

Institutionen för matematik, KTH.

11.1 Ideals defined by lattice points

Definition 11.1.1. A semigroup S is a set with an associative binary operation and an identity 0.

A semigroup is finitely generated if there is a finite subset $A \subset S$ such that

$$S = \mathbb{N}\mathcal{A} = \{ \sum_{m \in \mathcal{A}} a_m m \text{ s.t. } a_m \in \mathbb{N} \}.$$

Definition 11.1.2. A finitely generated semigroup $S = \mathbb{N}\mathcal{A}$ is called an affine semigroup if

- the binary operation is commutative
- It can be embedded in a lattice.

Let S be an affine semigroup, embedded in the lattice \mathbb{Z}^n . We associate to it the so called *semigroup algebra*:

$$\mathbb{C}[S] = \{ \sum_{m \in S} c_m \chi^m \text{ s.t. } c_m \in \mathbb{C} \text{ and } c_m = 0 \text{ for all but finitely many } m \}$$

Lemma 11.1.3. The semigroup algebra $\mathbb{C}[S]$ is a subring of the ring of Lurent polynomials in d variables $\mathbb{C}[t_1, t_1^{-1}, ..., t_n, t_n^{-1}]$.

Proof. The proof is left as exercise.

Consider an affine toric variety $X_{\mathcal{A}}$, associated to the finite subset $\mathcal{A} \subset \mathbb{Z}^n$. It clearly defines an affine semigroup $S_{\mathcal{A}}$ and a semigroup algebra

$$\mathbb{C}[S_{\mathcal{A}}] = \mathbb{C}[X_{\mathcal{A}}] = \mathbb{C}[\chi^{m_1}, ..., \chi^{m_d}]$$

(associated to the characters of the torus).

Remark 11.1.4. The semigroup algebra associated to the torus T_A is the algebra of all Laurent polynomials in n variables:

$$\mathbb{C}[T_{\mathcal{A}}] = \mathbb{C}[t_1, t_1^{-1}, ..., t_n, t_n^{-1}]$$

Note that $(\mathbb{C}^*)^n \cong V(x_1y_1 - 1, ..., x_ny_n - 1) \subset \mathbb{C}^{2n}$.

Let $A = \{m_0, \dots, m_d\} \subset \mathbb{Z}^n$ as above. Consider the following two maps:

$$\psi_A^* : \mathbb{C}[y_0, \dots, y_d] \to \mathbb{C}[x_1, \dots, x_n], \psi_A : \mathbb{Z}^{d+1} \to \mathbb{Z}^n$$

defined as:

$$\psi_A^*(y_i) = x^{m_i}$$
 and $\psi_A(e_i) = m_i$

Let $I_A = Ker(\psi_A^*)$ and $L = Ker(\psi_A)$. Let moreover $I = \{y^{\alpha} - y^{\beta} | \alpha, \beta \in \mathbb{N}^d \text{ and } \alpha - \beta \in L\}.$

Lemma 11.1.5. I_A is a prime ideal of the ring $\mathbb{C}[y_0,\ldots,y_d]$.

Proof. The kernel of a ring-morphism is always an ideal. Notice that $\mathbb{C}[y_0,\ldots,y_d]/I_A \cong \mathbb{C}[x^{m_0},\ldots,x^{m_d}]$ and that $\mathbb{C}[x^{m_0},\ldots,x^{m_d}]$ is an integral domain.

Proposition 11.1.6.

$$I_A = I$$
.

Proof. It is easily checked that $I \subseteq I_A$. Let $\alpha = \sum \alpha_i e_i$, $\beta = \sum \beta_i e_i \in \mathbb{N}^d$ such that $\alpha - \beta \in L$, i.e. $\sum \alpha_i m_i = \sum_i \beta_i m_i$. Then $t^{\sum m_i \alpha_i} = t^{\sum m_i \beta_i}$ and thus $\psi_A^*(y^\alpha - y^\beta) = 0$. Assume now that $I_A \setminus I \neq \emptyset$ and let $f \in I_A \setminus I$ be the element of minimal (after setting a term order) leading coefficient y^α . After possibly rescaling we can write:

$$f = y^{\alpha} + f_1$$
, where $f(x^{m_1}, \dots, x^{m_d}) = 0$.

