

KTH Teknikvetenskap

Institutionen för matematik, KTH.

Chapter 10

projective toric varieties and polytopes: definitions

10.1 Introduction

Tori varieties are algebraic varieties related to the study of **sparse poly-nomials.** A polynomial is said to be sparse if it only contains prescribed monomials.

Let $A = \{m_0, \ldots, m_d\} \subset \mathbb{Z}^n$ be a finite subset of integer points. We will use the multi-exponential notation:

$$x^{a} = x_{1}^{a_{1}} \cdot x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$$
 where $x = (x_{1}, \dots, x_{n})$ and $a = (a_{1}, \dots, a_{n}) \in \mathbb{Z}^{n}$

Sparse polynomials of type A are polynomials in n variables of type:

$$p(x) = \sum_{a \in A} c_a x^a$$

For example if $A = \{(i, j) \in \mathbb{Z}^2_+$ such that $i + j \leq k\}$ then the polynomials of type A are all possible polynomials of degree up to k.

Toric varieties admit equivalent definitions arising naturally in many mathematical areas such as: Algebraic Geometry, Symplectic Geometry, Combinatorics, Statistics, Theoretical Physics etc.

We will present here an approach coming from Convex geometry and will see that toric varieties represent a natural generalization of projective spaces. There are two main features we will try to emphasise:

(1) toric varieties, X, are prescribed by **sparse polynomials**, in the sense that they are mapped in projective space via these pre-assigned monomials, whose exponents span an integral polytope **polytope** P_X . You

can think at a parabola parametrized locally by $t \mapsto (t, t^2)$. The monomials are prescribed by the points $1, 2 \in \mathbb{Z}$. The polytope spanned by these points is a segment of length 1, [1, 2]. Discrete data A (i.e. points in \mathbb{Z}^n) gives rise to a polytope P_A and in turn to a torc variety X_A allowing a geometric analysis of the original data. This turns out to be very useful in Statistics or Bio-analysis for example.

(2) Toric varieties are defined by **binomial ideals**, i.e. ideals generated by polynomials consisting of two monomials: $x^u - x^v$. In the example of the parabola all the points in the image are zeroes of the binomial: $y - x^2$. This feature is particularly useful in integer programming when one wants to find a vertex (of the associated polytope) that minimises a certain (cost) function.

10.2 Recap example

Consider the ideal $(x^3 - y^2) \in \mathbb{C}[x, y]$.

- (a) The generating polynomial is irreducible and thus the corresponding affine variety $X = Z(x^3 y^2) \subset \mathbb{C}^2$ is an **irreducible affine variety**.
- (b) Consider now the **algebraic torus** $\mathbb{C}^* = \mathbb{C} \setminus \{0\} \subset \mathbb{C}$. Notice that $\mathbb{C}^* = \mathbb{C} \setminus Z(x)$, a Zariski-open subset of \mathbb{C} . Consider now the map $\phi : \mathbb{C}^* \to \mathbb{C}^2$ defined as $\phi(t) = (t^2, t^3)$. Observe that $Im(\phi) \subseteq X$ and that $\psi : Im(\phi) \to \mathbb{C}^*$ defined as $\phi(x, y) = (y/x)$ is an inverse. It follows that $\mathbb{C}^* \cong Im(\phi)$, i.e. $\mathbb{C}^* \subset X$.
- (c) The open set \mathbb{C}^* is also a multiplicative group. We can define a **group** action on X as follows:

 $\mathbb{C}^* \times X \to X, (t, (x, y)) \mapsto (t^2 x, t^3 y).$

Notice that, by definition, the action restricted to $\mathbb{C}^* \subset X$ is the multiplication in the group.

We will call such a variety, i.e. a variety satisfying (a), (b) and (c), an **affine** toric variety

10.3 Algebraic tori

Definition 10.3.1. A linear algebraic group is a Zariski-open set G having the structure of a group and such that the multiplication map and the

inverse map:

$$m: G \times G \to G, i: G \to G$$

are morphisms of affine varieties.

Let G, G' be two linear algebraic groups, a morphism $G \to G'$ of linear algebraic groups is a map which is a morphism of affine varieties and a homomorphism of groups.

We will indicate the SET of such morphisms with $Hom_{AG}(G, G')$.

Excercise 10.3.2. Show that when G, G' are abelian $Hom_{AG}(G, G')$ is an abelian group.

Example 10.3.3. The classical examples of algebraic groups are: $(\mathbb{C}^*)^n$, GL_n , SL_n .

Definition 10.3.4. An *n*-dimensional algebraic torus is a Zariski-open set T, isomorphic to $(\mathbb{C}^*)^n$.

An algebraic torus is a group, with the group operation that makes the isomorphism (of affine varieties) a group-homomorphism. Hence an algebraic torus is a linear algebraic group.

From now on we will drop the adjective algebraic in algebraic torus.

Definition 10.3.5. Let T be a torus.

