Institutionen för matematik, KTH.

11.1 Ideals defined by lattice points

Definition 11.1.1. A semigroup S is a set with an associative binary operation and an identity 0 .
A semigroup is finitely generated if there is a finite subset $\mathcal{A} \subset S$ such that

$$
S=\mathbb{N} \mathcal{A}=\left\{\sum_{m \in \mathcal{A}} a_{m} m \text { s.t. } a_{m} \in \mathbb{N}\right\} .
$$

Definition 11.1.2. A finitely generated semigroup $S=\mathbb{N} \mathcal{A}$ is called an affine semigroup if

- the binary operation is commutative
- It can be embedded in a lattice.

Let S be an affine semigroup, embedded in the lattice \mathbb{Z}^{n}. We associate to it the so called semigroup algebra:

$$
\mathbb{C}[S]=\left\{\sum_{m \in S} c_{m} \chi^{m} \text { s.t. } c_{m} \in \mathbb{C} \text { and } c_{m}=0 \text { for all but finitely many } m\right\}
$$

Lemma 11.1.3. The semigroup algebra $\mathbb{C}[S]$ is a subring of the ring of Lurent polynomials in d variables $\mathbb{C}\left[t_{1}, t_{1}^{-1}, \ldots, t_{n}, t_{n}^{-1}\right]$.

Proof. The proof is left as exercise.
Consider an affine toric variety $X_{\mathcal{A}}$, associated to the finite subset $\mathcal{A} \subset \mathbb{Z}^{n}$. It clearly defines an affine semigroup $S_{\mathcal{A}}$ and a semigroup algebra

$$
\mathbb{C}\left[S_{\mathcal{A}}\right]=\mathbb{C}\left[X_{\mathcal{A}}\right]=\mathbb{C}\left[\chi^{m_{1}}, \ldots, \chi^{m_{d}}\right]
$$

(associated to the characters of the torus).
Remark 11.1.4. The semigroup algebra associated to the torus $T_{\mathcal{A}}$ is the algebra of all Laurent polynomials in n variables:

$$
\mathbb{C}\left[T_{\mathcal{A}}\right]=\mathbb{C}\left[t_{1}, t_{1}^{-1}, \ldots, t_{n}, t_{n}^{-1}\right]
$$

Note that $\left(\mathbb{C}^{*}\right)^{n} \cong V\left(x_{1} y_{1}-1, \ldots, x_{n} y_{n}-1\right) \subset \mathbb{C}^{2 n}$.
Let $A=\left\{m_{0}, \ldots, m_{d}\right\} \subset \mathbb{Z}^{n}$ as above. Consider the following two maps:

$$
\psi_{A}^{*}: \mathbb{C}\left[y_{0}, \ldots, y_{d}\right] \rightarrow \mathbb{C}\left[x_{1}, \cdots, x_{n}\right], \psi_{A}: \mathbb{Z}^{d+1} \rightarrow \mathbb{Z}^{n}
$$

defined as:

$$
\psi_{A}^{*}\left(y_{i}\right)=x^{m_{i}} \text { and } \psi_{A}\left(e_{i}\right)=m_{i}
$$

Let $I_{A}=\operatorname{Ker}\left(\psi_{A}^{*}\right)$ and $L=\operatorname{Ker}\left(\psi_{A}\right)$. Let moreover $I=\left\{y^{\alpha}-y^{\beta} \mid \alpha, \beta \in\right.$ \mathbb{N}^{d} and $\left.\alpha-\beta \in L\right\}$.

Lemma 11.1.5. I_{A} is a prime ideal of the ring $\mathbb{C}\left[y_{0}, \ldots, y_{d}\right]$.
Proof. The kernel of a ring-morphism is always an ideal. Notice that $\mathbb{C}\left[y_{0}, \ldots, y_{d}\right] / I_{A} \cong$ $\mathbb{C}\left[x^{m_{0}}, \ldots, x^{m_{d}}\right]$ and that $\mathbb{C}\left[x^{m_{0}}, \ldots, x^{m_{d}}\right]$ is an integral domain.

Proposition 11.1.6.

$$
I_{A}=I .
$$

Proof. It is easily checked that $I \subseteq I_{A}$. Let $\alpha=\sum \alpha_{i} e_{i}, \beta=\sum \beta_{i} e_{i} \in$ \mathbb{N}^{d} such that $\alpha-\beta \in L$, i.e. $\sum \alpha_{i} m_{i}=\sum_{i} \beta_{i} m_{i}$. Then $t^{\sum m_{i} \alpha_{i}}=t^{\sum m_{i} \beta_{i}}$ and thus $\psi_{A}^{*}\left(y^{\alpha}-y^{\beta}\right)=0$. Assume now that $I_{A} \backslash I \neq \emptyset$ and let $f \in I_{A} \backslash I$ be the element of minimal (after setting a term order)leading coefficient y^{α}. After possibly rescaling we can write:

$$
f=y^{\alpha}+f_{1}, \text { where } f\left(x^{m_{1}}, \ldots, x^{m_{d}}\right)=0 .
$$

It follows that f_{1} has a monomial y^{β} such that $\phi_{A}^{*}\left(y^{\alpha}\right)=\phi_{A}^{*}\left(y^{\beta}\right)$ and thus $\alpha-\beta \in L$ which implies $y^{\alpha}-y^{\beta} \in I$ for $\alpha=\alpha_{j} e_{j}, \beta=\beta_{j} e_{j}$. It follows that $f_{2}=f-\left(y^{\alpha}-y^{\beta}\right) \in I_{A} \backslash I$ is an element with lower leading term than f which is impossible.