It follows that f_1 has a monomial y^{β} such that $\phi_A^*(y^{\alpha}) = \phi_A^*(y^{\beta})$ and thus $\alpha - \beta \in L$ which implies $y^{\alpha} - y^{\beta} \in I$ for $\alpha = \alpha_j e_j$, $\beta = \beta_j e_j$. It follows that $f_2 = f - (y^{\alpha} - y^{\beta}) \in I_A \setminus I$ is an element with lower leading term than f which is impossible.

11.2 toric ideals

Definition 11.2.1. A prime ideal $I \subseteq \mathbb{C}[y_0, \ldots, y_d]$ is called a **toric ideal** if it is of the form I_A for some $A \subset \mathbb{Z}^d$.

Proposition 11.2.2. (Homogeneous) toric ideals I define toric (projective) varieties and (projective) toric varieties are defined by (homogeneous) toric ideals.

Proof. Consider a projective toric variety $X_A \subset \mathbb{P}^d$ defined by

$$A = \{m_0, \dots, m_d\} \subset \mathbb{Z}^n.$$

Let $I \in \mathbb{C}[y_0, \ldots, y_d]$ be the homogeneous ideal defining Y_A . By definition $f(x^{m_0}, \ldots, x^{m_d}) = 0$ for all $f \in I$ which implies $I \subseteq I_A$ and thus $V(I_A) \subseteq X_A$. On the other hand all the polynomials in I_A vanish on $\phi_A((\mathbb{C}^*)^n)$ which implies that $I_A \subseteq I(\phi_A((\mathbb{C}^*)^n))$ and thus $\phi_A((\mathbb{C}^*)^n) \subseteq V(I_A)$. But X_A is the smallest closed subvariety containing $\phi_A((\mathbb{C}^*)^n)$ which implies $X_A = V(I_A)$.

11.3 Toric maps

Definition 11.3.1. Let X, Y be toric varieties and let T_X, T_Y be the algebraic tori. A map $f: X \to Y$ is said to be a toric map if

- (1) $f(T_X) \subseteq T_Y$;
- (2) $f|_{T_X}: T_X \to T_Y$ is a group homomorphism.

Definition 11.3.2. A toric map $f: X \to Y$ is equivariant if

$$f(t \cdot x) = f(t) \cdot f(x).$$

Consider the map $\phi_A: X_A \hookrightarrow \mathbb{P}^d$. This is an equivariant toric map (we call it a toric embedding). In fact $\phi_A(T_X) \subset T_{\mathbb{P}^d}$ and they are related via the following:

$$T_{\mathbb{P}^d} = \mathbb{P}^d \setminus V(x_0 \cdot x_1 \cdot \dots \cdot x_d).$$

$$1 \to \mathbb{C}^* \to (\mathbb{C}^*)^{d+1} \to T_{\mathbb{P}^d} \to 1$$

$$\phi_A : T_{X_A} \to (\mathbb{C}^*)^{d+1} \to T_{\mathbb{P}^d}.$$

Moreover

$$\phi_A(tx) = ((tx)^{m_0}, \dots, (tx)^{m_d}) = \phi_A(t) \cdot \phi_A(x).$$

11.4 Fixed points

Let P be a smooth polytope of dimension n, and and let V(P) denote the set of vertices. For every vertex $v \in V(F)$ there are n facets passing through v, F_1, \ldots, F_n . Notice that:

$$v = \bigcap_{i=1}^{n} F_i$$

$$\bigcap_{i=1}^{n} V(F_i) = (0, \dots, 0) \in X_v \cong \mathbb{C}^n$$

Every vertex $v \in V(P)$ corresponds to the point $0 \in X_v$ which is the unique point of X_v fixed by the tour action. This means that |V(P)| corresponds to the number of fixed points in X_P .

Example 11.4.1. The torus action on \mathbb{P}^n has n+1 fixed points: $(1:0:\ldots:0), (0:1:\ldots:0), \ldots, (0:\ldots:0:1)$.

11.5 Blow up at a fixed point

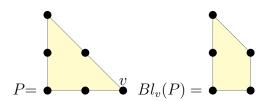
We will define a new polytope, obtained by a give one by truncating a vertex. This is not possible with every polytope and it is for this reason that in this chapter we make the following important assumption.

Definition 11.5.1. Let P bee a smooth polytope of dimension n. A vertex v is called a **vertex of order** 2 if the length of all the n edges through v is at least 2.

