Selected Problems, Set \# 5
(Some "topological" analysis)
(1) Definition. An n-dimensional vector space consisting of continuous functions on some compact metric space is a Haar system (of dimension n) if every non-null function in the collection vanishes at no more than $n-1$ distinct points. (Example: the set of all polynomials of degree at most $n-1$, on $[0,1])$.

Prove: A (real) Haar system on the set $\left\{(x, y): x^{2}+y^{2}=1\right\}$ must have odd dimension; and, for every odd n, such a system exists. ["real" means, real valued functions and real scalars]
(2) Let $K \subset \mathbb{R}^{2}$ be that compact set consisting of
$\{(x, y):-1 \leq x \leq 1, y=0\} \cup\{(x, y): x=0,0 \leq y \leq 1\}$.
Prove there is no (real) 2-dimensional Haar system on K.
(3) Let K be the set of complex numbers z such that $|z| \leq 1$, and suppose S is a (complex!) 2-dimensional Haar space on K. Prove: S contains a function which vanishes nowhere on K.

* Is the analogous assertion for 3-dimensional Haar spaces true?

Prove also: a real Haar system on $[0,1]$ contains a nonnegative function.
(4) Let A denote any vector subspace of real Euclidean n-space (represented as n-tuples), and A^{\perp} its orthogonal complement. Prove at least one of the spaces A, A^{\perp} contains a unit vector all of whose coordinates are non-negative.
(5) Let Γ be a Jordan curve, α a point inside.

Prove: There exist points z_{1}, z_{2} on Γ whose midpoint is α. Can we moreover choose z_{1}, z_{2} so the segment joining them has no other intersection with Γ ?
(6) Let f be a function from \mathbb{C} (the complex plane) to \mathbb{C} such that, whenever $\left|z_{1}-z_{2}\right|=1$ we have $\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|=1$.

Prove: $f(z)=a z+b$, or else $f(z)=a \bar{z}+b$ (a, b complex constants).
(7) Let E and F be countably infinite sets in \mathbb{R}^{2}, neither of which has a finite limit point. Prove their complements are homeomorphic.
(8) Let K be a compact connected set in the plane, and P, Q distinct points of K. Prove for every positive integer n there exists a pair of points P^{\prime}, Q^{\prime} in K such that $P^{\prime} Q^{\prime}$ is parallel to $P Q$, and has length $\frac{1}{n} \cdot($ length $\overline{P Q})$.
(9) Prove, in $\# 8$, that the analogous assertion with $\frac{1}{n}$ changed to $\frac{2}{5}$ (or, in fact, to any positive number that is not the reciprocal of an integer) is false.
(10) Let T be a torus, on which a closed curve Γ has been drawn with no self intersections. Let m be the number of times Γ winds around the "ring"., and n the number of times it winds around the "hole". Prove the greatest common divisor of m, n is 1 ; and conversely, given m, n with greatest common divisor $=1$, there exists a curve Γ with the stated properties.
(11) Prove one cannot have, in the plane, uncountably many disjoint sets each homeomorphic to the letter T. (Afterthought: this may be too hard! You may assume each "T" is made of 3 segments:
(12) Can the open interval $(0,1)$ be decomposed into a union of disjoint closed (non-degenerate) intervals?
(13) Prove the function

$$
f(x)= \begin{cases}1, & x \text { rational } \\ 0, & x \text { irrational }\end{cases}
$$

cannot be represented in the form $f(x)=\lim _{n \rightarrow \infty} f_{n}(x) \forall x \in \mathbb{R}$ where each f_{n} is continuous.
(14) Let H denote the usual Hilbert space of real square-summable sequences. Prove there is no continuous map $\mathbb{R} \rightarrow H$ whose range is all of H. Can the range of such a map be dense in H ?

