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Abstract. We consider the Dirichlet problem for the Laplace operator with rational
data on the boundary of a planar domain. Our main results include a characterization
of the disk as the only domain for which all solutions are rational, and a characterization
of the simply connected quadrature domains as the only ones for which all solutions are
algebraic of a certain type.

1. Introduction

Let Ω be a bounded domain in the plane R2 and assume that ∂Ω, the boundary of Ω,
consists of finitely many non-intersecting Jordan curves. We shall consider the Dirichlet
problem

(1)

{
∆u = 0, in Ω

u = v on ∂Ω,

where v ∈ C(∂Ω) (and C(A) denotes the space of continuous functions on a topological
space A). It is of course well known that this Dirichlet problem has a unique solution u
in C(Ω). The case where the data function v is the restriction of a polynomial in x and y
is an important special case, since, by the Stone-Weierstrass theorem and the maximum
principle, any solution of (1) with continuous data can be approximated uniformly on
Ω by solutions with boundary data that are restrictions of such polynomials. Now, if
Ω is a disk, or more generally the interior of an ellipse, then the latter solutions are
polynomials themselves (the corresponding statement holds even in higher dimensions;
see e.g. [S89]). It was conjectured in [KS92] that this property characterizes the ellipses.
This conjecture was recently proved by H. Render (also in higher dimensions; see [R05]).
In the present paper, we shall consider a more general situation where the data function
v is the restriction to ∂Ω of a rational function R(x, y) whose polar variety does not meet
∂Ω.

If the boundary of Ω is real-analytic, then the solution of (1), with a restricted rational
function (without poles on ∂Ω) as data, extends harmonically to a larger domain. We
will be interested in characterizing those domains Ω for which this harmonic extension
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encounters only ”mild” singularities. For instance, if Ω is a disk, then the solution itself
is rational and extends to the Riemann sphere with only a finite set of poles (see below).
One of our main results is that this property characterizes the disk (with a vengeance; see
Theorem 1). We also show that if all solutions are algebraic (and hence extend as multi-
valued functions to the Riemann sphere minus a finite set of points at which only algebraic
singularities are encountered), then Ω is simply connected and a Riemann map to the unit
disk is algebraic (Theorem 4). We further characterize those simply connected domains
with algebraic Riemann maps for which all solutions are algebraic with singularities that
are controlled by those of the Riemann map (in a sense made precise below; see Theorem
6).

We now proceed to formulate the results of this paper more precisely. Our first result,
which was alluded to above, is the following.

Theorem 1. Let Ω be a bounded domain in R2 whose boundary consists of finitely many
non-intersecting Jordan curves. The following are equivalent:

(i) Ω is a disk.

(ii) The solution u(x, y) of (1) is rational for every v ∈ C(∂Ω) that is the restriction
of a rational function R(x, y) whose polar variety does not meet ∂Ω.

The implication (i) =⇒ (ii) is easy (see e.g. [EKS05] for a proof; see also [E92]). It is
appropriate to remark here that the corresponding implication (i) =⇒ (ii) is false in all
dimensions ≥ 3 (cf. [EKS05]). The opposite implication follows from the more general
result Theorem 2 below. To state it in a more convenient way, we shall identify R2 with
the complex plane C in the usual way, i.e. via z = x+ iy. By the relations 2x = z+ z̄ and
2iy = z − z̄, any real-analytic function v(x, y) can be expressed as a function ṽ(z, z̄). We
shall abuse the notation slightly and write either v(x, y) and v(z, z̄) (i.e. dropping the )̃
for the same function v. Clearly, v(x, y) is rational as a function of x and y if and only if
v(z, z̄) is rational as a function of z and z̄.

Theorem 2. Let Ω be a bounded domain in C whose boundary consists of finitely many
non-intersecting Jordan curves and let a ∈ Ω. Suppose that the solution u(z, z̄) of (1) is
rational for every v ∈ C(∂Ω) that is the restriction of R(z, z̄), where R(z, z̄) ranges over
all polynomials of z and z̄, and the single function

(2) R(z, z̄) = 1/(z − a)

Then, Ω is a disk.

Remark 3. (a) Our proof of Theorem 2 actually shows that if Ω, in addition, is assumed
to be simply connected, then it suffices to let R(z, z̄) range over the four functions zz̄, z2z̄,
z3z̄, and (2). The conclusion is again that Ω is a disk. (b) In this context, we should also
mention a result from [EV05]: If Ω is simply connected, then the solution to (1) with data
v given by the restriction of (2) is rational if and only if the solution to (1) is rational for
every data v that is the restriction of a rational function of z alone. (c) Finally, we point
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out that the solution of (1) with data v given by the restriction of (2) is closely related
to the Bergman kernel of the domain Ω (see [B95]; see also Proposition 8 below).

