Problem 73 # 2.5 Solution B

Case n=3: Set $f(x_1, x_2, x_3) = \frac{x_1}{x_2 + x_3} + \frac{x_2}{x_3 + x_1} + \frac{x_3}{x_1 + x_2}$ and show that $\inf(f) \ge \frac{3}{2}$ in $x_1, x_2, x_3 > 0$.

Suppose wlog that $x_1 + x_2 + x_3 = 1$ and study the behaviour of f on the simplex $\Omega : \sum x_j = 1$, $x_j > 0$, j = 1.2.3. and its border $\partial \Omega$.

On
$$\Omega$$
:
Set $g(x_1, x_2) = f(x_1, x_2, 1 - x_1 - x_2) = \frac{x_1}{1 - x_1} + \frac{x_2}{1 - x_2} + \frac{1 - x_1 - x_2}{x_1 + x_2} = 1 - \frac{x_1}{1 - x_1} - \frac{x_2}{1 - x_2} + \frac{1}{x_1 + x_2}$

Then

$$\frac{\partial g}{\partial x_1} = \frac{1}{(1-x_1)^2} - \frac{1}{(x_1+x_2)^2} = 0$$
$$\frac{\partial g}{\partial x_2} = \frac{1}{(1-x_2)^2} - \frac{1}{(x_1+x_2)^2} = 0$$

immediately yields the unique stationary point $(x_1, x_2, x_3) = (1/3, 1/3, 1/3)$ on Ω which gives the value f(1/3, 1/3, 1/3) = 3/2.

On $\partial \Omega$:

The value of f tends to $+\infty$ when the corner points (1,0,0), (0,1,0), (0,0,1) are approached from within Ω . On the rest of $\partial\Omega f$ is defined. On e.g. $x_1 + x_2 = 1, x_3 = 0, \quad f = \frac{x_1}{x_2} + \frac{x_2}{x_1}$ which has the minimum 2 on $\partial\Omega$ and similarly on $x_2 + x_3 = 1, x_1 = 0$ and $x_3 + x_1 = 1, x_2 = 0$.

Hence, in case n = 3, the infimum 3/2 is an attained minimum at the point (1/3, 1/3, 1/3).