
Institutionen för matematik, KTH.





Chapter 10

projective toric varieties and
polytopes: definitions

10.1 Introduction

Tori varieties are algebraic varieties related to the study of sparse poly-
nomials. A polynomial is said to be sparse if it only contains prescribed
monomials.

Let A = {m0, . . . ,md} ⊂ Zn be a finite subset of integer points. We will use
the multi-exponential notation:

xa = xa11 · xa22 · · ·xann where x = (x1, . . . , xn) and a = (a1, . . . , an) ∈ Zn

Sparse polynomials of type A are polynomials in n variables of type:

p(x) =
∑
a∈A

cax
a

For example if A = {(i, j) ∈ Z2
+ such that i + j ≤ k} then the polynomials

of type A are all possible polynomials of degree up to k.

Toric varieties admit equivalent definitions arising naturally in many math-
ematical areas such as: Algebraic Geometry, Symplectic Geometry, Combi-
natorics, Statistics, Theoretical Physics etc.

We will present here an approach coming from Convex geometry and will see
that toric varieties represent a natural generalization of projective spaces.

There are two main features we will try to emphasise:

(1) toric varieties, X, are prescribed by sparse polynomials, in the sense
that they are mapped in projective space via these pre-assigned mono-
mials, whose exponents span an integral polytope polytope PX . You
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can think at a parabola parametrized locally by t 7→ (t, t2). The mono-
mials are prescribed by the points 1, 2 ∈ Z. The polytope spanned by
these points is a segment of length 1, [1, 2]. Discrete data A (i.e. points
in Zn ) gives rise to a polytope PA and in turn to a torc variety XA

allowing a geometric analysis of the original data. This turns out to be
very useful in Statistics or Bio-analysis for example.

(2) Toric varieties are defined by binomial ideals, i.e. ideals generated
by polynomials consisting of two monomials: xu − xv. In the example
of the parabola all the points in the image are zeroes of the binomial:
y−x2. This feature is particularly useful in integer programming when
one wants to find a vertex (of the associated polytope) that minimises
a certain (cost) function.

10.2 Recap example

Consider the ideal (x3 − y2) ∈ C[x, y].

(a) The generating polynomial is irreducible and thus the corresponding
affine variety X = Z(x3 − y2) ⊂ C2 is an irreducible affine variety.

(b) Consider now the algebraic torus C∗ = C \ {0} ⊂ C. Notice that
C∗ = C \ Z(x), a Zariski-open subset of C. Consider now the map
φ : C∗ → C2 defined as φ(t) = (t2, t3). Observe that Im(φ) ⊆ X and
that ψ : Im(φ)→ C∗ defined as φ(x, y) = (y/x) is an inverse. It follows
that C∗ ∼= Im(φ), i.e. C∗ ⊂ X.

(c) The open set C∗ is also a multiplicative group. We can define a group
action on X as follows:

C∗ ×X → X, (t, (x, y)) 7→ (t2x, t3y).

Notice that, by definition, the action restricted to C∗ ⊂ X is the mul-
tiplication in the group.

We will call such a variety, i.e. a variety satisfying (a), (b) and (c), an affine
toric variety

10.3 Algebraic tori

Definition 10.3.1. A linear algebraic group is a Zariski-open set G hav-
ing the structure of a group and such that the multiplication map and the
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inverse map:
m : G×G→ G, i : G→ G

are morphisms of affine varieties.

Let G,G′ be two linear algebraic groups, a morphism G → G′ of linear
algebraic groups is a map which is a morphism of affine varieties and a
homomorphism of groups.

We will indicate the SET of such morphisms with HomAG(G,G′).

Excercise 10.3.2. Show that when G,G′ are abelian HomAG(G,G′) is an
abelian group.

Example 10.3.3. The classical examples of algebraic groups are:(C∗)n, GLn, SLn.
Definition 10.3.4. An n-dimensional algebraic torus is a Zariski-open set
T , isomorphic to (C∗)n.

An algebraic torus is a group, with the group operation that makes the
isomorphism (of affine varieties) a group-homomorphism. Hence an algebraic
torus is a linear algebraic group.

From now on we will drop the adjective algebraic in algebraic torus.

Definition 10.3.5. Let T be a torus.

• An element of the abelian group HomAG(C∗, T ) is called a one param-
eter subgroup of T .