11.2 toric ideals

Definition 11.2.1. A prime ideal $I \subseteq \mathbb{C}\left[y_{0}, \ldots, y_{d}\right]$ is called a toric ideal if it is of the form I_{A} for some $A \subset \mathbb{Z}^{d}$.

Proposition 11.2.2. (Homogeneous) toric ideals I define toric (projective) varieties and (projective) toric varieties are defined by (homogeneous) toric ideals.

Proof. Consider a projective toric variety $X_{A} \subset \mathbb{P}^{d}$ defined by

$$
A=\left\{m_{0}, \ldots, m_{d}\right\} \subset \mathbb{Z}^{n}
$$

Let $I \in \mathbb{C}\left[y_{0}, \ldots, y_{d}\right]$ be the homogeneous ideal defining Y_{A}. By definition $f\left(x^{m_{0}}, \ldots, x^{m_{d}}\right)=0$ for all $f \in I$ which implies $I \subseteq I_{A}$ and thus $V\left(I_{A}\right) \subseteq X_{A}$. On the other hand all the polynomials in I_{A} vanish on $\phi_{A}\left(\left(\mathbb{C}^{*}\right)^{n}\right)$ which implies that $I_{A} \subseteq I\left(\phi_{A}\left(\left(\mathbb{C}^{*}\right)^{n}\right)\right)$ and thus $\phi_{A}\left(\left(\mathbb{C}^{*}\right)^{n}\right) \subseteq V\left(I_{A}\right)$. But X_{A} is the smallest closed subvariety containing $\phi_{A}\left(\left(\mathbb{C}^{*}\right)^{n}\right)$ which implies $X_{A}=$ $V\left(I_{A}\right)$.

11.3 Toric maps

Definition 11.3.1. Let X, Y be toric varieties and let T_{X}, T_{Y} be the algebraic tori. A map $f: X \rightarrow Y$ is said to be a toric map if
(1) $f\left(T_{X}\right) \subseteq T_{Y}$;
(2) $\left.f\right|_{T_{X}}: T_{X} \rightarrow T_{Y}$ is a group homomorphism.

Definition 11.3.2. A toric map $f: X \rightarrow Y$ is equivariant if

$$
f(t \cdot x)=f(t) \cdot f(x) .
$$

Consider the map $\phi_{A}: X_{A} \hookrightarrow \mathbb{P}^{d}$. This is an equivariant toric map (we call it a toric embedding). In fact $\phi_{A}\left(T_{X}\right) \subset T_{\mathbb{P}^{d}}$ and they are related via the following:

$$
\begin{gathered}
T_{\mathbb{P}^{d}}=\mathbb{P}^{d} \backslash V\left(x_{0} \cdot x_{1} \cdots x_{d}\right) . \\
1 \rightarrow \mathbb{C}^{*} \rightarrow\left(\mathbb{C}^{*}\right)^{d+1} \rightarrow T_{\mathbb{P}^{d}} \rightarrow 1 \\
\phi_{A}: T_{X_{A}} \rightarrow\left(\mathbb{C}^{*}\right)^{d+1} \rightarrow T_{\mathbb{P}^{d}} .
\end{gathered}
$$

Moreover

$$
\phi_{A}(t x)=\left((t x)^{m_{0}}, \ldots,(t x)^{m_{d}}\right)=\phi_{A}(t) \cdot \phi_{A}(x) .
$$

11.4 Fixed points

Let P be a smooth polytope of dimension n. and and let $V(P)$ denote the set of vertices. For every vertex $v \in V(F)$ there are n facets passing through v, F_{1}, \ldots, F_{n}. Notice that:

$$
\begin{gathered}
v=\cap_{i=1}^{n} F_{i} \\
\cap_{1}^{n} V\left(F_{i}\right)=(0, \ldots, 0) \in X_{v} \cong \mathbb{C}^{n}
\end{gathered}
$$

Every vertex $v \in V(P)$ corresponds to the point $0 \in X_{v}$ which is the unique point of X_{v} fixed by the tour action. This means that $|V(P)|$ corresponds to the number of fixed points in X_{P}.

Example 11.4.1. The torus action on \mathbb{P}^{n} has $n+1$ fixed points: $1: 0: \ldots$: $0),(0: 1: \ldots: 0), \ldots,(0: \ldots: 0: 1)$.