- An element of the abelian group $Hom_{AG}(\mathbb{C}^*, T)$ is called a one parameter subgroup of T.
- An element of the abelian group $Hom_{AG}(T, \mathbb{C}^*)$ is called a character of T.

Lemma 10.3.6. Let $T \cong (\mathbb{C}^*)^n$ be a torus.

$$Hom_{AG}(T, \mathbb{C}^*) \cong \mathbb{Z}^n.$$

Proof. Because $Hom_{AG}(T, \mathbb{C}^*) \cong (Hom_{AG}(\mathbb{C}^*, \mathbb{C}^*))^n$ it suffices to prove that $Hom_{AG}(\mathbb{C}^*, \mathbb{C}^*) \cong \mathbb{Z}$. Let $F : \mathbb{C}^* \to \mathbb{C}^*$ be an element of $Hom_{AG}(\mathbb{C}^*, \mathbb{C}^*)$. Then F(t) is a polynomial such that F(0) = 0 Moreover it is a multiplicative group homomorphism, e.g. $F(t^2) = F(t)^2$. It follows that $F(t) = t^k$ for some $k \in \mathbb{Z}$.

A Laurent monomial in n variables is defined by

$$t^a = t^{a_1} \cdot t^{a_2} \cdot \ldots \cdot t^{a_n}$$
, where $a = (a_1, \ldots, a_n) \in \mathbb{Z}^n$

Observe that t^a defines a function $(\mathbb{C}^*)^n \to \mathbb{C}^*$, i.e. t^a is a character of the torus $(\mathbb{C}^*)^n$. Such character is usually denoted by $\chi^a : T \to \mathbb{C}^*$ where $\chi^a(t) = t^a$.

Another important fact, whose proof can be found in [H] is that:

Lemma 10.3.7. Any irreducible closed subgroup of a torus (i.e. an irreducible affine sub-variety which is a subgroup) is a sub-torus.

10.4 Toric varieties

Definition 10.4.1. A (affine or projective) **toric variety** of dimension n is an irreducible (affine or projective) variety X such that

- (1) X contains an n-dimensional torus $T \cong (\mathbb{C}^*)^n$ as Zariski-open subset.
- (2) the multiplicative action of $(\mathbb{C}^*)^n$ on itself extends to an action of $(\mathbb{C}^*)^n$ on X.

Example 10.4.2. \mathbb{C}^n is an affine toric variety of dimension n.

Example 10.4.3. \mathbb{P}^n is a projective toric variety of dimension n. The map $(\mathbb{C}^*)^n \to \mathbb{P}^n$ defined as $(t_1, \ldots, t_n) \mapsto (1, t_1, \ldots, t_n)$ identifies the torus $(\mathbb{C}^*)^n$ as a subset of the affine patch $\mathbb{C}^n \subset \mathbb{P}^n$. The action:

$$(t_1, \ldots, t_n) \cdot (x_0, x_1, \ldots, x_n) = (x_0, t_1 x_1, \ldots, t_n x_n)$$

is an extension of the multiplicative action on the torus.

Example 10.4.4. Consider the Segre embedding $seg : \mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$ given by $((x_0, x_1), (y_0, y_1)) \mapsto (x_0y_0, x_0y_1, x_1y_0, x_1y_1)$. Consider now the map $\phi : (\mathbb{C}^*)^2 \to (\mathbb{C}^*)^4$ given by $\phi(t_1, t_2) = (1, t_1, t_2, t_1t_2)$. Observe that if one identifies $(\mathbb{C}^*)^2$ with the Zariski open $\mathbb{P}^1 \times \mathbb{P}^1 \setminus (V(x_0 - 1) \cup V(y_0 - 1))$ then it is $\phi = seg|_{(\mathbb{C}^*)^2}$. By Lemma 10.3.7 this image is a torus which shows that the torus $(\mathbb{C}^*)^2$ can be identified with a Zariski open of the Segre variety $Im(seg) \subset \mathbb{P}^3$. The torus action of $(\mathbb{C}^*)^2$ on Im(seg) defined by $(t_1, t_2) \cdot (x_0, x_1, x_3, x_a) = (x_0, t_1x_1, t_2x_3, t_1t_2x_4)$ is by definition an extension of the multiplicative self-action.

10.5 Discrete data: polytopes

Definition 10.5.1. A subset $M \subset \mathbb{R}^n$ is called a **lattice** if it satisfies one of the following equivalent statements.

(1) M is an additive subgroup which is discrete as subset, i.e. there exists a positive real number ϵ such that for each $y \in M$ the only element x such that $d(x, y) < \epsilon$ is given by y = x. (2) There are \mathbb{R} -linearly independent vectors b_1, \ldots, b_n such that:

$$M = \sum_{1}^{n} \mathbb{Z}b_i = \{\sum_{1}^{n} c_i b_i, c_i \in \mathbb{Z}\}$$

A lattice of rank n is then isomorphic to \mathbb{Z}^n .