• An element of the abelian group HomAG(T,C∗) is called a character of
T .

Lemma 10.3.6. Let T ∼= (C∗)n be a torus.

HomAG(T,C∗) ∼= Zn.

Proof. Because HomAG(T,C∗) ∼= (HomAG(C∗,C∗))n it suffices to prove that
HomAG(C∗,C∗) ∼= Z. Let F : C∗ → C∗ be an element of HomAG(C∗,C∗).
Then F (t) is a polynomial such that F (0) = 0 Moreover it is a multiplicative
group homomorphism, e.g. F (t2) = F (t)2. It follows that F (t) = tk for some
k ∈ Z.

A Laurent monomial in n variables is defined by

ta = ta1 · ta2 · . . . · tan , where a = (a1, . . . , an) ∈ Zn

Observe that ta defines a function (C∗)n → C∗, i.e. ta is a character of
the torus (C∗)n. Such character is usually denoted by χa : T → C∗ where
χa(t) = ta.

Another important fact, whose proof can be found in [H] is that:
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Lemma 10.3.7. Any irreducible closed subgroup of a torus (i.e. an irre-
ducible affine sub-variety which is a subgroup) is a sub-torus.

10.4 Toric varieties

Definition 10.4.1. A (affine or projective) toric variety of dimension n is
an irreducible (affine or projective) variety X such that

(1) X contains an n-dimensional torus T ∼= (C∗)n as Zariski-open subset.

(2) the multiplicative action of (C∗)n on itself extends to an action of (C∗)n
on X.

Example 10.4.2. Cn is an affine toric variety of dimension n.

Example 10.4.3. Pn is a projective toric variety of dimension n. The map
(C∗)n → Pn defined as (t1, . . . , tn) 7→ (1, t1, . . . , tn) identifies the torus (C∗)n
as a subset of the affine patch Cn ⊂ Pn. The action:

(t1, . . . , tn) · (x0, x1, . . . , xn) = (x0, t1x1, . . . , tnxn)

is an extension of the multiplicative action on the torus.

Example 10.4.4. Consider the Segre embedding seg : P1 × P1 ↪→ P3 given
by ((x0, x1), (y0, y1)) 7→ (x0y0, x0y1, x1y0, x1y1). Consider now the map φ :
(C∗)2 → (C∗)4 given by φ(t1, t2) = (1, t1, t2, t1t2). Observe that if one iden-
tifies (C∗)2 with the Zariski open P1 × P1 \ (V (x0 − 1) ∪ V (y0 − 1)) then
it is φ = seg|(C∗)2 . By Lemma 10.3.7 this image is a torus which shows
that the torus (C∗)2 can be identified with a Zariski open of the Segre
variety Im(seg) ⊂ P3. The torus action of (C∗)2 on Im(seg) defined by
(t1, t2) · (x0, x1, x3, xa) = (x0, t1x1, t2x3, t1t2x4) is by definition an extension
of the multiplicative self-action.

10.5 Discrete data: polytopes

Definition 10.5.1. A subset M ⊂ Rn is called a lattice if it satisfies one
of the following equivalent statements.

(1) M is an additive subgroup which is discrete as subset, i.e. there exists
a positive real number ε such that for each y ∈ M the only element x
such that d(x, y) < ε is given by y = x.
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(2) There are R-linearly independent vectors b1, . . . , bn such that:

M =
n∑
1

Zbi = {
n∑
1

cibi, ci ∈ Z}

A lattice of rank n is then isomorphic to Zn.

Definition 10.5.2. Let A = {m1, . . . ,md} ∈ Zn be a finite set of lattice
points. A combination of the form∑

aimi, such that
d∑
a

ai = 1, ai ∈ Q≥0

is called a convex combination. The set of all convex combinations of
points in A is called the convex hull of A and is denoted by Conv(A).

Definition 10.5.3. A convex lattice polytope P ⊂ Rn is the convex hull
of a fine subset A ⊂ Zn. The dimension of P is the dimension of the smallest
affine space containing P.

In what follows the term polytope will always mean a lattice convex polytope.

Example 10.5.4. Let e1, . . . , en be the standard basis of Rn. The polytope
Conv(0, e1, . . . , en) is called the n-dimensional regular simplex and it is de-
noted by ∆n.

Given a polytope P = Conv(m0,m1, . . . ,mn).