We shall also consider the case where the solutions u(z, z̄) to (1) with rational data (in
the sense described by Theorem 1 above) are only real-algebraic; i.e. u(z, z̄) satisfies a
polynomial relation P (z, z̄, u(z, z̄)) = 0, where P (z, w, t) is a polynomial of three variables.
(Note that u(z, z̄) is rational as a function of z and z̄ precisely when it is real-algebraic
and P (z, w, t) has degree one in t. Also, note that a function u(z, z̄) is real-algebraic if
and only if the polarized, or complexified, holomorphic function u(z, ζ) is algebraic.) We
have the following result.

Theorem 4. Let Ω be a bounded domain in C whose boundary consists of finitely many
non-intersecting Jordan curves, and let a ∈ Ω. Suppose that the solution u(z, z̄) of (1) is
real-algebraic for every v ∈ C(∂Ω) that is the restriction of R(z, z̄), where R(z, z̄) ranges
over all polynomials of z and z̄, and the single function (2). Then, Ω is simply connected
and every Riemann map ϕ : Ω → D is algebraic.

Now, suppose that Ω is simply connected and that a Riemann map ϕ : Ω → D is
algebraic. We shall give a result characterizing those domains for which the solutions
to (1) with rational data are real-algebraic with singularities controlled by those of the
Riemann map. To explain this more precisely, we need to introduce some more notation.
We let X be the (compact) Riemann surface of ϕ realized as a branched cover π : X → P,
where P denotes the Riemann sphere (a.k.a. the extended complex plane), and Φ the
meromorphic function on X obtained by lifting ϕ to X via the projection π. More
precisely, there is a simply connected domain Ω̃ ⊂ X and a meromorphic function Φ on
X such that π|Ω̃ is a biholomorphism of Ω̃ → Ω and Φ|Ω̃ = ϕ ◦ π|Ω̃. The function Φ
is called the lift of ϕ. If f(z) is any function holomorphic in Ω, then there is a unique
holomorphic function F , called the lift of f , on Ω̃ such that F = f ◦ π. If F extends as
a meromorpic function on X, then we say that f lifts to a meromorphic function on X.
This means, loosely speaking, that f is an algebraic function and its analytic continuation
along curves on P can only encounter branch points at points where the Riemann map ϕ
does. Moreover, the branching of f at such a point is ”no more complicated” than that
of ϕ. More precisely, the branching order of f at such a point divides that of ϕ.

In order to lift real-analytic functions in Ω, we introduce the conjugate Riemann surface
X∗ as follows: X∗ equals X as a smooth manifold, but the coordinate charts on X∗ are
of the form {Uα,Ψα(ζ)), where {Uα,Ψα(ζ)) are the coordinate charts on X. This is

equivalent to saying that the holomorphic functions on X∗ are of the form H(ζ) where
H(ζ) is holomorphic on X. We embed X as the diagonal D := {(ζ, τ) ∈ X × X∗ : τ =
ζ} in X × X∗. Observe that D is a totally real 2-dimensional submanifold of the 2-
dimensional complex manifold X ×X∗, since τ 7→ τ is a an anti-holomorphic (conjugate
of a holomorphic) mapping X∗ → X. Thus, we may think of Ω̃ as a relatively open subset
of D ⊂ X × X∗. If v(z, z̄) is a real-analytic function in Ω, then there is a holomorphic
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function V in an open neighborhood of Ω̃ ⊂ D inX×X∗ such that V (ζ, τ) = v(π(ζ), π(τ)).
We will say that v lifts as a meromorphic function onX×X∗ if V extends as a meromorphic
function on X×X∗. Observe that if v(z, z̄) is a harmonic function in the simply connected

domain Ω, then v(z, z̄) = f(z) + g(z), where f and g are holomorphic in Ω. In this case,

V (ζ, τ) = F (ζ) + G(τ), where F and G are the lifts of f and g, respectively. It follows
that u lifts to X × X∗ as a meromorphic function if and only if f and g lift to X as
meromorphic functions. In this way we see that if u lifts as a meromorphic function on
X ×X∗, then u(z, z̄) is real-algebraic and the singularities of u are controlled (via f and
g) by the singularities of the Riemann map ϕ : Ω → D. We have the following result.

Theorem 5. Let Ω be a simply connected domain in the plane with smooth boundary.
Assume that a Riemann map ϕ : Ω → D is algebraic and let π : X → P be the Riemann
surface of ϕ realized as a branched cover. Let X∗ denote the conjugate Riemann surface.
The following are equivalent:

(i) The inverse ϕ−1 : D → Ω is rational (i.e. Ω is a quadrature domain).

(ii) The solution u(z, z̄) to (1) lifts as a meromorphic function on X × X∗ for every
v ∈ C(∂Ω) that is the restriction of a rational function R(z, z̄) whose polar variety does
not meet ∂Ω.

The implication (i) =⇒ (ii) will follow from a result in [E92] (see Section 5). The
opposite implication is a consequence of the following more general result.