Definition 10.5.2. Let $A = \{m_1, \ldots, m_d\} \in \mathbb{Z}^n$ be a finite set of lattice points. A combination of the form

$$\sum a_i m_i$$
, such that $\sum_a^d a_i = 1, a_i \in \mathbb{Q}_{\geq 0}$

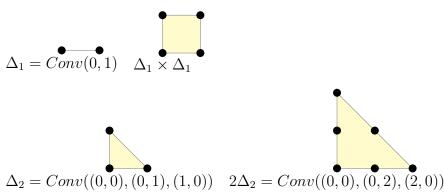
is called a **convex combination**. The set of all convex combinations of points in A is called the **convex hull** of A and is denoted by Conv(A).

Definition 10.5.3. A convex lattice polytope $P \subset \mathbb{R}^n$ is the convex hull of a fine subset $A \subset \mathbb{Z}^n$. The dimension of P is the dimension of the smallest affine space containing P.

In what follows the term polytope will always mean a lattice convex polytope.

Example 10.5.4. Let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n . The polytope $Conv(0, e_1, \ldots, e_n)$ is called the *n*-dimensional regular simplex and it is denoted by Δ_n .

Given a polytope $P = Conv(m_0, m_1, \dots, m_n)$. Let $kP = \{m_1 + \dots + m_k \in \mathbb{R}^n \text{ s.t. } m_i \in P\}.$



10.6 faces of a polytope

Let $P \subset \mathbb{R}^n$ be an *n*-dimensional lattice polytope. It can be described as the intersection of a finite number of upper-half planes.

Definition 10.6.1. Let $\xi \in \mathbb{Z}^n$ be a vector with integer coordinates and let $b \in \mathbb{Z}$. Define:

$$H_{\xi,b}^{+} = \{ m \in \mathbb{R}^{n} \| < m, \xi \ge b \}, H_{\xi,b} = \{ m \in \mathbb{R}^{n} \| < m, \xi \ge b \}$$

 $H_{\xi,b}^+$ is called an upper half plane and $H_{\xi,b}$ is called an hyperplane.

Definition 10.6.2. Let $P \subset \mathbb{R}^n$ be a convex lattice polytope. We say that $H_{\xi,b}$ is a supporting hyperplane for P if $H_{\xi,b} \cap P \neq \emptyset$ and $P \subset H_{\xi,b}^+$.

It is immediate to see that a polytope has a finite number of supporting hyperplanes and that:

$$P = \bigcap_{i=1}^{s} H_{\xi_i, b}^+$$

Definition 10.6.3. A face of a polytope P is the intersection of P with a supporting hyperplane. P is considered an (improper) face of itself. Faces are convex lattice polytopes as $Conv(S) \cap H_{\xi,b} = Conv(S \cap H_{\xi,b})$. The dimension of the face is equal to the dimension of the corresponding polytope.

Let F be a face, then

- F is a facet if $\dim(F) = \dim(P) 1$.
- F is a edge if $\dim(F) = 1$.
- F is a vertex if $\dim(F) = 0$.

Remark 10.6.4. Observe (and try to justify) that:

- All polytopes of dimension one are segments.
- All the edges of a polytope contain two vertices.
- Conv(S) contains all the segments between two points in S.
- Every convex lattice polytope P is the convex hull of its vertices.

Definition 10.6.5. Let $P, P' \subset \mathbb{R}^n$ be two n-dimensional polytopes. They are affinely equivalent if there is a lattice-preserving affine isomorphism ϕ : $\mathbb{R}^n \to \mathbb{R}^n$ that maps P to P' and thus biectely $P \cap \mathbb{Z}^n$ to $P' \cap \mathbb{Z}^n$.

Definition 10.6.6. Let P be a lattice polytope of dimension n.

• P is said to be simple if through avery vertex there are exactly n vertices.

P is said to be smooth if it is simple and for every vertex m the set of vectors (v₁ − m,..., v_n − m), where v_i is the first lattice point on the *i*-th edge, forms a basis for the lattice Zⁿ.

Remark 10.6.7. All the polygons are simple.

Lemma 10.6.8. a set of vectors $\{v_1, \ldots, v_n\} \in \mathbb{R}^n$ is a basis for the lattice \mathbb{Z}^n if and only if the associated matrix B (having the v_i as columns) has determinant ± 1 .

Proof. Let $\{v_1, \ldots, v_n\} \in \mathbb{R}^n$ is a basis for the lattice \mathbb{Z}^n . Then there is an integral matrix U such that $I_n = UB$. Moreover one can observe that the matrix U defines a lattice isomorphism and thus, because the determinant of the inverse has to be an integer, $\det(U) = \pm 1$. \Box

10.7 Assignment: exercises

- (1) Consider a minimal hyperplane description of a lattice polytopes P. In other words let $P = \bigcap_{i=1}^{s} H_{\xi_i, b_i}^+$ where s is the the minimum number of half-spaces necessary to cut out P. Show that P has s facets and that the vectors ξ_i are normal vectors to the associated facet. Moreover show that the pairs (ξ_i, b_i) are uniquely determined up to enumeration (the vectors ξ_i are unique up to positive scalar factors).
- (2) Classify, up to affine equivalence, all the smooth polygons containing at most 8 lattice points.