Let kP = {m1 + . . .+mk ∈ Rn s.t. mi ∈ P}.

∆1 = Conv(0, 1) ∆1 ×∆1

∆2 = Conv((0, 0), (0, 1), (1, 0)) 2∆2 = Conv((0, 0), (0, 2), (2, 0))

10.6 faces of a polytope

Let P ⊂ Rn be an n-dimensional lattice polytope. It can be described as the
intersection of a finite number of upper-half planes.
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Definition 10.6.1. Let ξ ∈ Zn be a vector with integer coordinates and let
b ∈ Z. Define:

H+
ξ,b = {m ∈ Rn‖ < m, ξ >≥ b}, Hξ,b = {m ∈ Rn‖ < m, ξ >= b}

H+
ξ,b is called an upper half plane and Hξ,b is called an hyperplane.

Definition 10.6.2. Let P ⊂ Rn be a convex lattice polytope. We say that
Hξ,b is a supporting hyperplane for P if Hξ,b ∩ P 6= ∅ and P ⊂ H+

ξ,b.

It is immediate to see that a polytope has a finite number of supporting
hyperplanes and that:

P =
s⋂
i=1

H+
ξi,bi

Definition 10.6.3. A face of a polytope P is the intersection of P with a
supporting hyperplane. P is considered an (improper) face of itself.

Faces are convex lattice polytopes as Conv(S) ∩Hξ,b = Conv(S ∩Hξ,b).

The dimension of the face is equal to the dimension of the corresponding
polytope.

Let F be a face, then

• F is a facet if dim(F ) = dim(P )− 1.

• F is a edge if dim(F ) = 1.

• F is a vertex if dim(F ) = 0.

Remark 10.6.4. Observe (and try to justify) that:

• All polytopes of dimesnsion one are segments.

• All the edges of a polytope contain two vertices.

• Conv(S) contains all the segments between two points in S.

• Every convex lattice polytope P is the convex hull of its vertices.

Definition 10.6.5. Let P, P ′ ⊂ Rn be two n-dimensional polytopes. They
are affinely equivalent if there is a lattice-preserving affine isomorphism φ :
Rn → Rn that maps P to P ′ and thus biectely P ∩ Zn to P ′ ∩ Zn.

Definition 10.6.6. Let P be a lattice polytope of dimension n.

• P is said to be simple if through avery vertex there are exactly n vertices.
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• P is said to be smooth if it is simple and for every vertex m the set of
vectors (v1 −m, . . . , vn −m), where vi is the first lattice point on the
i-th edge, forms a basis for the lattice Zn.

Remark 10.6.7. All the polygons are simple.

Lemma 10.6.8. a set of vectors {v1, . . . , vn} ∈ Rn is a basis for the lattice
Zn if and only if the associated matrix B (having the vi as columns) has
determinant ±1.

Proof. Let {v1, . . . , vn} ∈ Rn is a basis for the lattice Zn. Then there is an
integral matrix U such that In = UB. Moreover one can observe that the
matrix U defines a lattice isomorphism and thus, because the determinant of
the inverse has to be an integer, det(U) = ±1.

10.7 Assignment: exercises

(1) Consider a minimal hyperplane description of a lattice polytopes P. In
other words let P =

⋂s
i=1H

+
ξi,bi

where s is the the minimum number of
half-spaces necessary to cut out P. Show that P has s facets and that
the vectors ξi are normal vectors to the associated facet. Moreover
show that the pairs (ξi, bi) are uniquely determined up to enumeration
( the vectors ξi are unique up to positive scalar factors).

(2) Classify, up to affine equivalence, all the smooth polygons containing
at most 8 lattice points.
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Chapter 11

Construction of toric varieties

11.1 Recap example

Example 11.1.1. Consider the Segre embedding seg : P1 × P1 ↪→ P3 given by

((x0, x1), (y0, y1)) 7→ (x0y0, x0y1, x1y0, x1y1). Consider now the map φ : (C∗)2 →
(C∗)4 given by φ(t1, t2) = (1, t1, t2, t1t2). Observe that if one identifies (C)2 with

the Zariski open P1 × P1 \ (V (x0) ∪ V (y0)) then it is φ = seg|(C∗)2 . This image is

a torus which shows that the torus (C∗)2 can be identified with a Zariski open of

the Segre variety Im(seg) ⊂ P3. The torus action of (C∗)2 on Im(seg) defined by

(t1, t2) · (x0, x1, x3, x4) = (x0, t1x1, t2x3, t1t2x4) is by definition an extension of the

multiplicative self-action.

