Institutionen för matematik, KTH.

Chapter 11

Construction of toric varieties

11.1 Recap example

Example 11.1.1. Consider the Segre embedding seg: $\mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}$ given by $\left(\left(x_{0}, x_{1}\right),\left(y_{0}, y_{1}\right)\right) \mapsto\left(x_{0} y_{0}, x_{0} y_{1}, x_{1} y_{0}, x_{1} y_{1}\right)$. Consider now the map $\phi:\left(\mathbb{C}^{*}\right)^{2} \rightarrow$ $\left(\mathbb{C}^{*}\right)^{4}$ given by $\phi\left(t_{1}, t_{2}\right)=\left(1, t_{1}, t_{2}, t_{1} t_{2}\right)$. Observe that if one identifies $(\mathbb{C})^{2}$ with the Zariski open $\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash\left(V\left(x_{0}\right) \cup V\left(y_{0}\right)\right)$ then it is $\phi=\left.\operatorname{seg}\right|_{\left(\mathbb{C}^{*}\right)^{2}}$. This image is a torus which shows that the torus $\left(\mathbb{C}^{*}\right)^{2}$ can be identified with a Zariski open of the Segre variety $\operatorname{Im}(\mathrm{seg}) \subset \mathbb{P}^{3}$. The torus action of $\left(\mathbb{C}^{*}\right)^{2}$ on $\operatorname{Im}(\mathrm{seg})$ defined by $\left(t_{1}, t_{2}\right) \cdot\left(x_{0}, x_{1}, x_{3}, x_{4}\right)=\left(x_{0}, t_{1} x_{1}, t_{2} x_{3}, t_{1} t_{2} x_{4}\right)$ is by definition an extension of the multiplicative self-action.

Notice that in Example 11.1.1 the map defining the toric embedding and the torus action was given by characters associated to the vertices of the polytope $\Delta_{1} \times \Delta_{1}$. Observe moreover that for this polytope the vertices coincide with all the lattice points in the polytope.
This is of course not always the case, the polytope $2 \Delta_{2}$ for example is the convex hull of 3 vertices, but it contains $\left|2 \Delta_{2} \cap \mathbb{Z}^{2}\right|=6$ lattice points.

Example 11.1.2. Let $A=2 \Delta_{2} \cap \mathbb{Z}^{2}=\{(0,0),(0,1),(1,0),(1,1)(0,2),(2,0)\}$. Consider the map defined by the associated characters and the following composition:

$$
\phi_{A}:\left(\mathbb{C}^{*}\right)^{2} \rightarrow \mathbb{C}^{6} \rightarrow \mathbb{P}^{5},\left(t_{1}, t_{2}\right) \mapsto\left(1, t_{1}, t_{2}, t_{1} t_{2}, t_{1}^{2}, t_{2}^{2}\right) .
$$

Observe that this map is the restriction of the 2-Veronese embedding. One sees as above that such a variety is a two dimensional projective toric variety.

The previous examples suggest a general construction:

11.2 Toric varieties from polytopes

Let T be an n-dimensional torus with character group $M \cong \mathbb{Z}^{n}$ and let $A=\left\{m_{0}, \ldots, m_{d}\right\} \subset M$. Consider the following action of T on \mathbb{C}^{d+1}

$$
t \cdot\left(x_{0}, \ldots, x_{d}\right)=\left(\chi^{m_{0}}(t) x_{0}, \ldots, \chi^{m_{d}}(t) x_{d}\right)
$$

This action yields an action on the projective space \mathbb{P}^{d} as $t \cdot\left(\lambda x_{0}, \ldots, \lambda x_{d}\right)=$ $\lambda\left(\chi^{m_{0}}(t) x_{0}, \ldots, \chi^{m_{d}}(t) x_{d}\right)$.
Let $x_{0} \in \mathbb{P}^{d}$ be a general points, i.e. a points with non-zero homogeneous coordinates. The orbit $T \cdot x_{0}=T_{A} \cong T$. The Zarisky closure in \mathbb{P}^{d} of the orbit $x_{0} \cong T$ is a projective algebraic variety containing a torus as Zarisky open set.
Let $X_{A}=\overline{T_{A}}$ to be such variety.
Alternatively:
Let $P \subset \mathbb{R}^{n}$ be an n-dimensional polytope and let $A=P \cap \mathbb{Z}^{n}=\left\{m_{0}, \ldots, m_{d}\right\}$. Assume that $m_{0}=0$ and that P_{A} is contained in the positive orthant. Consider the monomial map defined by the associated characters:

$$
\phi_{A}:\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{C}^{d+1} \rightarrow \mathbb{P}^{d},\left(t_{1}, \ldots, t_{n}\right)=t \mapsto\left(1: t^{m_{1}}: \ldots: t^{m_{d}}\right)
$$

The image $\operatorname{Im}\left(\phi_{A}\right)$ is a torus T_{A}. Define X_{A} to be the Zariski closure of T_{A}. This means that X_{A} is the smallest subvariety of \mathbb{P}^{d} containing T_{A}. Let \mathcal{A} denote the $n \times(d+1)$ matrix whose columns are the vectors m_{i}.