Chapter 11

Construction of toric varieties

11.1 Recap example

Example 11.1.1. Consider the Segre embedding $seg : \mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$ given by $((x_0, x_1), (y_0, y_1)) \mapsto (x_0y_0, x_0y_1, x_1y_0, x_1y_1)$. Consider now the map $\phi : (\mathbb{C}^*)^2 \to (\mathbb{C}^*)^4$ given by $\phi(t_1, t_2) = (1, t_1, t_2, t_1t_2)$. Observe that if one identifies $(\mathbb{C})^2$ with the Zariski open $\mathbb{P}^1 \times \mathbb{P}^1 \setminus (V(x_0) \cup V(y_0))$ then it is $\phi = seg|_{(\mathbb{C}^*)^2}$. This image is a torus which shows that the torus $(\mathbb{C}^*)^2$ can be identified with a Zariski open of the Segre variety $Im(seg) \subset \mathbb{P}^3$. The torus action of $(\mathbb{C}^*)^2$ on Im(seg) defined by $(t_1, t_2) \cdot (x_0, x_1, x_3, x_4) = (x_0, t_1x_1, t_2x_3, t_1t_2x_4)$ is by definition an extension of the multiplicative self-action.

Notice that in Example 10.4.4 the map defining the toric embedding and the torus action was given by characters associated to the vertices of the polytope $\Delta_1 \times \Delta_1$. Observe moreover that for this polytope the vertices coincide with all the lattice points in the polytope.

This is of course not always the case, the polytope $2\Delta_2$ for example is the convex hull of 3 vertices, but it contains $|2\Delta_2 \cap \mathbb{Z}^2| = 6$ lattice points.

Example 11.1.2. Let $A = 2\Delta_2 \cap \mathbb{Z}^2 = \{(0,0), (0,1), (1,0), (1,1)(0,2), (2,0)\}$. Consider the map defined by the associated characters and the following composition:

$$\phi_A : (\mathbb{C}^*)^2 \to \mathbb{C}^6 \to \mathbb{P}^5, (t_1, t_2) \mapsto (1, t_1, t_2, t_1 t_2, t_1^2, t_2^2).$$

Observe that this map is the restriction of the 2-Veronese embedding. One sees as above that such a variety is a two dimensional projective toric variety.

The previous examples suggest a general construction:

11.2 Toric varieties from polytopes

Let T be an n-dimensional torus with character group $M \cong \mathbb{Z}^n$ and let $A = \{m_0, \ldots, m_d\} \subset M$. Consider the following action of Ton \mathbb{C}^{d+1}

$$t \cdot (x_0, \ldots, x_d) = (\chi^{m_0}(t)x_0, \ldots, \chi^{m_d}(t)x_d).$$

This action yields an action on the projective space \mathbb{P}^d as $t \cdot (\lambda x_0, \ldots, \lambda x_d) = \lambda(\chi^{m_0}(t)x_0, \ldots, \chi^{m_d}(t)x_d).$

Let $x_0 \in \mathbb{P}^d$ be a general points, i.e. a points with non-zero homogeneous coordinates. The orbit $T \cdot x_0 = T_A \cong T$. The Zarisky closure in \mathbb{P}^d of the orbit $x_0 \cong T$ is a projective algebraic variety containing a torus as Zarisky open set.

Let $X_A = \overline{T_A}$ to be such variety.

Alternatively:

Let $P \subset \mathbb{R}^n$ be an *n*-dimensional polytope and let $A = P \cap \mathbb{Z}^n = \{m_0, \ldots, m_d\}$. Assume that $m_0 = 0$ and that P_A is contained in the positive orthant. Consider the monomial map defined by the associated characters:

 $\phi_A : (\mathbb{C}^*)^n \to \mathbb{C}^{d+1} \to \mathbb{P}^d, (t_1, \dots, t_n) = t \mapsto (1 : t^{m_1} : \dots : t^{m_d})$

The image $Im(\phi_A)$ is a torus T_A . Define X_A to be the Zariski closure of T_A . This means that X_A is the smallest subvariety of \mathbb{P}^d containing T_A . Let \mathcal{A} denote the $n \times (d+1)$ matrix whose columns are the vectors m_i .

Lemma 11.2.1. The variety X_A is a projective toric variety of dimension equal to rank(\mathcal{A}).

Proof. Let $T_A = (\mathbb{C}^*)^r$ and consider the lattice of its characters: $Hom_{AG}(T_A, \mathbb{C}^*) = \mathbb{Z}^r$. The map ϕ_A induces a map:

$$Hom_{AG}((\mathbb{C}^*)^{d+1}, \mathbb{C}^*) \to Hom_{AG}((\mathbb{C}^*)^n, \mathbb{C}^*); \ f \mapsto f \circ \phi_A$$
$$\psi_A : \mathbb{Z}^{d+1} \to \mathbb{Z}^n, e_i \mapsto m_i$$

where e_i are the elements of the standard lattice basis. We see that $\psi_A(\mathbb{Z}^{d+1}) = \mathbb{Z}^r$, and thus that $r = rank(\mathcal{A})$.