Theorem 6. Let Ω be a simply connected domain in the plane with smooth boundary.
Assume that a Riemann map ϕ : Ω → D is algebraic and let π : X → P be the Riemann
surface of ϕ realized as a branched cover. Let X∗ denote the conjugate Riemann surface. If
the solution u(z, z̄) to (1) lifts as a meromorphic function on X×X∗ for every v ∈ C(∂Ω)
that is the restriction of a polynomial R(z, z̄), then the inverse ϕ−1 : D → Ω is rational
(i.e. Ω is a quadrature domain).

For our last result, we need to introduce some more notation. Suppose that u(z, z̄) is
a harmonic function in a domain G ⊂ C. Let γ : [0, 1] → G be a closed piecewise smooth
curve and define the period of u(z, z̄) relative to γ by

(3) per(u; γ) :=

∫
γ

∗du,

where ∗ is the (Hodge) star operator; i.e. ∗du = −uydx+ uxdy. (Thus, a local harmonic
conjugate of u(z, z̄) is obtained by v(z, z̄) :=

∫ z

z0
∗du for z in some small disk centered at

z0.) Observe that ∗du is a closed 1-form and, hence, the period with respect to a curve
γ only depends on the homotopy class of γ. We shall say that u(z, z̄) is period free if
per(u; γ) = 0 for every closed piecewise smooth curve γ in G. (Thus, if u is period free in
G, then u has a single-valued harmonic conjugate in G.) The last result we formulate is
the following.
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Theorem 7. Let Ω be a simply connected domain in the plane with smooth boundary.
Assume that a Riemann map ϕ : Ω → D is algebraic and that, for every v ∈ C(∂Ω)
that is the restriction of a polynomial R(z, z̄), there is a discrete subset A ⊂ C (possibly
depending on v) such that the solution u(z, z̄) to (1) extends as a period free harmonic
function in C \ A. Then, Ω is a disk.

We remark that the conclusion of Theorem 7 is not true without the assumption that
the Riemann map is algebraic. For instance, as mentioned above, if Ω is an ellipse, then
every solution to the Dirichlet problem (1) with polynomial data is a polynomial and,
hence, extends to C as a period free harmonic function (see e.g. [S92]). There are also
other domains Ω (with non-algebraic Riemann maps, of course) for which all solutions to
the Dirichlet problem with polynomial data extend as period free harmonic functions to
C \ A for some discrete set A (see [E92]).

The paper is organized as follows. In Section 2, the proof of Theorem 4 is given and,
at the same time, a preliminary reduction in the proof of Theorem 2 is given as well. The
proof of Theorem 2 is completed in Section 3. In Section 4, we carry out a geometric
construction that will be needed for the proofs of Theorems 6 and 7. The latter proofs,
as well as that of Theorem 5, are then given in Section 5.

2. Reduction to the simply connected case and proof of Theorem 4

Our first observation concerning Theorems 2 and 4 is that the boundary ∂Ω must be
real-algebraic, i.e. contained in the zero locus of a (non-trivial) real polynomial. For, if
the solution to (1), with v being the restriction to ∂Ω of, say, R(z, z̄) = |z|2 (or any other
non-harmonic real-algebraic function), is real-algebraic, then ∂Ω is locally defined near
each boundary point z0 by the (non-trivial) real-algebraic equation

(4) u(z, z̄)− |z|2 = 0.

It is well known that this implies that ∂Ω is in fact contained in the zero locus of a real
polynomial ρ(z, z̄). All we shall need here, however, is the fact (which actually follows
immediately from (4)) that the boundary ∂Ω is piecewise real-analytic.

In order to reduce to the case where the domain Ω in Theorems 2 and 4 is simply
connected, we shall need to introduce the Bergman kernel K(z, w) = KΩ(z, w) of Ω and
connect it to the solution of a particular Dirichlet problem. Recall that K(z, w) is the
reproducing kernel in the Bergman space A2(Ω) of L2-integrable holomorphic functions
in Ω; i.e. K(z, w) is the unique holomorphic function on Ω×Ω∗ (where Ω∗ is the domain
equipped with the conjugate complex structure; or, equivalently, a function on Ω×Ω that
is holomorphic in z and anti-holomorphic in w) such that, for every ζ ∈ Ω,

(5) f(ζ) =

∫
Ω

f(w)K(ζ, w)dA, f ∈ A2(Ω),
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where dA denotes the standard area measure in R2. On the other hand, if f(z) is a
holomorphic function in Ω that extends continuously to Ω, then we have (equipping ∂Ω
with the positive orientation with respect to Ω)

(6) f(ζ) =
1

2πi

∫
∂Ω

f(w)

w − ζ
dw,

Let us fix ζ ∈ Ω and let u(z, z̄) be the solution to the Dirichlet problem (1) where v is
the restriction to ∂Ω of R(z, z̄) = 1/(z − ζ). Recall that u(z, z̄) is continuous in Ω and
its first order derivatives are in L2(Ω) (cf. e.g. [Ev98], Ch. II.6). We can rewrite (6) to
obtain

(7)

f(ζ) =
1

2πi

∫
∂Ω

f(w)u(w, w̄)dw

=
1

π

∫
Ω

f(w)
∂u

∂w̄
(w, w̄)dA,

where the last identity follows from Stokes’ theorem and the fact that f(w) is holomorphic
in Ω. Observe that ∂u/∂w̄ is anti-holomorphic in Ω since

∂

∂w

∂u

∂w̄
=

1

4
∆u = 0.

