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11.1 Ideals defined by lattice points

Definition 11.1.1. A semigroup S is a set with an associative binary oper-
ation and an identity 0.

A semigroup is finitely generated if there is a finite subset A ⊂ S such that

S = NA = {
∑
m∈A

amm s.t. am ∈ N}.

Definition 11.1.2. A finitely generated semigroup S = NA is called an
affine semigroup if

• the binary operation is commutative

• It can be embedded in a lattice.

Let S be an affine semigroup, embedded in the lattice Zn. We associate to it
the so called semigroup algebra:

C[S] = {
∑
m∈S

cmχ
m s.t. cm ∈ C and cm = 0 for all but finitely many m}

Lemma 11.1.3. The semigroup algebra C[S]is a subring of the ring of Lurent
polynomials in d variables C[t1, t

−1
1 , ..., tn, t

−1
n ].

Proof. The proof is left as exercise.

Consider an affine toric variety XA, associated to the finite subset A ⊂ Zn.
It clearly defines an affine semigroup SA and a semigroup algebra

C[SA] = C[XA] = C[χm1 , ..., χmd ]

(associated to the characters of the torus).

Remark 11.1.4. The semigroup algebra associated to the torus TA is the
algebra of all Laurent polynomials in n variables:

C[TA] = C[t1, t
−1
1 , ..., tn, t

−1
n ]

Note that (C∗)n ∼= V (x1y1 − 1, ..., xnyn − 1) ⊂ C2n.

Let A = {m0, . . . ,md} ⊂ Zn as above. Consider the following two maps:

ψ∗A : C[y0, . . . , yd]→ C[x1, · · · , xn], ψA : Zd+1 → Zn

defined as:
ψ∗A(yi) = xmi and ψA(ei) = mi

Let IA = Ker(ψ∗A) and L = Ker(ψA). Let moreover I = {yα − yβ|α, β ∈
Nd and α− β ∈ L}.
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Lemma 11.1.5. IA is a prime ideal of the ring C[y0, . . . , yd].

Proof. The kernel of a ring-morphism is always an ideal. Notice that C[y0, . . . , yd]/IA ∼=
C[xm0 , . . . , xmd ] and that C[xm0 , . . . , xmd ] is an integral domain.

Proposition 11.1.6.

IA = I.

Proof. It is easily checked that I ⊆ IA. Let α =
∑
αiei, β =

∑
βiei ∈

Nd such that α− β ∈ L, i.e.
∑
αimi =

∑
i βimi. Then t

∑
miαi = t

∑
miβi and

thus ψ∗A(yα − yβ) = 0. Assume now that IA \ I 6= ∅ and let f ∈ IA \ I be the
element of minimal (after setting a term order)leading coefficient yα. After
possibly rescaling we can write:

f = yα + f1 ,where f(xm1 , . . . , xmd) = 0.

It follows that f1 has a monomial yβ such that φ∗A(yα) = φ∗A(yβ) and thus
α − β ∈ L which implies yα − yβ ∈ I for α = αjej, β = βjej. It follows that
f2 = f − (yα − yβ) ∈ IA \ I is an element with lower leading term than f
which is impossible.

11.2 toric ideals

Definition 11.2.1. A prime ideal I ⊆ C[y0, . . . , yd] is called a toric ideal
if it is of the form IA for some A ⊂ Zd.

Proposition 11.2.2. (Homogeneous) toric ideals I define toric (projective)
varieties and (projective) toric varieties are defined by (homogeneous) toric
ideals.

Proof. Consider a projective toric variety XA ⊂ Pd defined by

A = {m0, . . . ,md} ⊂ Zn.

Let I ∈ C[y0, . . . , yd] be the homogeneous ideal defining YA. By definition
f(xm0 , . . . , xmd) = 0 for all f ∈ I which implies I ⊆ IA and thus V (IA) ⊆ XA.
On the other hand all the polynomials in IA vanish on φA((C∗)n) which
implies that IA ⊆ I(φA((C∗)n)) and thus φA((C∗)n) ⊆ V (IA). But XA is
the smallest closed subvariety containing φA((C∗)n) which implies XA =
V (IA).
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11.3 Toric maps

Definition 11.3.1. Let X, Y be toric varieties and let TX , TY be the algebraic
tori. A map f : X → Y is said to be a toric map if

(1) f(TX) ⊆ TY ;

(2) f |TX : TX → TY is a group homomorphism.

Definition 11.3.2. A toric map f : X → Y is equivariant if

f(t · x) = f(t) · f(x).

Consider the map φA : XA ↪→ Pd. This is an equivariant toric map (we call
it a toric embedding). In fact φA(TX) ⊂ TPd and they are related via the
following:

TPd = Pd \ V (x0 · x1 · · · · · xd).