Notice that in Example 10.4.4 the map defining the toric embedding and the
torus action was given by characters associated to the vertices of the polytope
∆1 ×∆1. Observe moreover that for this polytope the vertices coincide with
all the lattice points in the polytope.

This is of course not always the case, the polytope 2∆2 for example is the
convex hull of 3 vertices, but it contains |2∆2 ∩ Z2| = 6 lattice points.

Example 11.1.2. Let A = 2∆2 ∩ Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)(0, 2), (2, 0)}.
Consider the map defined by the associated characters and the following
composition:

φA : (C∗)2 → C6 → P5, (t1, t2) 7→ (1, t1, t2, t1t2, t
2
1, t

2
2).

Observe that this map is the restriction of the 2-Veronese embedding. One
sees as above that such a variety is a two dimensional projective toric variety.

The previous examples suggest a general construction:
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11.2 Toric varieties from polytopes

Let T be an n-dimensional torus with character group M ∼= Zn and let
A = {m0, . . . ,md} ⊂M. Consider the following action of Ton Cd+1

t · (x0, . . . , xd) = (χm0(t)x0, . . . , χ
md(t)xd).

This action yields an action on the projective space Pd as t · (λx0, . . . , λxd) =
λ(χm0(t)x0, . . . , χ

md(t)xd).

Let x0 ∈ Pd be a general points, i.e. a points with non-zero homogeneous
coordinates. The orbit T · x0 = TA ∼= T. The Zarisky closure in Pd of the
orbit x0 ∼= T is a projective algebraic variety containing a torus as Zarisky
open set.

Let XA = TA to be such variety.

Alternatively:

Let P ⊂ Rn be an n-dimensional polytope and letA = P∩Zn = {m0, . . . ,md}.
Assume that m0 = 0 and that PA is contained in the positive orthant. Con-
sider the monomial map defined by the associated characters:

φA : (C∗)n → Cd+1 → Pd, (t1, . . . , tn) = t 7→ (1 : tm1 : . . . : tmd)

The image Im(φA) is a torus TA. Define XA to be the Zariski closure of TA.
This means that XA is the smallest subvariety of Pd containing TA. Let A
denote the n× (d+ 1) matrix whose columns are the vectors mi.

Lemma 11.2.1. Th variety XA is a projective toric variety of dimension
equal to rank(A).

Proof. Let TA = (C∗)r and consider the lattice of its characters: HomAG(TA,C∗) =
Zr. The map φA induces a map:

HomAG((C∗)d+1,C∗)→ HomAG((C∗)n,C∗); f 7→ f ◦ φA

ψA : Zd+1 → Zn, ei 7→ mi

where ei are the elements of the standard lattice basis. We see that ψA(Zd+1) =
Zr, and thus that r = rank(A).

Excercise 11.2.2. Consider the n−dimensional standard simplex ∆n = Conv(e0, e1, . . . , en),
where e0 = 0. Describe the projective toric variety associated to ∆n and 2∆n.

Let P ⊂ Rn be an n-dimensional lattice polytope. The toric variety associ-
ated to P, denoted by XP is the topic variety XP∩Zn .
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11.3 Affine patching and subvarieties

11.4 Recap example

You have seen that Pn is the projective toric variety associated to the poly-
tope ∆n. By translating any vertex ei to e0 = 0 one can contruct a map:
φi : (C∗)n → Cn ↪→ Pn defined by t 7→ (te0−ei , . . . , 1, ten−ei). The Zariski
closure of Im(φi) defines the affine patch of Pn where xi 6= 0, i.e.

Im(φi) = Xi

Notice that the map φi is the map defined by the lattice points:

Ai = {e0 − ei, ei − ei, . . . , en − ei}

We will see that projective toric varieties are in a sense a generalisation of
projective space as they are built by patching together affine toric varieties
defined by the vertices of the polytope.

11.5 Affine patching

Let P ⊂ Rn be a polytope and let A = P ∩ Zn = {m0, . . . ,md}. For every
mi ∈ A define Ami

= {m − mi|m ∈ A}. Consider φAm : (C∗)n → Cd, t 7→
(. . . , tmj−mi , . . .)mj∈A and define:

Xm = Im(φAm) ⊂ Cd.