Lemma 11.2.1. Th variety X_{A} is a projective toric variety of dimension equal to $\operatorname{rank}(\mathcal{A})$.

Proof. Let $T_{A}=\left(\mathbb{C}^{*}\right)^{r}$ and consider the lattice of its characters: $\operatorname{Hom}_{A G}\left(T_{A}, \mathbb{C}^{*}\right)=$ \mathbb{Z}^{r}. The map ϕ_{A} induces a map:

$$
\begin{gathered}
\operatorname{Hom}_{A G}\left(\left(\mathbb{C}^{*}\right)^{d+1}, \mathbb{C}^{*}\right) \rightarrow \operatorname{Hom}_{A G}\left(\left(\mathbb{C}^{*}\right)^{n}, \mathbb{C}^{*}\right) ; f \mapsto f \circ \phi_{A} \\
\psi_{A}: \mathbb{Z}^{d+1} \rightarrow \mathbb{Z}^{n}, e_{i} \mapsto m_{i}
\end{gathered}
$$

where e_{i} are the elements of the standard lattice basis. We see that $\psi_{A}\left(\mathbb{Z}^{d+1}\right)=$ \mathbb{Z}^{r}, and thus that $r=\operatorname{rank}(\mathcal{A})$.

Excercise 11.2.2. Consider the n-dimensional standard simplex $\Delta_{n}=\operatorname{Conv}\left(e_{0}, e_{1}, \ldots, e_{n}\right)$, where $e_{0}=0$. Describe the projective toric variety associated to Δ_{n} and $2 \Delta_{n}$.

Let $P \subset \mathbb{R}^{n}$ be an n-dimensional lattice polytope. The toric variety associated to P, denoted by X_{P} is the topic variety $X_{P \cap \mathbb{Z}^{n}}$.

11.3 Affine patching and subvarieties

11.4 Recap example

You have seen that \mathbb{P}^{n} is the projective toric variety associated to the polytope Δ_{n}. By translating any vertex e_{i} to $e_{0}=0$ one can contruct a map: $\phi^{i}:\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{C}^{n} \hookrightarrow \mathbb{P}^{n}$ defined by $t \mapsto\left(t^{e_{0}-e_{i}}, \ldots, 1, t^{e_{n}-e_{i}}\right)$. The Zariski closure of $\operatorname{Im}\left(\phi_{i}\right)$ defines the affine patch of \mathbb{P}^{n} where $x_{i} \neq 0$, i.e.

$$
\overline{\operatorname{Im}\left(\phi_{i}\right)}=X_{i}
$$

Notice that the map ϕ_{i} is the map defined by the lattice points:

$$
A_{i}=\left\{e_{0}-e_{i}, e_{i}-e_{i}, \ldots, e_{n}-e_{i}\right\}
$$

We will see that projective toric varieties are in a sense a generalisation of projective space as they are built by patching together affine toric varieties defined by the vertices of the polytope.

11.5 Affine patching

Let $P \subset \mathbb{R}^{n}$ be a polytope and let $A=P \cap \mathbb{Z}^{n}=\left\{m_{0}, \ldots, m_{d}\right\}$. For every $m_{i} \in A$ define $A_{m_{i}}=\left\{m-m_{i} \mid m \in A\right\}$. Consider $\phi_{A_{m}}:\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{C}^{d}, t \mapsto$ $\left(\ldots, t^{m_{j}-m_{i}}, \ldots\right)_{m_{j} \in A}$ and define:

$$
X_{m}=\overline{\operatorname{Im}\left(\phi_{A_{m}}\right)} \subset \mathbb{C}^{d}
$$