1→ C∗ → (C∗)d+1 → TPd → 1

φA : TXA
→ (C∗)d+1 → TPd .

Moreover

φA(tx) = ((tx)m0 , . . . , (tx)md) = φA(t) · φA(x).

11.4 Fixed points

Let P be a smooth polytope of dimension n. and and let V (P ) denote the
set of vertices. For every vertex v ∈ V (F ) there are n facets passing through
v, F1, . . . , Fn. Notice that:

v = ∩ni=1Fi
∩n1V (Fi) = (0, . . . , 0) ∈ Xv

∼= Cn

Every vertex v ∈ V (P ) corresponds to the point 0 ∈ Xv which is the unique
point of Xv fixed by the tour action. This means that |V (P )| corresponds to
the number of fixed points in XP .

Example 11.4.1. The torus action on Pn has n + 1 fixed points: (1 : 0 : . . . :
0), (0 : 1 : . . . : 0), . . . , (0 : . . . : 0 : 1).
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11.5 Blow up at a fixed point

We will define a new polytope, obtained by a give one by truncating a vertex.
This is not possible with every polytope and it is for this reason that in this
chapter we make the following important assumption.

Definition 11.5.1. Let P bee a smooth polytope of dimension n. A vertex v
is called a vertex of order 2 if the length of all the n edges through v is at
least 2.

Lat P = ∩r1H+
ξi,bi

and let v be a vertex of order 2. Let F1, . . . , Fn be the
facets catting v corresponding to Hξ1,b1 ∩ P, . . . , Hξn,bn ∩ P. We will call the
following polytope the blow up of P at v and will denote it by Blv(P ) :

Blv(P ) = (∩r1H+
ξi,bi

) ∩H+
ξv ,−1

where ξv = ξ1 + . . .+ ξn.

P=
v
Blv(P ) =

The blow up polytope define a topic variety which will be denoted byBlx(v)(X)
and called the Blow up of X at the point x(v). Let dim(P ) = n, one can see
immediately that:

(1) If X ⊂ Pd then Blx(v)(X) ⊂ Pd−1.

(2) Let V (P ) = {m0, . . . ,md}, with v = md and let e1, . . . , en be the first in-
teger points on the edges through v. Then V (Blv(P )) = {m0, . . . ,md−1, e1, . . . , en}.

(3) Hξv ,−1 ∩Blv(P ) = Conv(e1, . . . , en) ∼= ∆n−1)

(4) If the facets of P are Hξj ,bi ∩ P, i = 1, . . . r the the facets of Blv(P ) are
Hξj ,bi ∩Blv(P ), i = 1, . . . r together with δn−1 = Hξv ,−1 ∩Blv(P ).

(5) Blv(P )has the same dimension, n.

Geometrically what happened is that we introduced a V (∆n−1) = Pn−1 in-
stead of the fixed point x(v).
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11.6 Assignment: exercises

(1) A rational normal curve of degree d is defined as the image of the degree
d Segre embedding of P1 :

P1 → Pd+1 (x0 : x1) 7→ (xd0 : xd−10 x1 : xd−20 x21 : . . . : x0x
d−1
1 : xd0)

Let P be a lattice polytope. Show that for every edge L ⊂ P, the toric
variety V (L) is smooth and isomorphic to a rational normal curve.
What is the degree of such rational curve?

(2) Let a0, . . . , an be coprime positive integers. Consider the action of C∗
on Cn+1 given by:

t · (x1, . . . , xn) = (ta0x0, . . . , t
anxn) = P(a0, . . . , an).

The quotient (Cn+1 − {0})/C∗ exists and it is called the weighted
projective space with weights a0, . . . , an.

(a) In which sense is this a generalisation of Pn?

(b) We say that a polynomial p(x) =
∑

α cαx
α ∈ C[x0, x1, x2, . . . , xn]

is (a0, a1, . . . , an)−homogeneous of weighted degree s if every mono-
mial xα satisfies α · (a0, . . . , an) = s. Show that f = 0 is a well de-
fined equation on P(a0, . . . , an) if and only if f is (a0, a1, . . . , an)−homogeneous.

(c) Consider P(1, 1, d). Show that the map P(1, 1, d) → Pd+1 defined
by (x0, x1, x2)→ (xd0, x

d−1
x x1, . . . , xox

d−1
1 , xd1, x2) is well defined.

(d) Show that P(1, 1, d) is a projective toric variety.

(e) Construct the polytope associated to P(1, 1, d).

(f) (*)[bonus point] Can you show (d) and (e) for any P(a0, . . . , an)?
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