Not that Xm is an affine toric variety.

Proposition 11.5.1. Notation as above. Let V = {v1, . . . , vr} be the set of
vertices of P. Then

XA
∼=

⋃
vi∈V

Xvi .

Proof. First notice that Xmi
= XA ∩ Xi ⊂ Pd and thus XA = ∪m∈AXm.

We prove the proposition if we show that or every m ∈ A there is at least
one vertex v ∈ V such that Xm ⊆ Xv. As observed P = Conv(V ). Let
m =

∑
vi∈V kivi. After clearing denominators we can write km =

∑
vi∈V kivi,

for ki ∈ Z≥0. Notice that tm 6= 0 iff tkm = t
∑
kivi = Π(tvi)ki 6= 0, which

happens only if tvi 6= 0 for every ki 6= 0. This shows that Xm ⊆ Xvi for every
ki 6= 0.
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The vertices of the polytope defines the affine patches that bild the associated
toric variety. The following gives an intuition of how projective toric varieties
are considered a generalisation of the projective space.

Excercise 11.5.2. Let P be a polytope of dimension n and let P ∩ Zn =
{m0, . . . ,md}. Show that

• d ≥ n

• d = n and m1, . . . ,mn is a lattice basis (i.e. every vector in Zn is an
integral combination of m1, . . . ,mn) if and only if P = ∆n.

Let us now examine closer the category of smooth polytopes and the asso-
ciated topic varieties. Let P be a smooth polytope anklet m0 be a vertex.
After a lattice-preserving affine transformation can we assume that m0 = 0
and that the primitive vectors on the n edges through m0 are e1, . . . , en.

Lemma 11.5.3. (Exercise) Let P be a smooth polytope. Then Xv
∼= Cn for

every vertex v.

Observe that if P is a n-dimensional smooth lattice polytope, then a facet
F ⊂ P is a smooth polytopes of dimension (n − 1). Denote by XF the
associated topic variety.

Lemma 11.5.4. Let P be a smooth polytope. Then XP \ TP = ∪F facet XF .

Proof. Let dim(P ) = n, let V denote the set of vertices of P and V (F )
denote the set of vertices of F . First observe that:

XP \ TP = ∪v∈V (Xv \ TP ) = ∪v∈V (∪i({(x1, . . . , xn) ∈ Xv s.t. xi = 0})).

Let v = (m1, . . . ,mn) ∈ V, then are n facets passing through v, F1, . . . , Fn
such that vi = (mi, . . . ,mi−1,mi+1,mn) ∈ V (Fi). Clearly it is:

{(x1, . . . , xn) ∈ Xv s.t. xi = 0} ∼= Xvi ⊂ XFi
.

This proves that XP \ TP ⊆ ∪F facet XF . But because for each facet it is
XF = ∪w∈V (F )Xw and w = vi for some v ∈ V, it is clearly

XF ⊂ ∪vi=w,w∈V (F )Xv \ TN and thus ∪F facet XF ⊆ XP \ TP .
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11.6 Assignment: exercises

(1) Prove Lemma ??

(2) Recall that kP = {m1+. . .+mk s.t. mi ∈ P} and that if P1 ⊂ Rn, P2 ⊂
Rt then P1×P2 = {(m,n) s.t. m ∈ P1,m ∈ P2} ⊂ Rn×Rt is a polytope
of dimension dim(P1) + dim(P2) and whose faces are products of faces
of resp. polytopes.

(a) Describe the faces of the polytope P = ∆1 × 2∆2.

(b) Is P smooth?

(c) Describe the toric variety XP as union of affine patches.

(d) Describe the induced map XP → P11.
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11.7 Ideals defined by lattice points

Definition 11.7.1. A semigroup S is a set with an associative binary oper-
ation and an identity 0.

A semigroup is finitely generated if there is a finite subset A ⊂ S such that

S = NA = {
∑
m∈A

amm s.t. am ∈ N}.

Definition 11.7.2. A finitely generated semigroup S = NA is called an
affine semigroup if

• the binary operation is commutative

• It can be embedded in a lattice.

Let S be an affine semigroup, embedded in the lattice Zn. We associate to it
the so called semigroup algebra:

C[S] = {
∑
m∈S

cmχ
m s.t. cm ∈ C and cm = 0 for all but finitely many m}

Lemma 11.7.3. The semigroup algebra C[S]is a subring of the ring of Lurent
polynomials in d variables C[t1, t

−1
1 , ..., tn, t

−1
n ].