Excercise 11.2.2. Consider the *n*-dimensional standard simplex $\Delta_n = Conv(e_0, e_1, \ldots, e_n)$, where $e_0 = 0$. Describe the projective toric variety associated to Δ_n and $2\Delta_n$.

Let $P \subset \mathbb{R}^n$ be an *n*-dimensional lattice polytope. The toric variety associated to P, denoted by X_P is the topic variety $X_{P \cap \mathbb{Z}^n}$.

11.3 Affine patching and subvarieties

11.4 Recap example

You have seen that \mathbb{P}^n is the projective toric variety associated to the polytope Δ_n . By translating any vertex e_i to $e_0 = 0$ one can contruct a map: $\phi^i : (\mathbb{C}^*)^n \to \mathbb{C}^n \hookrightarrow \mathbb{P}^n$ defined by $t \mapsto (t^{e_0-e_i}, \ldots, 1, t^{e_n-e_i})$. The Zariski closure of $Im(\phi_i)$ defines the affine patch of \mathbb{P}^n where $x_i \neq 0$, i.e.

$$\overline{Im(\phi_i)} = X_i$$

Notice that the map ϕ_i is the map defined by the lattice points:

 $A_i = \{e_0 - e_i, e_i - e_i, \dots, e_n - e_i\}$

We will see that projective toric varieties are in a sense a generalisation of projective space as they are built by patching together affine toric varieties defined by the vertices of the polytope.

11.5 Affine patching

Let $P \subset \mathbb{R}^n$ be a polytope and let $A = P \cap \mathbb{Z}^n = \{m_0, \ldots, m_d\}$. For every $m_i \in A$ define $A_{m_i} = \{m - m_i | m \in A\}$. Consider $\phi_{A_m} : (\mathbb{C}^*)^n \to \mathbb{C}^d, t \mapsto (\ldots, t^{m_j - m_i}, \ldots)_{m_i \in A}$ and define:

$$X_m = \overline{Im(\phi_{A_m})} \subset \mathbb{C}^d.$$

Not that X_m is an affine toric variety.

Proposition 11.5.1. Notation as above. Let $V = \{v_1, \ldots, v_r\}$ be the set of vertices of P. Then

$$X_A \cong \bigcup_{v_i \in V} X_{v_i}.$$

Proof. First notice that $X_{m_i} = X_A \cap X_i \subset \mathbb{P}^d$ and thus $X_A = \bigcup_{m \in A} X_m$. We prove the proposition if we show that or every $m \in A$ there is at least one vertex $v \in V$ such that $X_m \subseteq X_v$. As observed P = Conv(V). Let $m = \sum_{v_i \in V} k_i v_i$. After clearing denominators we can write $km = \sum_{v_i \in V} k_i v_i$, for $k_i \in \mathbb{Z}_{\geq 0}$. Notice that $t^m \neq 0$ iff $t^{km} = t^{\sum k_i v_i} = \prod(t^{v_i})^{k_i} \neq 0$, which happens only if $t^{v_i} \neq 0$ for every $k_i \neq 0$. This shows that $X_m \subseteq X_{v_i}$ for every $k_i \neq 0$. The vertices of the polytope defines the affine patches that bild the associated toric variety. The following gives an intuition of how projective toric varieties are considered a generalisation of the projective space.

Excercise 11.5.2. Let P be a polytope of dimension n and let $P \cap \mathbb{Z}^n = \{m_0, \ldots, m_d\}$. Show that

- $\bullet \ d \geq n$
- d = n and m_1, \ldots, m_n is a lattice basis (i.e. every vector in \mathbb{Z}^n is an integral combination of m_1, \ldots, m_n) if and only if $P = \Delta_n$.

Let us now examine closer the category of smooth polytopes and the associated topic varieties. Let P be a smooth polytope anklet m_0 be a vertex. After a lattice-preserving affine transformation can we assume that $m_0 = 0$ and that the primitive vectors on the n edges through m_0 are e_1, \ldots, e_n .

Lemma 11.5.3. (Exercise) Let P be a smooth polytope. Then $X_v \cong \mathbb{C}^n$ for every vertex v.

Observe that if P is a n-dimensional smooth lattice polytope, then a facet $F \subset P$ is a smooth polytopes of dimension (n-1). Denote by X_F the associated topic variety.

Lemma 11.5.4. Let P be a smooth polytope. Then $X_P \setminus T_P = \bigcup_{F \text{ facet}} X_F$.