Subtracting (7) from (5), we conclude that

g(w) := K(ζ, w)− 1

π

∂u

∂w̄
(w, w̄)

is an element of A2(Ω) that is orthogonal to every f ∈ A2(Ω) that extends continuously
to the boundary. Since the latter are dense in A2(Ω) (see [H72]), we conclude that
K(ζ, ·) = π−1∂u/∂w̄. If we also recall that K(z, ζ) satisfies the Hermitian symmetry

K(ζ, z) = K(z, ζ),

then we may write this as K(·, ζ) = π−1∂u/∂w̄. We summarize this discussion as follows
(see also [B92], p. 97, for the smoothly bounded case).

Proposition 8. Let Ω be a bounded domain in C whose boundary consists of finitely
many piecewise smooth Jordan curves, and pick ζ ∈ Ω. Let u(z, z̄) be the solution to (1),
where v is the restriction to ∂Ω of R(z, z̄) := 1/(z − ζ). If K(ζ, z) denotes the Bergman
kernel of Ω, then

(8) K(ζ, z) =
1

π

∂u

∂z̄
(z, z̄)

or, equivalently,

(9) K(z, ζ) =
1

π

∂u

∂z̄
(z, z̄).
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We shall use this proposition to prove Theorem 4 and to reduce the proof of Theorem
2 to the case of a simply connected Ω for which a Riemann mapping Ω → D is rational.
The arguments in the latter reduction are almost identical to those used to prove theorem
4. Therefore, we shall begin with the proof of Theorem 4.

Proof of Theorem 4. We first prove that Ω must be simply connected. To do this, we
assume, in order to obtain a contradiction, that Ω is not. Since Ω is bounded by a
finite number of Jordan curves, the complement C \ Ω has a finite number of bounded
components D1, . . . , Dn with n ≥ 1. Pick a point aj in Dj for j = 1, . . . , n. It is well
known that any harmonic function u(z, z̄) in Ω can be represented as follows

(10) u(z, z̄) = f(z) + g(z) +
n∑

j=1

cj log |z − aj|2,

where f and g are holomorphic in Ω and cj are real constants. In fact, if we choose closed
piecewise smooth curves γj : [0, 1] → Ω, for j = 1, . . . , n, such that the winding number of
γj with respect to al is one for j = l and zero otherwise, then the constants cj are given
by

(11) cj =
1

4π
per(u; γj).

(Recall that per(u, γj) denotes the period of u with respect to Ω; see (3).) Indeed, a
straightforward calculation shows that the difference ũ(z, z̄) := u(z, z̄)−

∑
cj log |z− aj|2

has period zero around each of the curves γj, j = 1, . . . , n. Since these curves generate
the fundamental group of Ω, we conclude that ũ(z, z̄) is period free in Ω and is hence of

the form ṽ(z, z̄) = f(z) + g(z) with f and g as above.
We claim that if u(z, z̄) is a real-algebraic harmonic function in Ω, then necessarily

the constants cj in (10) must all be zero, i.e. u(z, z̄) is period free in Ω. To see this, we
pick a point zl on the curve γl, for some l = 1, . . . , n, and represent u(z, z̄) locally near

zl as u(z, z̄) = F (z) + G(z), where F and G are holomorphic near zl. Note that both
F and G are algebraic functions, since, by polarizing u(z, z̄) to a holomorphic algebraic

function u(z, ζ) and fixing, say, ζ = z̄l, we conclude e.g. F (z) = u(z, z̄l) − G(zl), which
is an algebraic function of z. (Of course, a similar argument works for G). On the other
hand, by choosing f and g (which are only determined up to an additive constant) and
branches of the logarithm properly in (10), we must also have (near zl)

(12) F (z) = f(z) +
n∑

j=1

cj log(z − al), G(z) = g(z) +
n∑

j=1

cj log(z − al).

Analytic continuations of f , g, and log(z − aj) with j 6= l around γl leave these functions
invariant, whereas analytic continuation of log(z − al) around γl results in an additive
increment of 2πi. Thus, F and G would have an infinite number of branches at zl unless
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the constant cl is zero. Since F and G are algebraic, we conclude that cj = 0. Since l was
arbitrary in {1, . . . , n}, we conclude that all the cj are zero.