Proof. The proof is left as exercise.

Consider an affine toric variety XA, associated to the finite subset A ⊂ Zn.
It clearly defines an affine semigroup SA and a semigroup algebra

C[SA] = C[XA] = C[χm1 , ..., χmd ]

(associated to the characters of the torus).

Remark 11.7.4. The semigroup algebra associated to the torus TA is the
algebra of all Laurent polynomials in n variables:

C[TA] = C[t1, t
−1
1 , ..., tn, t

−1
n ]

Note that (C∗)n ∼= V (x1y1 − 1, ..., xnyn − 1) ⊂ C2n.

Let A = {m0, . . . ,md} ⊂ Zn as above. Consider the following two maps:

ψ∗A : C[y0, . . . , yd]→ C[x1, · · · , xn], ψA : Zd+1 → Zn

defined as:
ψ∗A(yi) = xmi and ψA(ei) = mi

Let IA = Ker(ψ∗A) and L = Ker(ψA). Let moreover I = {yα − yβ|α, β ∈
Nd and α− β ∈ L}.
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Lemma 11.7.5. IA is a prime ideal of the ring C[y0, . . . , yd].

Proof. The kernel of a ring-morphism is always an ideal. Notice that C[y0, . . . , yd]/IA ∼=
C[xm0 , . . . , xmd ] and that C[xm0 , . . . , xmd ] is an integral domain.

Proposition 11.7.6.

IA = I.

Proof. It is easily checked that I ⊆ IA. Let α =
∑
αiei, β =

∑
βiei ∈

Nd such that α− β ∈ L, i.e.
∑
αimi =

∑
i βimi. Then t

∑
miαi = t

∑
miβi and

thus ψ∗A(yα − yβ) = 0. Assume now that IA \ I 6= ∅ and let f ∈ IA \ I be the
element of minimal (after setting a term order)leading coefficient yα. After
possibly rescaling we can write:

f = yα + f1 ,where f(xm1 , . . . , xmd) = 0.

It follows that f1 has a monomial yβ such that φ∗A(yα) = φ∗A(yβ) and thus
α − β ∈ L which implies yα − yβ ∈ I for α = αjej, β = βjej. It follows that
f2 = f − (yα − yβ) ∈ IA \ I is an element with lower leading term than f
which is impossible.

11.8 toric ideals

Definition 11.8.1. A prime ideal I ⊆ C[y0, . . . , yd] is called a toric ideal
if it is of the form IA for some A ⊂ Zd.

Proposition 11.8.2. (Homogeneous) toric ideals I define toric (projective)
varieties and (projective) toric varieties are defined by (homogeneous) toric
ideals.

Proof. Consider a projective toric variety XA ⊂ Pd defined by

A = {m0, . . . ,md} ⊂ Zn.

Let I ∈ C[y0, . . . , yd] be the homogeneous ideal defining YA. By definition
f(xm0 , . . . , xmd) = 0 for all f ∈ I which implies I ⊆ IA and thus V (IA) ⊆ XA.
On the other hand all the polynomials in IA vanish on φA((C∗)n) which
implies that IA ⊆ I(φA((C∗)n)) and thus φA((C∗)n) ⊆ V (IA). But XA is
the smallest closed subvariety containing φA((C∗)n) which implies XA =
V (IA).
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11.9 Toric maps

Definition 11.9.1. Let X, Y be toric varieties and let TX , TY be the algebraic
tori. A map f : X → Y is said to be a toric map if

(1) f(TX) ⊆ TY ;

(2) f |TX : TX → TY is a group homomorphism.

Definition 11.9.2. A toric map f : X → Y is equivariant if

f(t · x) = f(t) · f(x).

Consider the map φA : XA ↪→ Pd. This is an equivariant toric map (we call
it a toric embedding). In fact φA(TX) ⊂ TPd and they are related via the
following:

TPd = Pd \ V (x0 · x1 · · · · · xd).

1→ C∗ → (C∗)d+1 → TPd → 1

φA : TXA
→ (C∗)d+1 → TPd .

Moreover

φA(tx) = ((tx)m0 , . . . , (tx)md) = φA(t) · φA(x).

