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11.1 Ideals defined by lattice points

Definition 11.1.1. A semigroup S is a set with an associative binary oper-
ation and an identity 0.

A semigroup is finitely generated if there is a finite subset A C S such that
S =NA= {Z amm s.t. a,, € N}.

meA
Definition 11.1.2. A finitely generated semigroup S = NA is called an
affine semigroup if
e the binary operation is commutative

e [t can be embedded in a lattice.

Let S be an affine semigroup, embedded in the lattice Z". We associate to it
the so called semigroup algebra:

C[S] = {Z CmX™ 8.t ¢ € C and ¢, = 0 for all but finitely many m}
meS
Lemma 11.1.3. The semigroup algebra C[S]is a subring of the ring of Lurent
polynomials in d variables Clt,t7", ..., tn, t1].

Proof. The proof is left as exercise. ]

Consider an affine toric variety X 4, associated to the finite subset A C Z".
It clearly defines an affine semigroup S4 and a semigroup algebra

C[SA] = C[X.A] = (C[Xmla X de]

(associated to the characters of the torus).

Remark 11.1.4. The semigroup algebra associated to the torus T4 is the
algebra of all Laurent polynomials in n variables:

ClTA] = Clty, t1h ooyt t]
Note that (C*)" = V(z1y1 — 1, ..., Zuy, — 1) C C*".
Let A= {mo,...,mq} CZ" as above. Consider the following two maps:
Va: Clyo, - ya] = Clay, -+ @), a - 29 = 27

defined as:

Pi(y;) = 2™ and P4(e;) = m;
Let I, = Ker(¢%) and L = Ker(i4). Let moreover I = {y® — ¢y°|a, 8 €
N% and o — 3 € L}.



Lemma 11.1.5. 14 is a prime ideal of the ring Clyo, . .., yal-

Proof. The kernel of a ring-morphism is always an ideal. Notice that Clyo, . .., y4]/Ia =
Clz™o, ..., 2™4] and that C[z™°, ..., 2™4] is an integral domain. ]

Proposition 11.1.6.
Iy=1.

Proof. Tt is easily checked that I C I4. Let a = > ase;, 8 = > [ie; €
N4 such that « — 8 € L, i.e. Y, a;m; =Y, Bim;. Then pomioi — > miBi gnd
thus 1% (y® — y”) = 0. Assume now that 14\ I # () and let f € I4\ I be the
element of minimal (after setting a term order)leading coefficient y®. After
possibly rescaling we can write:

f=y*+ fi ,where f(z™,... ™) =0.

It follows that f; has a monomial y® such that ¢%(y®) = ¢%(y®) and thus
a — B € L which implies y* — % € I for a = aje;, 8 = Bje;. It follows that
fo=f—(y*—vy?) € I\ I is an element with lower leading term than f
which is impossible. O

11.2 toric ideals

Definition 11.2.1. A prime ideal I C Clyo, .. .,ya4] is called a toric ideal
if it is of the form I, for some A C 7.

Proposition 11.2.2. (Homogeneous) toric ideals I define toric (projective)
varieties and (projective) toric varieties are defined by (homogeneous) toric
ideals.

Proof. Consider a projective toric variety X4 C P? defined by
A={mg,...,my} CZ".

Let I € Clyo,--.,yq] be the homogeneous ideal defining Y. By definition
flxmo ... z™d) =0 forall f € I which implies I C I4 and thus V(I4) C X4.
On the other hand all the polynomials in I4 vanish on ¢4((C*)") which
implies that Iy C I(¢4((C*)™)) and thus ¢4((C*)™) C V(I4). But X, is
the smallest closed subvariety containing ¢4((C*)") which implies X4 =
V(L) O



11.3 Toric maps

Definition 11.3.1. Let X, Y be toric varieties and let T'x, Ty be the algebraic
tori. A map f: X —Y is said to be a toric map if

(1) f(Tx) C Ty;
(2) flry : Tx — Ty is a group homomorphism.

Definition 11.3.2. A toric map f: X — Y is equivariant if
ft-z)=f(t)- fz).

