
Selected Problems, Set # 4
(Functional Equations and Functional Inequalities)

(1) Prove the inequality of arithmetic and geometric means along
the following lines. Define, for a ≥ 0 and n = 1, 2, . . .

fn(a) = maxx1x2 . . . xn; x1 ≥ 0, . . . , xn ≥ 0,
n∑
1

xi = a.

Show that (i) fn(a) = anλn depends only on n, and (ii) fn(a) =
max
0≤t≤a

tfn−1(a− t). Use these relations to determine fn(a).

(2) Let f(x) be a non-negative function defined for x ∈ R+ = {x :
0 ≤ x <∞} such that f(x+ y) = f(x) + f(y) for all x, y ∈ R+.
Prove f(x) = cx, where c ≥ 0 is a constant. (Note: f is not a
priori asumed to be continuous!). (*) Prove the same conclusion
holds if f is Lebesgue measurable.

(3) If f(x, y) denotes the area of a rectangle with sides x, y (where
x, y are ≥ 0) then, from natural axioms about areas we should
have

f(x1 + x2, y) = f(x1, y) + f(x2, y) (all variables are ≥ 0)

f(x, y1 + y2) = f(x, y1) + f(x, y2)

Prove. the only non-negative functions f on R+ × R+ which
satisfy these equations (identically in x, y, x1, x2, y1, y2) are
f(x, y) = cxy (where c ≥ 0 is a constant).

(4) Let p be a fixed number, 0 < p < 1 and consider the “weighted
mean” function f(x, y) = (1− p)x+ py. Clearly f satisfies the
functional equations

f(x+ t, y + t) = f(x, y) + t ∀x, y, t, λ ∈ R
f(λx, λy) = λf(x, y).

Prove that, conversely, the weighted mean is the only solution of
these equations. (Can you give a generalization with n variables
in place of x, y?)

(5) In the axiomatic theory of statics, one is led to the functional
equation f(x+ y) + f(x− y) = 2f(x)f(y).

Prove that the only continuous solutions of this equation
(here x, y are any points in R) are f(x) ≡ 0, f(x) = cos cx,
f(x) = cosh cx.
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(6) Find all triples of continuous functions f , g, h on R such that
f(x+ y) = g(x) + h(y) for all x, y ∈ R.

(7) Find the most general continuous solution of

f(x) + f(y) = f
(√

x2 + y2 + 1
)

, ∀x, y ∈ R.

(8) Prove: a polynomial P (x) such that

(x− 1)P
(
x2 − 1

)
= xP (x)2 + 2P (x) (∀x ∈ R)

vanishes identically.

(9) Let f(x) be a real-valued function on R such that

|f(x+ a)− 2f(x) + f(x− a)| ≤ a ∀x ∈ R, a > 0. (*)

If moreover f is integrable over each finite interval, prove that
f is continuous.

(10) With same set-up as in # 9, but a3/2 replacing a on the right
side of (*), prove f has a continuous derivative.

(11) Let f be real-valued and continuous on [0, 1] and suppose for
every x ∈ (0, 1) there exists a = a(x) such that 0 ≤ x − a,

x+a ≤ 1 and f(x) =
1

2a

∫ x+a

x−a
f(t)dt. Prove f is a linear function.

(12) Prove: If f is real-valued and continuous on [a, b] and there is
at least one point of every chord of the curve y = f(x), besides
the end-points of the curve, which lies above or on the curve,
then every point of every chord lies above or on the curve (so
that f is a convex function).

(13) Let f be real-valued on R with two continuous derivatives,
moreover |f(x)| ≤ A, |f ′′(x)| ≤ B, ∀x ∈ R. Prove sup

x
|f ′(x)| ≤

2A+
B

4
and sup

x
|f ′(x)| ≤

√
2AB.