11.10 Fixed points

Let P be a smooth polytope of dimension n. and and let V (P ) denote the
set of vertices. For every vertex v ∈ V (F ) there are n facets passing through
v, F1, . . . , Fn. Notice that:

v = ∩ni=1Fi
∩n1V (Fi) = (0, . . . , 0) ∈ Xv

∼= Cn

Every vertex v ∈ V (P ) corresponds to the point 0 ∈ Xv which is the unique
point of Xv fixed by the tour action. This means that |V (P )| corresponds to
the number of fixed points in XP .

Example 11.10.1. The torus action on Pn has n+ 1 fixed points: (1 : 0 : . . . :
0), (0 : 1 : . . . : 0), . . . , (0 : . . . : 0 : 1).
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11.11 Blow up at a fixed point

We will define a new polytope, obtained by a give one by truncating a vertex.
This is not possible with every polytope and it is for this reason that in this
chapter we make the following important assumption.

Definition 11.11.1. Let P bee a smooth polytope of dimension n. A vertex
v is called a vertex of order 2 if the length of all the n edges through v is
at least 2.

Lat P = ∩r1H+
ξi,bi

and let v be a vertex of order 2. Let F1, . . . , Fn be the
facets catting v corresponding to Hξ1,b1 ∩ P, . . . , Hξn,bn ∩ P. We will call the
following polytope the blow up of P at v and will denote it by Blv(P ) :

Blv(P ) = (∩r1H+
ξi,bi

) ∩H+
ξv ,−1

where ξv = ξ1 + . . .+ ξn.

P=
v
Blv(P ) =

The blow up polytope define a topic variety which will be denoted byBlx(v)(X)
and called the Blow up of X at the point x(v). Let dim(P ) = n, one can see
immediately that:

(1) If X ⊂ Pd then Blx(v)(X) ⊂ Pd−1.

(2) Let V (P ) = {m0, . . . ,md}, with v = md and let e1, . . . , en be the first in-
teger points on the edges through v. Then V (Blv(P )) = {m0, . . . ,md−1, e1, . . . , en}.

(3) Hξv ,−1 ∩Blv(P ) = Conv(e1, . . . , en) ∼= ∆n−1)

(4) If the facets of P are Hξj ,bi ∩ P, i = 1, . . . r the the facets of Blv(P ) are
Hξj ,bi ∩Blv(P ), i = 1, . . . r together with δn−1 = Hξv ,−1 ∩Blv(P ).

(5) Blv(P )has the same dimension, n.

Geometrically what happened is that we introduced a V (∆n−1) = Pn−1 in-
stead of the fixed point x(v).
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11.12 Assignment: exercises

(1) A rational normal curve of degree d is defined as the image of the degree
d Segre embedding of P1 :

P1 → Pd+1 (x0 : x1) 7→ (xd0 : xd−10 x1 : xd−20 x21 : . . . : x0x
d−1
1 : xd0)

Let P be a lattice polytope. Show that for every edge L ⊂ P, the toric
variety V (L) is smooth and isomorphic to a rational normal curve.
What is the degree of such rational curve?

(2) Let a0, . . . , an be coprime positive integers. Consider the action of C∗
on Cn+1 given by:

t · (x1, . . . , xn) = (ta0x0, . . . , t
anxn) = P(a0, . . . , an).

The quotient (Cn+1 − {0})/C∗ exists and it is called the weighted
projective space with weights a0, . . . , an.

(a) In which sense is this a generalisation of Pn?

(b) We say that a polynomial p(x) =
∑

α cαx
α ∈ C[x0, x1, x2, . . . , xn]

is (a0, a1, . . . , an)−homogeneous of weighted degree s if every mono-
mial xα satisfies α · (a0, . . . , an) = s. Show that f = 0 is a well de-
fined equation on P(a0, . . . , an) if and only if f is (a0, a1, . . . , an)−homogeneous.

(c) Consider P(1, 1, d). Show that the map P(1, 1, d) → Pd+1 defined
by (x0, x1, x2)→ (xd0, x

d−1
x x1, . . . , xox

d−1
1 , xd1, x2) is well defined.

(d) Show that P(1, 1, d) is a projective toric variety.

(e) Construct the polytope associated to P(1, 1, d).

(f) (*)[bonus point] Can you show (d) and (e) for any P(a0, . . . , an)?
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