By the Stone-Weierstrass theorem and the maximum principle, any harmonic function
v(z, z̄) in Ω that extends continuously up to the boundary can be approximated uniformly
in Ω by solutions u(z, z̄) to the Dirichlet problem (1) whose boundary data v are restric-
tions to ∂Ω of polynomials in z and z̄. By assumption, the latter harmonic functions are
real-algebraic and, hence, period free in Ω as shown above. Also, note that if a sequence
ui of harmonic functions converges uniformly in Ω to a harmonic function u, then the
derivatives of ui converge to the corresponding derivatives of u uniformly on compact
subsets of Ω. It follows, in particular, that any harmonic function in Ω that extends
continuously to the boundary is period free in Ω. This is clearly a contradiction, since
e.g. log |z− aj|2 is harmonic in Ω, continuous up to the boundary, but has period 4π with
respect to γj. Hence, Ω must be simply connected.

To complete the proof of Theorem 4, we must show that every (or, equivalently, any
given) Riemann map ϕ : Ω → D is algebraic. Thus, we let ϕ : Ω → D be a Riemann map.
We may assume, by composing ϕ with an automorphism of the disk if necessary, that
ϕ(a) = 0. Also, let K(z, ζ) be the Bergman kernel of Ω. The Bergman kernel and the
Riemann mapping are related by the following well known formula

(13) K(z, ζ) =
1

π

ϕ′(z)ϕ′(ζ)

(1− ϕ(z)ϕ(ζ))2
.

By setting ζ = a, we obtain

(14) K(z, a) =
ϕ′(a)

π
ϕ′(z).

Let w(z, z̄) be the real-algebraic harmonic function u(z, z̄), where u(z, z̄) solves the Dirich-
let problem (1) in which v is the restriction of 1/(z − a). By Proposition 8, we have

K(z, a) =
∂w

∂z
(z, z̄).

Hence, we may rewrite (14) as follows

ϕ′(z) = π(ϕ′(a))−1 ∂w

∂z
(z, z̄).

It follows that

ϕ(z) = π(ϕ′(a))−1w(z, z̄) + h(z),

where h(z) is holomorphic in Ω. By polarizing, we obtain

ϕ(z) = π(ϕ′(a))−1w(z, ζ) + h
(
ζ̄
)
.

Since z 7→ w(z, ζ) is algebraic for each fixed ζ, we conclude that ϕ is algebraic, which
completes the proof. �
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A trivial modification of the proof above (simply replacing “real-algebraic” by “ratio-
nal”) yields the following result, which reduces the proof of Theorem 2 to the situation
where Ω is simply connected with a rational Riemann map.

Proposition 9. Let Ω be a bounded domain in C whose boundary consists of finitely
many piecewise smooth Jordan curves, and let a ∈ Ω. Suppose that the solution u(z, z̄) of
(1) is rational for every v ∈ C(∂Ω) that is the restriction of R(z, z̄), where R(z, z̄) ranges
over all polynomials of z and z̄, and the single function (2). Then, Ω is simply connected
and any Riemann mapping ϕ : Ω → D is rational.

3. Proof of Theorem 2

In this section, we shall give a proof of Theorem 2. We first note that, by Proposition
9, we may assume that Ω is simply connected and that a Riemann mapping ϕ : Ω → D is
rational. In particular, the boundary of Ω is piecewise real-analytic (even real-algebraic).
We shall need the following lemma.

Lemma 10. Let Ω be a bounded simply connected domain in C. Let U be an open disk
that intersects the boundary of Ω and assume that Γ := ∂Ω ∩ U is a piecewise smooth
curve without outward pointing (relative to Ω) cusps. Suppose that u(z, z̄) is a harmonic
function that extends continuously up to Γ. If f and g are holomorphic functions in Ω
such that u(z, z̄) = f(z) + g(z), and f and g extend meromorphically to U , then f and g
cannot have poles on Γ.

Remark 11. The conclusion of the lemma is false for outward pointing cusps in general.
Consider the curve Γ defined by y2−xp = 0 with p odd and p ≥ 5. The harmonic function

u(z, z̄) :=
1

z
− 1

z̄

is harmonic in the domain Ω := {y2 − xp < 0, x < 1}, continuous up to the boundary,
but f(z) = 1/z and g(z) = −1/z have poles at 0.

Lemma 10 can be shown to follow from an L2 estimate in [F37] (see also [S80] and
[S81]). For completeness and the reader’s convenience, we include here a self-contained
proof of the lemma.