Not that X_{m} is an affine toric variety.
Proposition 11.5.1. Notation as above. Let $V=\left\{v_{1}, \ldots, v_{r}\right\}$ be the set of vertices of P. Then

$$
X_{A} \cong \bigcup_{v_{i} \in V} X_{v_{i}}
$$

Proof. First notice that $X_{m_{i}}=X_{A} \cap X_{i} \subset \mathbb{P}^{d}$ and thus $X_{A}=\cup_{m \in A} X_{m}$. We prove the proposition if we show that or every $m \in A$ there is at least one vertex $v \in V$ such that $X_{m} \subseteq X_{v}$. As observed $P=\operatorname{Conv}(V)$. Let $m=\sum_{v_{i} \in V} k_{i} v_{i}$. After clearing denominators we can write $k m=\sum_{v_{i} \in V} k_{i} v_{i}$, for $k_{i} \in \mathbb{Z}_{\geq 0}$. Notice that $t^{m} \neq 0$ iff $t^{k m}=t^{\sum k_{i} v_{i}}=\Pi\left(t^{v_{i}}\right)^{k_{i}} \neq 0$, which happens only if $t^{v_{i}} \neq 0$ for every $k_{i} \neq 0$. This shows that $X_{m} \subseteq X_{v_{i}}$ for every $k_{i} \neq 0$.

The vertices of the polytope defines the affine patches that bild the associated toric variety. The following gives an intuition of how projective toric varieties are considered a generalisation of the projective space.
Excercise 11.5.2. Let P be a polytope of dimension n and let $P \cap \mathbb{Z}^{n}=$ $\left\{m_{0}, \ldots, m_{d}\right\}$. Show that

- $d \geq n$
- $d=n$ and m_{1}, \ldots, m_{n} is a lattice basis (i.e. every vector in \mathbb{Z}^{n} is an integral combination of m_{1}, \ldots, m_{n}) if and only if $P=\Delta_{n}$.

Let us now examine closer the category of smooth polytopes and the associated topic varieties. Let P be a smooth polytope anklet m_{0} be a vertex. After a lattice-preserving affine transformation can we assume that $m_{0}=0$ and that the primitive vectors on the n edges through m_{0} are e_{1}, \ldots, e_{n}.

Lemma 11.5.3. (Exercise) Let P be a smooth polytope. Then $X_{v} \cong \mathbb{C}^{n}$ for every vertex v.

Observe that if P is a n-dimensional smooth lattice polytope, then a facet $F \subset P$ is a smooth polytopes of dimension $(n-1)$. Denote by X_{F} the associated topic variety.

Lemma 11.5.4. Let P be a smooth polytope. Then $X_{P} \backslash T_{P}=\cup_{F \text { facet }} X_{F}$.
Proof. Let $\operatorname{dim}(P)=n$, let V denote the set of vertices of P and $V(F)$ denote the set of vertices of F. First observe that:

$$
X_{P} \backslash T_{P}=\cup_{v \in V}\left(X_{v} \backslash T_{P}\right)=\cup_{v \in V}\left(\cup_{i}\left(\left\{\left(x_{1}, \ldots, x_{n}\right) \in X_{v} \text { s.t. } x_{i}=0\right\}\right)\right) .
$$

Let $v=\left(m_{1}, \ldots, m_{n}\right) \in V$, then are n facets passing through v, F_{1}, \ldots, F_{n} such that $v_{i}=\left(m_{i}, \ldots, m_{i-1}, m_{i+1}, m_{n}\right) \in V\left(F_{i}\right)$. Clearly it is:

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in X_{v} \text { s.t. } x_{i}=0\right\} \cong X_{v_{i}} \subset X_{F_{i}} .
$$

This proves that $X_{P} \backslash T_{P} \subseteq \cup_{F}$ facet X_{F}. But because for each facet it is $X_{F}=\cup_{w \in V(F)} X_{w}$ and $w=v_{i}$ for some $v \in V$, it is clearly

$$
X_{F} \subset \cup_{v_{i}=w, w \in V(F)} X_{v} \backslash T_{N} \text { and thus } \cup_{F \text { facet }} X_{F} \subseteq X_{P} \backslash T_{P} .
$$

11.6 Assignment: exercises

(1) Prove Lemma 11.5.3
(2) Recall that $k P=\left\{m_{1}+\ldots+m_{k}\right.$ s.t. $\left.m_{i} \in P\right\}$ and that if $P_{1} \subset \mathbb{R}^{n}, P_{2} \subset$ \mathbb{R}^{t} then $P_{1} \times P_{2}=\left\{(m, n)\right.$ s.t. $\left.m \in P_{1}, m \in P_{2}\right\} \subset \mathbb{R}^{n} \times \mathbb{R}^{t}$ is a polytope of dimension $\operatorname{dim}\left(P_{1}\right)+\operatorname{dim}\left(P_{2}\right)$ and whose faces are products of faces of resp. polytopes.
(a) Describe the faces of the polytope $P=\Delta_{1} \times 2 \Delta_{2}$.
(b) Is P smooth?
(c) Describe the toric variety X_{P} as union of affine patches.
(d) Describe the induced map $X_{P} \rightarrow \mathbb{P}^{11}$.