11.5 Blow up at a fixed point

We will define a new polytope, obtained by a give one by truncating a vertex. This is not possible with every polytope and it is for this reason that in this chapter we make the following important assumption.

Definition 11.5.1. Let P bee a smooth polytope of dimension n. A vertex v is called a vertex of order 2 if the length of all the n edges through v is at least 2.

Lat $P=\cap_{1}^{r} H_{\xi_{i}, b_{i}}^{+}$and let v be a vertex of order 2. Let F_{1}, \ldots, F_{n} be the facets catting v corresponding to $H_{\xi_{1}, b_{1}} \cap P, \ldots, H_{\xi_{n}, b_{n}} \cap P$. We will call the following polytope the blow up of P at v and will denote it by $B l_{v}(P)$:

$$
B l_{v}(P)=\left(\cap_{1}^{r} H_{\xi_{i}, b_{i}}^{+}\right) \cap H_{\xi_{v},-1}^{+}
$$

where $\xi_{v}=\xi_{1}+\ldots+\xi_{n}$.

The blow up polytope define a topic variety which will be denoted by $B l_{x(v)}(X)$ and called the Blow up of X at the point $x(v)$. Let $\operatorname{dim}(P)=n$, one can see immediately that:
(1) If $X \subset \mathbb{P}^{d}$ then $B l_{x(v)}(X) \subset \mathbb{P}^{d-1}$.
(2) Let $V(P)=\left\{m_{0}, \ldots, m_{d}\right\}$, with $v=m_{d}$ and let e_{1}, \ldots, e_{n} be the first integer points on the edges through v. Then $V\left(B l_{v}(P)\right)=\left\{m_{0}, \ldots, m_{d-1}, e_{1}, \ldots, e_{n}\right\}$.
(3) $\left.H_{\xi_{v},-1} \cap B l_{v}(P)=\operatorname{Conv}\left(e_{1}, \ldots, e_{n}\right) \cong \Delta_{n-1}\right)$
(4) If the facets of P are $H_{\xi_{j}, b_{i}} \cap P, i=1, \ldots r$ the the facets of $B l_{v}(P)$ are $H_{\xi_{j}, b_{i}} \cap B l_{v}(P), i=1, \ldots r$ together with $\delta_{n-1}=H_{\xi_{v},-1} \cap B l_{v}(P)$.
(5) $B l_{v}(P)$ has the same dimension, n.

Geometrically what happened is that we introduced a $V\left(\Delta_{n-1}\right)=\mathbb{P}^{n-1}$ instead of the fixed point $x(v)$.

11.6 Assignment: exercises

(1) A rational normal curve of degree d is defined as the image of the degree d Segre embedding of \mathbb{P}^{1} :

$$
\mathbb{P}^{1} \rightarrow \mathbb{P}^{d+1} \quad\left(x_{0}: x_{1}\right) \mapsto\left(x_{0}^{d}: x_{0}^{d-1} x_{1}: x_{0}^{d-2} x_{1}^{2}: \ldots: x_{0} x_{1}^{d-1}: x_{0}^{d}\right)
$$

Let P be a lattice polytope. Show that for every edge $L \subset P$, the toric variety $V(L)$ is smooth and isomorphic to a rational normal curve. What is the degree of such rational curve?
(2) Let a_{0}, \ldots, a_{n} be coprime positive integers. Consider the action of \mathbb{C}^{*} on \mathbb{C}^{n+1} given by:

$$
t \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(t^{a_{0}} x_{0}, \ldots, t^{a_{n}} x_{n}\right)=\mathbb{P}\left(a_{0}, \ldots, a_{n}\right) .
$$

The quotient $\left(\mathbb{C}^{n+1}-\{0\}\right) / \mathbb{C}^{*}$ exists and it is called the weighted projective space with weights a_{0}, \ldots, a_{n}.
(a) In which sense is this a generalisation of \mathbb{P}^{n} ?
(b) We say that a polynomial $p(x)=\sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{C}\left[x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right]$ is ($a_{0}, a_{1}, \ldots, a_{n}$)-homogeneous of weighted degree s if every monomial x^{α} satisfies $\alpha \cdot\left(a_{0}, \ldots, a_{n}\right)=s$. Show that $f=0$ is a well defined equation on $\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$ if and only if f is $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$-homogeneous.
(c) Consider $\mathbb{P}(1,1, d)$. Show that the map $\mathbb{P}(1,1, d) \rightarrow \mathbb{P}^{d+1}$ defined by $\left(x_{0}, x_{1}, x_{2}\right) \rightarrow\left(x_{0}^{d}, x_{x}^{d-1} x_{1}, \ldots, x_{o} x_{1}^{d-1}, x_{1}^{d}, x_{2}\right)$ is well defined.
(d) Show that $\mathbb{P}(1,1, d)$ is a projective toric variety.
(e) Construct the polytope associated to $\mathbb{P}(1,1, d)$.
(f) $\left(^{*}\right)$ [bonus point] Can you show (d) and (e) for any $\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$?