Proof. Let $\dim(P) = n$, let V denote the set of vertices of P and V(F) denote the set of vertices of F. First observe that:

$$X_P \setminus T_P = \bigcup_{v \in V} (X_v \setminus T_P) = \bigcup_{v \in V} (\bigcup_i (\{(x_1, \dots, x_n) \in X_v \text{ s.t. } x_i = 0\})).$$

Let $v = (m_1, \ldots, m_n) \in V$, then are *n* facets passing through v, F_1, \ldots, F_n such that $v_i = (m_i, \ldots, m_{i-1}, m_{i+1}, m_n) \in V(F_i)$. Clearly it is:

$$\{(x_1,\ldots,x_n)\in X_v \text{ s.t. } x_i=0\}\cong X_{v_i}\subset X_{F_i}.$$

This proves that $X_P \setminus T_P \subseteq \bigcup_{F \text{ facet}} X_F$. But because for each facet it is $X_F = \bigcup_{w \in V(F)} X_w$ and $w = v_i$ for some $v \in V$, it is clearly

$$X_F \subset \bigcup_{v_i=w,w\in V(F)} X_v \setminus T_N$$
 and thus $\bigcup_{F \text{ facet}} X_F \subseteq X_P \setminus T_P$.

11.6 Assignment: exercises

- (1) Prove Lemma ??
- (2) Recall that $kP = \{m_1 + \ldots + m_k \text{ s.t. } m_i \in P\}$ and that if $P_1 \subset \mathbb{R}^n, P_2 \subset \mathbb{R}^t$ then $P_1 \times P_2 = \{(m, n) \text{ s.t. } m \in P_1, m \in P_2\} \subset \mathbb{R}^n \times \mathbb{R}^t$ is a polytope of dimension dim (P_1) + dim (P_2) and whose faces are products of faces of resp. polytopes.
 - (a) Describe the faces of the polytope $P = \Delta_1 \times 2\Delta_2$.
 - (b) Is P smooth?
 - (c) Describe the toric variety X_P as union of affine patches.
 - (d) Describe the induced map $X_P \to \mathbb{P}^{11}$.

11.7 Ideals defined by lattice points

Definition 11.7.1. A semigroup S is a set with an associative binary operation and an identity 0.

A semigroup is finitely generated if there is a finite subset $\mathcal{A} \subset S$ such that

$$S = \mathbb{N}\mathcal{A} = \{\sum_{m \in \mathcal{A}} a_m m \ s.t. \ a_m \in \mathbb{N}\}.$$

Definition 11.7.2. A finitely generated semigroup $S = \mathbb{N}\mathcal{A}$ is called an affine semigroup if

- the binary operation is commutative
- It can be embedded in a lattice.

Let S be an affine semigroup, embedded in the lattice \mathbb{Z}^n . We associate to it the so called *semigroup algebra*:

$$\mathbb{C}[S] = \{\sum_{m \in S} c_m \chi^m \text{ s.t. } c_m \in \mathbb{C} \text{ and } c_m = 0 \text{ for all but finitely many } m\}$$

Lemma 11.7.3. The semigroup algebra $\mathbb{C}[S]$ is a subring of the ring of Lurent polynomials in d variables $\mathbb{C}[t_1, t_1^{-1}, ..., t_n, t_n^{-1}]$.

Proof. The proof is left as exercise.

Consider an affine toric variety $X_{\mathcal{A}}$, associated to the finite subset $\mathcal{A} \subset \mathbb{Z}^n$. It clearly defines an affine semigroup $S_{\mathcal{A}}$ and a semigroup algebra

$$\mathbb{C}[S_{\mathcal{A}}] = \mathbb{C}[X_{\mathcal{A}}] = \mathbb{C}[\chi^{m_1}, ..., \chi^{m_d}]$$

(associated to the characters of the torus).

Remark 11.7.4. The semigroup algebra associated to the torus $T_{\mathcal{A}}$ is the algebra of all Laurent polynomials in n variables:

$$\mathbb{C}[T_{\mathcal{A}}] = \mathbb{C}[t_1, t_1^{-1}, \dots, t_n, t_n^{-1}]$$

Note that $(\mathbb{C}^*)^n \cong V(x_1y_1 - 1, ..., x_ny_n - 1) \subset \mathbb{C}^{2n}$.

Let $A = \{m_0, \ldots, m_d\} \subset \mathbb{Z}^n$ as above. Consider the following two maps:

$$\psi_A^* : \mathbb{C}[y_0, \dots, y_d] \to \mathbb{C}[x_1, \cdots, x_n], \psi_A : \mathbb{Z}^{d+1} \to \mathbb{Z}^n$$

defined as:

$$\psi_A^*(y_i) = x^{m_i}$$
 and $\psi_A(e_i) = m_i$

Let $I_A = Ker(\psi_A^*)$ and $L = Ker(\psi_A)$. Let moreover $I = \{y^{\alpha} - y^{\beta} | \alpha, \beta \in \mathbb{N}^d \text{ and } \alpha - \beta \in L\}.$

Lemma 11.7.5. I_A is a prime ideal of the ring $\mathbb{C}[y_0, \ldots, y_d]$.