Lat $P = \bigcap_{1}^{r} H_{\xi_{i},b_{i}}^{+}$ and let v be a vertex of order 2. Let F_{1}, \ldots, F_{n} be the facets catting v corresponding to $H_{\xi_{1},b_{1}} \cap P, \ldots, H_{\xi_{n},b_{n}} \cap P$. We will call the following polytope the **blow up of** P at v and will denote it by $Bl_{v}(P)$:

$$Bl_v(P) = (\cap_1^r H_{\xi_i, b_i}^+) \cap H_{\xi_v, -1}^+$$

where $\xi_v = \xi_1 + ... + \xi_n$.



The blow up polytope define a topic variety which will be denoted by $Bl_{x(v)}(X)$ and called the *Blow up of X at the point* x(v). Let $\dim(P) = n$, one can see immediately that:

- (1) If $X \subset \mathbb{P}^d$ then $Bl_{x(v)}(X) \subset \mathbb{P}^{d-1}$.
- (2) Let $V(P) = \{m_0, \dots, m_d\}$, with $v = m_d$ and let e_1, \dots, e_n be the first integer points on the edges through v. Then $V(Bl_v(P)) = \{m_0, \dots, m_{d-1}, e_1, \dots, e_n\}$.
- (3) $H_{\xi_v,-1} \cap Bl_v(P) = Conv(e_1,\ldots,e_n) \cong \Delta_{n-1}$
- (4) If the facets of P are $H_{\xi_j,b_i} \cap P$, $i = 1, \ldots r$ the the facets of $Bl_v(P)$ are $H_{\xi_j,b_i} \cap Bl_v(P)$, $i = 1, \ldots r$ together with $\delta_{n-1} = H_{\xi_v,-1} \cap Bl_v(P)$.
- (5) $Bl_v(P)$ has the same dimension, n.

Geometrically what happened is that we introduced a $V(\Delta_{n-1}) = \mathbb{P}^{n-1}$ instead of the fixed point x(v).

11.6 Assignment: exercises

(1) A rational normal curve of degree d is defined as the image of the degree d Segre embedding of \mathbb{P}^1 :

$$\mathbb{P}^1 \to \mathbb{P}^{d+1} \ (x_0: x_1) \mapsto (x_0^d: x_0^{d-1}x_1: x_0^{d-2}x_1^2: \ldots: x_0x_1^{d-1}: x_0^d)$$

Let P be a lattice polytope. Show that for every edge $L \subset P$, the toric variety V(L) is smooth and isomorphic to a rational normal curve. What is the degree of such rational curve?

(2) Let a_0, \ldots, a_n be coprime positive integers. Consider the action of \mathbb{C}^* on \mathbb{C}^{n+1} given by:

$$t \cdot (x_1, \dots, x_n) = (t^{a_0} x_0, \dots, t^{a_n} x_n) = \mathbb{P}(a_0, \dots, a_n).$$

The quotient $(\mathbb{C}^{n+1} - \{0\})/\mathbb{C}^*$ exists and it is called the **weighted** projective space with weights a_0, \ldots, a_n .

- (a) In which sense is this a generalisation of \mathbb{P}^n ?
- (b) We say that a polynomial $p(x) = \sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{C}[x_0, x_1, x_2, \dots, x_n]$ is (a_0, a_1, \dots, a_n) -homogeneous of weighted degree s if every monomial x^{α} satisfies $\alpha \cdot (a_0, \dots, a_n) = s$. Show that f = 0 is a well defined equation on $\mathbb{P}(a_0, \dots, a_n)$ if and only if f is (a_0, a_1, \dots, a_n) -homogeneous.
- (c) Consider $\mathbb{P}(1,1,d)$. Show that the map $\mathbb{P}(1,1,d) \to \mathbb{P}^{d+1}$ defined by $(x_0,x_1,x_2) \to (x_0^d,x_x^{d-1}x_1,\ldots,x_ox_1^{d-1},x_1^d,x_2)$ is well defined.
- (d) Show that $\mathbb{P}(1,1,d)$ is a projective toric variety.
- (e) Construct the polytope associated to $\mathbb{P}(1,1,d)$.
- (f) (*)[bonus point] Can you show (d) and (e) for any $\mathbb{P}(a_0,\ldots,a_n)$?