
Institutionen för matematik, KTH.





Chapter 11

Construction of toric varieties

11.1 Recap example

Example 11.1.1. Consider the Segre embedding seg : P1 × P1 ↪→ P3 given by

((x0, x1), (y0, y1)) 7→ (x0y0, x0y1, x1y0, x1y1). Consider now the map φ : (C∗)2 →
(C∗)4 given by φ(t1, t2) = (1, t1, t2, t1t2). Observe that if one identifies (C)2 with

the Zariski open P1 × P1 \ (V (x0) ∪ V (y0)) then it is φ = seg|(C∗)2 . This image is

a torus which shows that the torus (C∗)2 can be identified with a Zariski open of

the Segre variety Im(seg) ⊂ P3. The torus action of (C∗)2 on Im(seg) defined by

(t1, t2) · (x0, x1, x3, x4) = (x0, t1x1, t2x3, t1t2x4) is by definition an extension of the

multiplicative self-action.

Notice that in Example 11.1.1 the map defining the toric embedding and the
torus action was given by characters associated to the vertices of the polytope
∆1 ×∆1. Observe moreover that for this polytope the vertices coincide with
all the lattice points in the polytope.

This is of course not always the case, the polytope 2∆2 for example is the
convex hull of 3 vertices, but it contains |2∆2 ∩ Z2| = 6 lattice points.

Example 11.1.2. Let A = 2∆2 ∩ Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)(0, 2), (2, 0)}.
Consider the map defined by the associated characters and the following
composition:

φA : (C∗)2 → C6 → P5, (t1, t2) 7→ (1, t1, t2, t1t2, t
2
1, t

2
2).

Observe that this map is the restriction of the 2-Veronese embedding. One
sees as above that such a variety is a two dimensional projective toric variety.

The previous examples suggest a general construction:
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11.2 Toric varieties from polytopes

Let T be an n-dimensional torus with character group M ∼= Zn and let
A = {m0, . . . ,md} ⊂M. Consider the following action of Ton Cd+1

t · (x0, . . . , xd) = (χm0(t)x0, . . . , χ
md(t)xd).

This action yields an action on the projective space Pd as t · (λx0, . . . , λxd) =
λ(χm0(t)x0, . . . , χ

md(t)xd).

Let x0 ∈ Pd be a general points, i.e. a points with non-zero homogeneous
coordinates. The orbit T · x0 = TA ∼= T. The Zarisky closure in Pd of the
orbit x0 ∼= T is a projective algebraic variety containing a torus as Zarisky
open set.

Let XA = TA to be such variety.

Alternatively:

Let P ⊂ Rn be an n-dimensional polytope and letA = P∩Zn = {m0, . . . ,md}.
Assume that m0 = 0 and that PA is contained in the positive orthant. Con-
sider the monomial map defined by the associated characters:

φA : (C∗)n → Cd+1 → Pd, (t1, . . . , tn) = t 7→ (1 : tm1 : . . . : tmd)

The image Im(φA) is a torus TA. Define XA to be the Zariski closure of TA.
This means that XA is the smallest subvariety of Pd containing TA. Let A
denote the n× (d+ 1) matrix whose columns are the vectors mi.

Lemma 11.2.1. Th variety XA is a projective toric variety of dimension
equal to rank(A).

Proof. Let TA = (C∗)r and consider the lattice of its characters: HomAG(TA,C∗) =
Zr. The map φA induces a map:

HomAG((C∗)d+1,C∗)→ HomAG((C∗)n,C∗); f 7→ f ◦ φA

ψA : Zd+1 → Zn, ei 7→ mi

where ei are the elements of the standard lattice basis. We see that ψA(Zd+1) =
Zr, and thus that r = rank(A).

Excercise 11.2.2. Consider the n−dimensional standard simplex ∆n = Conv(e0, e1, . . . , en),
where e0 = 0. Describe the projective toric variety associated to ∆n and 2∆n.

Let P ⊂ Rn be an n-dimensional lattice polytope. The toric variety associ-
ated to P, denoted by XP is the topic variety XP∩Zn .
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11.3 Affine patching and subvarieties

11.4 Recap example

You have seen that Pn is the projective toric variety associated to the poly-
tope ∆n. By translating any vertex ei to e0 = 0 one can contruct a map:
φi : (C∗)n → Cn ↪→ Pn defined by t 7→ (te0−ei , . . . , 1, ten−ei). The Zariski
closure of Im(φi) defines the affine patch of Pn where xi 6= 0, i.e.