Proof of Lemma 10. Let z0 be a point on Γ. Since z0 is not an outward pointing cusp (by
assumption), we can find an open cone V with opening angle 2α > 0 and vertex at z0

such that V ∩ {|z − z0| < δ} is contained in Ω. After a translation and rotation, we may
assume that z0 = 0 and the cone is V = {z 6= 0: − α < argz < α}. Suppose, in order to
reach a contradiction, that f and/or g have a pole at z0 = 0. By simply considering the
rate of growth as we approach the origin, it is easy to see (since u is continuous up to Γ)
that both f and g must have a pole at 0 of the same order p ≥ 1. We write the Laurent
series expansions of f and g at 0 as follows

(15) f(z) = az−p +O(z−p+1), g(z) = bz−p +O(z−p+1).
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Let γ : [0, ε) → C be a real-analytic curve such that γ(t) is of the form

(16) γ(t) = ζt+O(t2),

where ζ 6= 0 is in the cone V . Clearly, γ (or more precisely, the image of γ) is a curve
starting at the origin and, for ε > 0 small enough, γ \ {0} is contained in Ω. We consider
the restriction of u(z, z̄) to γ

(17)

u(γ(t), γ(t)) =f(γ(t)) + g(γ(t))

=a(ζt)−p + b(ζt)−p +O(t−p+1)

=
aζ̄p + b̄ζp

|ζ|2p
t−p +O(t−p+1),

where in the second step we used the Laurent expansions in (15). By assumption,

u(γ(t), γ(t)) has a limit as t→ 0+ and, hence, we must have (at the very least)

(18)
aζ̄p + b̄ζp

|ζ|2p
= 0,

or equivalently,

(19) aζ̄p + b̄ζp = 0,

This equation only has non-trivial solutions if |a| = |b| and then ζp = x+ iy is on the line

(20) (Re a+ Re b)x+ (Im a+ Im b)y = 0.

This is a contradiction, since ζ is an arbitary point in the open cone V . This proves that
f and g cannot have poles at z0 ∈ Γ and hence, since z0 is arbitrary, at any point on
Γ. �

We now return to the proof of Theorem 2. Recall that we have reduced the proof to the
case where Ω is simply connected, the boundary is piecewise real-analytic, and a Riemann
map ϕ : Ω → D is rational. We claim that we can further assume that if u(z, z̄) is the
(rational) solution to one of the Dirichlet problems in the statement of Theorem 2 and

u(z, z̄) = f(z) + g(z), with f and g holomorphic in Ω, then f and g are both rational
functions without poles on Ω. The fact that f and g are rational is clear by polarizing

u(z, z̄) to a rational function u(z, ζ) = f(z) + ḡ(ζ), where ḡ(ζ) := g(ζ̄), and using the
fact that z → u(z, ζ) and ζ → u(z, ζ) are rational for any fixed ζ and z, respectively (cf.
the proof of Theorem 4). The fact that f and g have no poles on ∂Ω (and hence not in
Ω) follows from Lemma 10 if we can show that ∂Ω does not have any outward pointing
cusps. This is not difficult to see. Since the Riemann map ϕ is rational and bounded in
Ω, it must be holomorphic in an open neighborhood of Ω, sending ∂Ω one-to-one (since
∂Ω is, in particular, a Jordan curve) onto ∂D. Under these conditions, it is easy to see
that ∂Ω cannot have any cusps (outward or inward pointing). We leave the details of this
argument to the reader.
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For our purposes, it will be convenient to compose the Riemann mapping ϕ : Ω → D
with a Möbius transformation D → U, where U denotes the upper half plane {z =
x + iy : y > 0}. We shall denote the resulting rational biholomorphic mapping Ω → U
by ψ. The Riemann sphere (a.k.a. extended complex plane) P is subdivided into regions
G1, G2, . . . , GN by the piecewise real analytic curves that comprise ψ−1(R). Let G1 = Ω.
We shall describe a procedure that creates an increasing union of the closures of these
domains that covers the whole Riemann sphere. Later, as we piece together the regions,
we will show that ψ must be linear fractional, and hence, that Ω must be a disc.

Notice that ψ is a proper holomorphic mapping of each domain Gj onto either the upper
or the lower half plane, and as such, is a finite-to-one branched covering map between the
two domains. When we say that we are choosing a branch of ψ−1 below, we mean that
we are choosing either the upper half plane or the lower half plane and we are thinking of
ψ−1 as the continuation of a local inverse of ψ, where ψ is viewed as a proper holomorphic
mapping of one of the Gj’s onto the half plane. Note that we may continue any branch of
ψ−1 as a finite valued holomorphic function with only finitely many algebraic singularities
in the half plane.

Let S(z) denote the Schwarz function for a smooth part of the boundary of Ω near a
point z0 ∈ ∂Ω; i.e. S(z) is the holomorphic function near z0 such that S(z) = z̄ on ∂Ω.
The anti-holomorphic Schwarz reflection function for the boundary of Ω near z0 is given
the by

S(z) = ψ−1(ψ(z)),

where ψ−1 is holomorphic near ψ(z0) ∈ R and is the inverse to ψ viewed as a one-to-one
map on a neighborhood of z0. This mapping, defined near a point z0 in a smooth part of
the boundary of Ω, analytically continues to all of P as an anti-holomorphic (multi-valued)
algebraic function.