Proof. The kernel of a ring-morphism is always an ideal. Notice that $\mathbb{C}[y_0, \ldots, y_d]/I_A \cong \mathbb{C}[x^{m_0}, \ldots, x^{m_d}]$ and that $\mathbb{C}[x^{m_0}, \ldots, x^{m_d}]$ is an integral domain. \Box

Proposition 11.7.6.

 $I_A = I.$

Proof. It is easily checked that $I \subseteq I_A$. Let $\alpha = \sum \alpha_i e_i, \beta = \sum \beta_i e_i \in \mathbb{N}^d$ such that $\alpha - \beta \in L$, i.e. $\sum \alpha_i m_i = \sum_i \beta_i m_i$. Then $t^{\sum m_i \alpha_i} = t^{\sum m_i \beta_i}$ and thus $\psi_A^*(y^\alpha - y^\beta) = 0$. Assume now that $I_A \setminus I \neq \emptyset$ and let $f \in I_A \setminus I$ be the element of minimal (after setting a term order)leading coefficient y^α . After possibly rescaling we can write:

$$f = y^{\alpha} + f_1$$
, where $f(x^{m_1}, \dots, x^{m_d}) = 0$.

It follows that f_1 has a monomial y^{β} such that $\phi_A^*(y^{\alpha}) = \phi_A^*(y^{\beta})$ and thus $\alpha - \beta \in L$ which implies $y^{\alpha} - y^{\beta} \in I$ for $\alpha = \alpha_j e_j, \beta = \beta_j e_j$. It follows that $f_2 = f - (y^{\alpha} - y^{\beta}) \in I_A \setminus I$ is an element with lower leading term than f which is impossible. \Box

11.8 toric ideals

Definition 11.8.1. A prime ideal $I \subseteq \mathbb{C}[y_0, \ldots, y_d]$ is called a **toric ideal** if it is of the form I_A for some $A \subset \mathbb{Z}^d$.

Proposition 11.8.2. (Homogeneous) toric ideals I define toric (projective) varieties and (projective) toric varieties are defined by (homogeneous) toric ideals.

Proof. Consider a projective toric variety $X_A \subset \mathbb{P}^d$ defined by

$$A = \{m_0, \ldots, m_d\} \subset \mathbb{Z}^n.$$

Let $I \in \mathbb{C}[y_0, \ldots, y_d]$ be the homogeneous ideal defining Y_A . By definition $f(x^{m_0}, \ldots, x^{m_d}) = 0$ for all $f \in I$ which implies $I \subseteq I_A$ and thus $V(I_A) \subseteq X_A$. On the other hand all the polynomials in I_A vanish on $\phi_A((\mathbb{C}^*)^n)$ which implies that $I_A \subseteq I(\phi_A((\mathbb{C}^*)^n))$ and thus $\phi_A((\mathbb{C}^*)^n) \subseteq V(I_A)$. But X_A is the smallest closed subvariety containing $\phi_A((\mathbb{C}^*)^n)$ which implies $X_A = V(I_A)$.

11.9 Toric maps

Definition 11.9.1. Let X, Y be toric varieties and let T_X, T_Y be the algebraic tori. A map $f : X \to Y$ is said to be a toric map if

- (1) $f(T_X) \subseteq T_Y;$
- (2) $f|_{T_X}: T_X \to T_Y$ is a group homomorphism.

Definition 11.9.2. A toric map $f : X \to Y$ is equivariant if

$$f(t \cdot x) = f(t) \cdot f(x).$$

Consider the map $\phi_A : X_A \hookrightarrow \mathbb{P}^d$. This is an equivariant toric map (we call it a toric embedding). In fact $\phi_A(T_X) \subset T_{\mathbb{P}^d}$ and they are related via the following:

$$T_{\mathbb{P}^d} = \mathbb{P}^d \setminus V(x_0 \cdot x_1 \cdot \dots \cdot x_d).$$

$$1 \to \mathbb{C}^* \to (\mathbb{C}^*)^{d+1} \to T_{\mathbb{P}^d} \to 1$$

$$\phi_A : T_{X_A} \to (\mathbb{C}^*)^{d+1} \to T_{\mathbb{P}^d}.$$

Moreover

$$\phi_A(tx) = ((tx)^{m_0}, \dots, (tx)^{m_d}) = \phi_A(t) \cdot \phi_A(x).$$

11.10 Fixed points

Let P be a smooth polytope of dimension n. and and let V(P) denote the set of vertices. For every vertex $v \in V(F)$ there are n facets passing through v, F_1, \ldots, F_n . Notice that:

$$v = \bigcap_{i=1}^{n} F_i$$

$$\bigcap_1^n V(F_i) = (0, \dots, 0) \in X_v \cong \mathbb{C}^n$$

Every vertex $v \in V(P)$ corresponds to the point $0 \in X_v$ which is the unique point of X_v fixed by the tour action. This means that |V(P)| corresponds to the number of fixed points in X_P .

