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1 Background

Potential theory has its physical origin in Newton’s and Coulomb’s laws of
gravitational and electrostatic attraction. These laws of distant action invite
for concepts of fields which mediate the action. The fields themselves are vector
fields which satisfy rather involved systems of equations (like Maxwell’s equa-
tions), but part of these equations can be automatically resolved by setting
the field up as the gradient a scalar potential field, and then the remaining part
become a quite tractable equation for this potential, namely Laplace’s equation.

Thus classical potential theory studies solutions of Laplace’s equation, namely
harmonic functions, and more generally sub- and superharmonic functions. In
the case of two dimensions, the field equations reduce to essentially the Cauchy-
Riemann system, the solutions of which are the analytic functions. Mathemat-
ical potential theory originated in the work of Green, Gauss and others in the
early 19th century, and has since that time served as a powerful tool both in
treating equations arising in physics and in the pure mathematical theory of
analytic functions.

During the 20th century mathematical potential theory developed in many
directions (e.g., parabolic, probabilistic, abstract and discrete potential theory,
pluripotential theory and various kinds of nonlinear potential theory). At the
same time new kinds of potentials came up in physics: in Einstein’s theory
of general relativity (which has Newton’s theory as a limiting case) the role
of potentials is played by the coefficients of the four dimensional space-time
metric, and in gauge field theories, for the fundamental forces besides gravi-
tation, the role of potentials is taken by connection coefficients. The famous
Aharonov-Bohm effect shows that in such contexts the potential has a real
physical meaning, and is not just a mathematical tool (as in classical physics).

Two dimensional potential theory is particularly rich because of its connec-
tions to analytic function theory, and the step from two dimensions to higher
dimensions is very easy. Thus the two-dimensional theory is a suitable starting
point. A good text book here is [2].

2 Problems to think of

1) Let S2 be the unit sphere in R3 regarded as a perfectly conducting surface
and put six equal charges on it. They will certainly distribute like the points
(±1, 0, 0), (0,±1, 0), (0, 0,±1), or a rotation of this pattern. Now add one more
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Figure 1: Picture of a skeleton obtained by a fluid dynamic experiment corre-
sponding to Laplacian growth. Taken from [1]

charge. The seven charges want to be as far from each other as possible, accord-
ing to the Coulomb law, but what does this mean for the charge configuration?
How shall the charges cope with the fact that there is no canonical way to
distribute seven points on a sphere?

For some pictures and further information in a more general situation, see
[3].

2) Newton discovered, by a nontrivial calculation, that the exterior gravi-
tational field of a homogeneous ball is identical to that of a point mass at the
center. This point mass can be thought of as a potential theoretic skeleton of
the ball. Does e.g. a homogeneous cube have a similar skeleton? And would
the orbit of the moon be different if the earth had the shape of a cube instead
of that of a ball?

Potential theoretic skeletons relate to several topics in mathematics and
physics, e.g., asymptotic distributions of zeros of orthogonal polynomials in the
complex plane (cf. [4]), growth problems in fluid mechanics (Laplacian growth),
crystallization, aggregation of particles under Brownian motion (DLA).
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