When we continue S(z) to various of the Gj’s, we may view it as a proper anti-
holomorphic correspondence between them. Indeed, on Gj, the mapping ψ maps properly
to either the upper or the lower half plane. The conjugate map reflects ψ(z) across the real

line to ψ(z), sending one half plane to the other, and so a branch of ψ−1 yields a mapping

S(z) = ψ−1(ψ(z)) which maps Gj onto another Gk as a finite valued anti-holomorphic
function with only algebraic singularities. (The map might split into several separate ir-
reducible correspondences, or it might yield a single irreducible correspondence. It won’t
matter to us what the case may be.) We may remove finitely many points from the do-
mains Gj so that all the mappings obtained in this way are unbranched covering maps.
Indeed, let A denote the set of finitely many branch points of ψ in the union of all the
Gj. Given a set U of complex numbers, let conj(U) = {w̄ : w ∈ U} denote the set of
conjugates. Let F = A ∪ ψ−1(conj(ψ(A)). Replace each Gj by Gj − F . In this way, the

various branches of S(z) become finitely sheeted covering maps of one Gj onto another.

Notice that if S(z) maps Gj onto Gk, then as z approaches a point in the boundary of
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Gj along a curve in Gj, the analytic continuation of S(z) along that curve tends to a
boundary point of Gk.

Pick a point z0 in the smooth part of the boundary of Ω and consider a curve γ
parametrized by z(t) that starts at z0 and heads into the exterior of Ω. Let Γ denote the

“shadow curve” of γ parametrized by Z(t) = S(z(t)), where it is understood that Z(t)

is produced by analytically continuing S(z) = ψ−1(ψ(z)) along the trace of γ, i.e., by

analytically continuing ψ−1 along the curve traced out by ψ(z(t)). Since we have arranged
for all of our maps to be covering maps, there are no obstructions to this continuation
process. As z(t) enters the exterior of Ω, the function ψ(z(t)) enters the lower half plane,

the reflected ψ(z(t)) enters the upper half plane, and Z(t) = ψ−1(ψ(z(t))) enters the
interior of Ω. Recall that G1 is equal to Ω minus perhaps finitely many points. Let G2j,
j = 1, . . . ,M2, be an enumeration of the regions in the list that share an open smooth
segment of a boundary curve in common with G1. We shall call G1 our level 1 region
and the G2j our level 2 regions. Note that there could be only one level 2 region if the
boundary of Ω is a smooth curve, or there could be more than one if the boundary of Ω
has a number of corners where the real analytic curves in ψ−1(R) cross. Call the closure
of G1 our stage 1 set, and the closure of G1 ∪ (∪M2

j=1G2j) our stage 2 set. Notice that for
any curve γ that starts at z0 and wanders about a G2j, the shadow curve Γ wanders about
G1. We can express this by saying that as γ wanders around a level 2 region, the shadow
curve wanders in our level 1 region. Furthermore, if γ is a curve in G2j that terminates
at a boundary point of G2j, then the shadow curve is a curve in G1 that terminates at
a boundary point of G1. Thus, as γ is allowed to wander about the level 2 region and
terminate at points in its boundary, the shadow curve stays in the stage 1 set.

We next define our level 3 regions to be those regions which share an open smooth
segment of a boundary curve with a level 2 region, but not with G1 (if such regions exist).
Let G3m, m = 1, . . . ,M3, be an enumeration of such regions. Now let γ be a curve that
starts at z0 and moves through a region G2j and comes to a point on an open smooth
segment of a curve in ψ−1(R) that connects G2j to G3m. As z(t) extends into G3m, the

point Z(t) = ψ−1(ψ(z(t))) in the shadow curve Γ leaves G1 and enters a region G2k. Now,
as γ continues to wander around G3m, the shadow curve wanders around G2k because
the branch of ψ−1(ψ(z)) that we continue into G3m is an unbranched anti-holomorphic
covering map of G3m onto G2k. If γ is allowed to run into a boundary point of G3m, then
the shadow curve runs into a boundary point of G2k. Thus, as γ is allowed to wander
about the level 3 region and terminate at points in its boundary, the shadow curve stays
in the stage 2 set.

Call the closure of the union of G1 and all the G2k regions and all the G3m regions the
stage 3 set.

The process above continues in an obvious way, however, at the next level, level 4, as
we allow γ to cross a level 3 boundary curve and enter a level 4 domain G4j (which is a
domain which shares a boundary curve with a level 3 domain, but no earlier level domain),
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it may happen that the shadow curve goes back into an earlier level domain than level 3.
That will cause us no problems. We care only that the shadow curve is always at least
one level behind the curve we extend. We may always state that the shadow curve stays
in the stage (n− 1) set as γ wanders about the level n domain and terminates at points
on its closure.