Example 11.10.1. The torus action on \mathbb{P}^n has n + 1 fixed points: $(1:0:\ldots:0), (0:1:\ldots:0), \ldots, (0:\ldots:0:1).$

11.11 Blow up at a fixed point

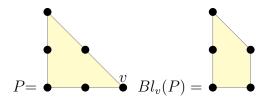
We will define a new polytope, obtained by a give one by truncating a vertex. This is not possible with every polytope and it is for this reason that in this chapter we make the following important assumption.

Definition 11.11.1. Let P bee a smooth polytope of dimension n. A vertex v is called a vertex of order 2 if the length of all the n edges through v is at least 2.

Lat $P = \bigcap_{1}^{r} H_{\xi_{i},b_{i}}^{+}$ and let v be a vertex of order 2. Let F_{1}, \ldots, F_{n} be the facets catting v corresponding to $H_{\xi_{1},b_{1}} \cap P, \ldots, H_{\xi_{n},b_{n}} \cap P$. We will call the following polytope the **blow up of** P at v and will denote it by $Bl_{v}(P)$:

$$Bl_v(P) = (\cap_1^r H^+_{\xi_i, b_i}) \cap H^+_{\xi_v, -1}$$

where $\xi_v = \xi_1 + ... + \xi_n$.



The blow up polytope define a topic variety which will be denoted by $Bl_{x(v)}(X)$ and called the *Blow up of* X *at the point* x(v). Let dim(P) = n, one can see immediately that:

- (1) If $X \subset \mathbb{P}^d$ then $Bl_{x(v)}(X) \subset \mathbb{P}^{d-1}$.
- (2) Let $V(P) = \{m_0, \ldots, m_d\}$, with $v = m_d$ and let e_1, \ldots, e_n be the first integer points on the edges through v. Then $V(Bl_v(P)) = \{m_0, \ldots, m_{d-1}, e_1, \ldots, e_n\}$.
- (3) $H_{\xi_{v,-1}} \cap Bl_v(P) = Conv(e_1, \dots, e_n) \cong \Delta_{n-1})$
- (4) If the facets of P are $H_{\xi_j,b_i} \cap P, i = 1, \ldots r$ the the facets of $Bl_v(P)$ are $H_{\xi_j,b_i} \cap Bl_v(P), i = 1, \ldots r$ together with $\delta_{n-1} = H_{\xi_v,-1} \cap Bl_v(P)$.
- (5) $Bl_v(P)$ has the same dimension, n.

Geometrically what happened is that we introduced a $V(\Delta_{n-1}) = \mathbb{P}^{n-1}$ instead of the fixed point x(v).

11.12 Assignment: exercises

(1) A rational normal curve of degree d is defined as the image of the degree d Segre embedding of \mathbb{P}^1 :

 $\mathbb{P}^1 \to \mathbb{P}^{d+1} \ (x_0:x_1) \mapsto (x_0^d:x_0^{d-1}x_1:x_0^{d-2}x_1^2:\ldots:x_0x_1^{d-1}:x_0^d)$

Let P be a lattice polytope. Show that for every edge $L \subset P$, the toric variety V(L) is smooth and isomorphic to a rational normal curve. What is the degree of such rational curve?

(2) Let a_0, \ldots, a_n be coprime positive integers. Consider the action of \mathbb{C}^* on \mathbb{C}^{n+1} given by:

$$t \cdot (x_1, \ldots, x_n) = (t^{a_0} x_0, \ldots, t^{a_n} x_n) = \mathbb{P}(a_0, \ldots, a_n).$$

The quotient $(\mathbb{C}^{n+1} - \{0\})/\mathbb{C}^*$ exists and it is called the weighted projective space with weights a_0, \ldots, a_n .

- (a) In which sense is this a generalisation of \mathbb{P}^n ?
- (b) We say that a polynomial $p(x) = \sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{C}[x_0, x_1, x_2, \dots, x_n]$ is (a_0, a_1, \dots, a_n) -homogeneous of weighted degree *s* if every monomial x^{α} satisfies $\alpha \cdot (a_0, \dots, a_n) = s$. Show that f = 0 is a well defined equation on $\mathbb{P}(a_0, \dots, a_n)$ if and only if *f* is (a_0, a_1, \dots, a_n) -homogeneous.
- (c) Consider $\mathbb{P}(1,1,d)$. Show that the map $\mathbb{P}(1,1,d) \to \mathbb{P}^{d+1}$ defined by $(x_0, x_1, x_2) \to (x_0^d, x_x^{d-1} x_1, \dots, x_o x_1^{d-1}, x_1^d, x_2)$ is well defined.
- (d) Show that $\mathbb{P}(1, 1, d)$ is a projective toric variety.
- (e) Construct the polytope associated to $\mathbb{P}(1, 1, d)$.
- (f) (*)[bonus point] Can you show (d) and (e) for any $\mathbb{P}(a_0, \ldots, a_n)$?

Bibliography

- [AM] Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp.
- [CLS] D. Cox, J. Little, H. Scenck. Toric Varieties.
- [H] Humphreys, James E. Linear algebraic groups. Graduate Texts in Mathematics, No. 21. Springer-Verlag, New York-Heidelberg, 1975. xiv+247 pp.