy X™(t)2g).

Let 2y € P? be a general points, i.e. a points with non-zero homogeneous
coordinates. The orbit T - xy = Ty = T. The Zarisky closure in P? of the
orbit xg = T is a projective algebraic variety containing a torus as Zarisky
open set.

Let X4 = T4 to be such variety.
Alternatively:

Let P C R™ be an n-dimensional polytope and let A = PNZ™ = {mq, ..., mg}.
Assume that my = 0 and that P, is contained in the positive orthant. Con-
sider the monomial map defined by the associated characters:

da: (C)" = CHE 5 P4 (ty, .. t,) =t (1™ 0 ™)

The image Im(¢4) is a torus T4. Define X4 to be the Zariski closure of T.
This means that X4 is the smallest subvariety of P¢ containing T4. Let A
denote the n x (d + 1) matrix whose columns are the vectors m,;.

Lemma 11.2.1. Th variety X4 is a projective toric variety of dimension
equal to rank(A).

Proof. Let Ty = (C*)" and consider the lattice of its characters: Hom g (T4, C*) =
Z". The map ¢4 induces a map:

HomAg((C*)dH, (C*) — HomAg((C*)", C*>, f — f o ¢A

ZZJA : Zd+1 — Z",ei = m,;

where e; are the elements of the standard lattice basis. We see that 14 (Z%!) =
Z", and thus that r = rank(A). O

FEzcercise 11.2.2. Consider the n—dimensional standard simplex A,, = Conv(eg, ey, . . .

where eg = 0. Describe the projective toric variety associated to A,, and 2A,,.

Let P C R™ be an n-dimensional lattice polytope. The toric variety associ-
ated to P, denoted by Xp is the topic variety X pqzn.
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11.3 Affine patching and subvarieties

11.4 Recap example

You have seen that P" is the projective toric variety associated to the poly-
tope A,,. By translating any vertex e; to eg = 0 one can contruct a map:
¢ (C*)" — C" — P" defined by ¢t — (t% %, ... 1,t*»"%). The Zariski
closure of Im(¢;) defines the affine patch of P" where z; # 0, i.e.

Im(¢;) = X;
Notice that the map ¢; is the map defined by the lattice points:
Ai = {eo—ei,ei—ei,...,en—ei}

We will see that projective toric varieties are in a sense a generalisation of
projective space as they are built by patching together affine toric varieties
defined by the vertices of the polytope.

11.5 Affine patching

Let P C R™ be a polytope and let A = PNZ" = {my,...,mq}. For every
m; € A define A,,, = {m — m;/m € A}. Consider ¢4, : (C*)* — Ct
(.., ™7 )m,ea and define:

X =Im(¢a,) C C%

Not that X,, is an affine toric variety.

Proposition 11.5.1. Notation as above. Let V = {vy,...,v.} be the set of
vertices of P. Then
Xa2 | X,

v, EV

Proof. First notice that X,,, = X4 N X, C P? and thus X4 = UmneaXom.
We prove the proposition if we show that or every m € A there is at least
one vertex v € V such that X,, C X,. As observed P = Conv(V). Let
m = ZUL_ cy kivi. After clearing denominators we can write km = Zvi cv Kivi,
for k; € Zso. Notice that t™ # 0 iff th™ = kv = TI(t%)k #£ 0, which
happens only if t¥ # 0 for every k; # 0. This shows that X,,, C X,, for every
k; # 0. ]



The vertices of the polytope defines the affine patches that bild the associated
toric variety. The following gives an intuition of how projective toric varieties
are considered a generalisation of the projective space.

Ezxcercise 11.5.2. Let P be a polytope of dimension n and let P N Z" =
{myg,...,mq}. Show that

e d>n
e d =n and my,...,m, is a lattice basis (i.e. every vector in Z" is an
integral combination of my,...,m,) if and only if P = A,,.

Let us now examine closer the category of smooth polytopes and the asso-
ciated topic varieties. Let P be a smooth polytope anklet mg be a vertex.
After a lattice-preserving affine transformation can we assume that mo = 0
and that the primitive vectors on the n edges through mg are eq, ..., e,.

Lemma 11.5.3. (Exercise) Let P be a smooth polytope. Then X, = C™ for
every vertezr v.

Observe that if P is a n-dimensional smooth lattice polytope, then a facet
F C P is a smooth polytopes of dimension (n — 1). Denote by Xg the
associated topic variety.

Lemma 11.5.4. Let P be a smooth polytope. Then Xp \ Tp = Ur facet Xp.

Proof. Let dim(P) = n, let V' denote the set of vertices of P and V(F)
denote the set of vertices of F'. First observe that:

Xp \ Tp = UU€V<XU \ Tp) = Uvev<Ul‘({(l’17 e ,.Tn) € XU s.t. Tr; = 0}))

Let v = (my,...,m,) € V, then are n facets passing through v, Fy,..., F,
such that v; = (my,...,m;_1,mi11,m,) € V(F;). Clearly it is:

{(z1,...,2,) € Xy sit. 2, =0} = X,, C Xp,.

This proves that Xp \ Tp C Up facet Xr. But because for each facet it is
Xr = Uyev(r)Xw and w = v; for some v € V, it is clearly

XF C Uvi:w,weV(F)XU \ TN and thus UF facet XF C XP \ TP-



11.6 Assignment: exercises

(1) Prove Lemma 11.5.3

(2) Recall that kP = {my+...+my s.t. m; € P} and thatif P, CR", P, C
Rf then Py x P, = {(m,n) s.t. m € Pi,m € P,} C R"xR"is a polytope
of dimension dim(P;) 4+ dim(F5) and whose faces are products of faces
of resp. polytopes.

(a) Describe the faces of the polytope P = A; x 2A,.
(b) Is P smooth?

)
)

(c) Describe the toric variety Xp as union of affine patches.
)

(d) Describe the induced map Xp — PL.