Im(φi) = Xi

Notice that the map φi is the map defined by the lattice points:

Ai = {e0 − ei, ei − ei, . . . , en − ei}

We will see that projective toric varieties are in a sense a generalisation of
projective space as they are built by patching together affine toric varieties
defined by the vertices of the polytope.

11.5 Affine patching

Let P ⊂ Rn be a polytope and let A = P ∩ Zn = {m0, . . . ,md}. For every
mi ∈ A define Ami

= {m − mi|m ∈ A}. Consider φAm : (C∗)n → Cd, t 7→
(. . . , tmj−mi , . . .)mj∈A and define:

Xm = Im(φAm) ⊂ Cd.

Not that Xm is an affine toric variety.

Proposition 11.5.1. Notation as above. Let V = {v1, . . . , vr} be the set of
vertices of P. Then

XA
∼=

⋃
vi∈V

Xvi .

Proof. First notice that Xmi
= XA ∩ Xi ⊂ Pd and thus XA = ∪m∈AXm.

We prove the proposition if we show that or every m ∈ A there is at least
one vertex v ∈ V such that Xm ⊆ Xv. As observed P = Conv(V ). Let
m =

∑
vi∈V kivi. After clearing denominators we can write km =

∑
vi∈V kivi,

for ki ∈ Z≥0. Notice that tm 6= 0 iff tkm = t
∑

kivi = Π(tvi)ki 6= 0, which
happens only if tvi 6= 0 for every ki 6= 0. This shows that Xm ⊆ Xvi for every
ki 6= 0.
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The vertices of the polytope defines the affine patches that bild the associated
toric variety. The following gives an intuition of how projective toric varieties
are considered a generalisation of the projective space.

Excercise 11.5.2. Let P be a polytope of dimension n and let P ∩ Zn =
{m0, . . . ,md}. Show that

• d ≥ n

• d = n and m1, . . . ,mn is a lattice basis (i.e. every vector in Zn is an
integral combination of m1, . . . ,mn) if and only if P = ∆n.

Let us now examine closer the category of smooth polytopes and the asso-
ciated topic varieties. Let P be a smooth polytope anklet m0 be a vertex.
After a lattice-preserving affine transformation can we assume that m0 = 0
and that the primitive vectors on the n edges through m0 are e1, . . . , en.

Lemma 11.5.3. (Exercise) Let P be a smooth polytope. Then Xv
∼= Cn for

every vertex v.

Observe that if P is a n-dimensional smooth lattice polytope, then a facet
F ⊂ P is a smooth polytopes of dimension (n − 1). Denote by XF the
associated topic variety.

Lemma 11.5.4. Let P be a smooth polytope. Then XP \ TP = ∪F facet XF .

Proof. Let dim(P ) = n, let V denote the set of vertices of P and V (F )
denote the set of vertices of F . First observe that:

XP \ TP = ∪v∈V (Xv \ TP ) = ∪v∈V (∪i({(x1, . . . , xn) ∈ Xv s.t. xi = 0})).

Let v = (m1, . . . ,mn) ∈ V, then are n facets passing through v, F1, . . . , Fn

such that vi = (mi, . . . ,mi−1,mi+1,mn) ∈ V (Fi). Clearly it is:

{(x1, . . . , xn) ∈ Xv s.t. xi = 0} ∼= Xvi ⊂ XFi
.

This proves that XP \ TP ⊆ ∪F facet XF . But because for each facet it is
XF = ∪w∈V (F )Xw and w = vi for some v ∈ V, it is clearly

XF ⊂ ∪vi=w,w∈V (F )Xv \ TN and thus ∪F facet XF ⊆ XP \ TP .
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11.6 Assignment: exercises

(1) Prove Lemma 11.5.3

(2) Recall that kP = {m1+. . .+mk s.t. mi ∈ P} and that if P1 ⊂ Rn, P2 ⊂
Rt then P1×P2 = {(m,n) s.t. m ∈ P1,m ∈ P2} ⊂ Rn×Rt is a polytope
of dimension dim(P1) + dim(P2) and whose faces are products of faces
of resp. polytopes.

(a) Describe the faces of the polytope P = ∆1 × 2∆2.

(b) Is P smooth?

(c) Describe the toric variety XP as union of affine patches.

(d) Describe the induced map XP → P11.
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