Consider the map ¢, : X4 < P This is an equivariant toric map (we call
it a toric embedding). In fact ¢p4(Tx) C Tpa and they are related via the
following;:

Toa = P\ Vi(zo - 21 - - - - 24).
1= C* = (C)™ = Tpa — 1
¢a:Tx, — (C)" — Tpa.

Moreover

Pa(tr) = ((tx)™, ..., (tz)™) = ¢a(t) - Pa(z).

11.4 Fixed points

Let P be a smooth polytope of dimension n. and and let V(P) denote the
set of vertices. For every vertex v € V(F') there are n facets passing through
v, F,..., F,. Notice that:

v =N, Fi
NV (EF;) = (0,...,0) e X, =C"

Every vertex v € V(P) corresponds to the point 0 € X, which is the unique
point of X, fixed by the tour action. This means that |V (P)| corresponds to
the number of fixed points in Xp.

Ezxample 11.4.1. The torus action on P" has n + 1 fixed points: (1:0:...:
0),(0:1:...:0),...,(0:...:0:1).



11.5 Blow up at a fixed point

We will define a new polytope, obtained by a give one by truncating a vertex.
This is not possible with every polytope and it is for this reason that in this
chapter we make the following important assumption.

Definition 11.5.1. Let P bee a smooth polytope of dimension n. A vertex v
1s called a vertex of order 2 if the length of all the n edges through v is at
least 2.

Lat P = ﬂ{Hgbi and let v be a vertex of order 2. Let F},..., F, be the
facets catting v corresponding to He p, N P, ..., He, 3, N P. We will call the
following polytope the blow up of P at v and will denote it by Bl,(P) :

Bl,(P) = (qugt,bi) N Hg—i,fl

where §, =& + ... + &,

(%

P= Bl (P) =

The blow up polytope define a topic variety which will be denoted by Bl (X)
and called the Blow up of X at the point x(v). Let dim(P) = n, one can see
immediately that:

(1) If X C P? then le(v)(X) C pé-t,

(2) Let V/(P) = {mo,...,mq}, withv = mgandlet ey, ..., e, be the first in-

teger points on the edges through v. Then V' (BI,(P)) = {mo, ..., ma_1,€1, ...

(3) He,—1 N Bl,(P) =Conuvl(ey,...,e,) = Ay_q)

(4) If the facets of P are H¢,,, N P,i=1,...r the the facets of Bl,(P) are
He, p, N BL,(P),i = 1,...r together with 6,1 = He, 1 N Bl,(P).

(5) BI,(P)has the same dimension, n.

Geometrically what happened is that we introduced a V(A,_1) = P*! in-
stead of the fixed point z(v).

,€n}



11.6 Assignment: exercises

(1) A rational normal curve of degree d is defined as the image of the degree
d Segre embedding of P! :

1 d+1 . d.,d=1, ., d-2.2. . d-1. d
P — P (xg:xy) > (x) i g @y x) “xy ... xexy o ag)

Let P be a lattice polytope. Show that for every edge L C P, the toric
variety V(L) is smooth and isomorphic to a rational normal curve.
What is the degree of such rational curve?

(2) Let ag,...,a, be coprime positive integers. Consider the action of C*
on C™*! given by:

te(xy,...,2) = (t"x,...,t"x,) = P(ag,...,a,).

The quotient (C"*1 — {0})/C* exists and it is called the weighted
projective space with weights ag,...,a,.

(a) In which sense is this a generalisation of P™?

(b) We say that a polynomial p(x) = )" cax® € Clxg, 21,2, . .., 2]
is (ag, ai, . . ., a,)—homogeneous of weighted degree s if every mono-
mial x® satisfies a - (ao, . ..,a,) = s. Show that f = 0 is a well de-
fined equation on P(ay, . . ., a,) if and only if f is (ag, a1, . . ., a,) —homogeneous.
(¢) Consider P(1,1,d). Show that the map P(1,1,d) — P! defined
by (zo, 21, 29) — (28, 29 2y, ... 2,08 28, 15) is well defined.
(d) Show that P(1,1,d) is a projective toric variety.
(e) Construct the polytope associated to P(1,1,d).

(f) (*)[bonus point] Can you show (d) and (e) for any P(aq,...,a,)?



