Problem 73# 2.7

To prove:

(*)
$$x^{\lambda}(x-y)(x-z) + y^{\lambda}(y-z)(y-x) + z^{\lambda}(z-x)(z-y) \ge 0.$$

(x, y, z > 0, λ real).

Note first that <u>any</u> permutation of x, y, z leaves the left hand side function invariant. So we can assume wlog that $x \ge y \ge z(>0)$. Then rewrite the LHS (now with nonnegative factors) as: $x^{\lambda}(x-y)(x-z) - y^{\lambda}(y-z)(x-y) + z^{\lambda}(x-z)(y-z) = t_1 - t_2 + t_3$. (all $t_j \ge 0$). Assume $\lambda \ge 0$ and compare factors of t_1 and $t_2 : x^{\lambda} \ge y^{\lambda}$ and $(x-z) \ge (y-z)$. Hence $t_1 \ge t_2$ and (*) holds. Then assume $\lambda < 0$. Compare factors of t_3 and $t_2 : z^{\lambda} \ge y^{\lambda}$ and $(x-z) \ge (x-y)$. Hence $t_3 \ge t_2$ and (*) holds also for negative λ . QED.

The proof shows also that equality occurs only if x = y = z. (E.g in case $\lambda \ge 0$, $t_1 = t_2$ only if x = y and $t_3 = 0$ only if, in addition, z = x = y.)