At some stage, when we add the closure of a level N domain to the stage N − 1 set,
we will cover the entire Riemann sphere. We shall call this level N the last level. (Note,
it could happen that N = 2.) We shall need it to happen that the point at infinity falls
in the interior of the last level domain. To ensure that this is the case, we may modify
our original domain Ω using a linear fractional transformation. Indeed, if the point at
infinity is not in the interior of the last level domain, then pick any point p0 that is.
Let L(z) = 1/(z − p0), and replace our original domain by L(Ω). This new domain still
satisfies the hypothesis of the theorem because linear fractional transformations and their
inverses preserve rational functions. Furthermore, the sequence of levels and stages that
we constructed above is simply picked up and moved by L on the Riemann sphere.

We may now begin the crux of the proof. The boundary data z̄zn has a harmonic
extension to Ω given by un(z, z̄) = fn(z) + gn(z) where fn and gn are rational functions
of z with no poles on Ω (by Lemma 10, as observed above). The Schwarz function is
holomorphic on a neighborhood of ∂Ω and satisfies S(z) = z̄ on ∂Ω. We may insert this
fact into the identity

z̄zn = fn(z) + gn(z)

and its conjugate

zz̄n = fn(z) + gn(z),

which hold on ∂Ω, to obtain the identities

S(z)zn = fn(z) + gn(S(z)), and

zS(z)n = fn(S(z)) + gn(z),

which hold for z ∈ ∂Ω. Since the functions on both sides of these identities are holo-
morphic on a neighborhood of the point z0 ∈ ∂Ω from which we started the curve γ, the
identities extend to hold on this neighborhood, and they analytically continue to hold
as we continue S(z) along any curve. (Note that S(z) might develop bounded algebraic
singularities at finitely many points that fall in the boundaries of the various Gj’s, but
these points will pose no threat to us as boundary points.) Rewrite the last two formulas
to read

fn(z) = S(z)zn − gn(S(z))(21)

gn(z) = zS(z)n − fn(S(z)).(22)

Recall that as the curve γ parametrized by z(t) moved into G2, the shadow curve Γ given

by Z(t) = S(z(t)) moved into G1. Since fn and gn have no poles in the closure of G1
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(which is equal to the closure of Ω), equations (21) and (22) reveal that fn and gn have
no poles in the closure of G2 either. (Note that S(z) remains bounded because it is the

conjugate of S(z), which stays in the bounded domain G1.)
This process may be continued as we repeat the process of extending the curve γ and

following its shadow Γ as we did in the construction of the levels and the stages. Since
S(z(t)) is always at least one level behind z(t) as we analytically continue S along z(t),
we show level by level that fn and gn are pole free. This procedure goes smoothly until we
reach the last level and wonder what the point at infinity holds in store for us. As we let γ
run out to infinity in the last level domain via a parametrization z(t), the shadow Γ tends
to a point in the finite complex plane in the closure of a previous level. Equation (21)
shows that fn has at worst a pole of order n at infinity and equation (22) shows that gn

has at worst a pole of order 1 at infinity. Since these are the only poles, we conclude that
fn is a polynomial of degree at most n and gn(z) = Az +B for some constants A and B.

Now, if any function gn were to be the zero function, then identity (21) would yield
that S(z) is a rational function, and it would follow from a theorem of Davis [D74] that
Ω would have to be a disc, and the conclusion of the theorem holds true. So we need
only consider the case where g1, g2, and g3 are non-zero. Any three non-zero first degree
polynomials are linearly dependent, and so there exist constants, c1, c2, c3, not all zero,
such that

c1g1(z) + c2g2(z) + c3g3(z) ≡ 0.

Now, taking this same linear combination of the identities (21), we obtain

c1f1(z) + c2f2(z) + c3f3(z) = S(z)(c1z + c2z
2 + c3z

3),

and we again see that S(z) is rational, and Davis’ theorem yields that Ω must be a disc.
The proof of Theorem 2 is complete.

4. A geometric construction for certain domains with algebraic
Riemann maps

In order to prove Theorems 6 and 7, we need a geometric result asserting the existence of
special finite subsets in the complexified boundaries of certain simply connected domains
in the plane. The inspiration for doing so comes from a paper by Hansen and Shapiro
(see [HS94]) in which the existence of “rectangles” in the complexified boundaries was
used to infer that certain Dirichlet problems failed to have solutions that extend real-
analytically to the whole plane. To state and prove the result we need, we must introduce
some notation. We shall say that a finite subset S = {(zj, wj) ∈ C2 : j = 1, . . .m} of C2

is a 2-set if each of the intersections S ∩ {(z, w) : z = zj} and S ∩ {(z, w) : w = wj}, for
j = 1, . . . , n, consists of precisely two points. Clearly, the number of points in a 2-set is
always even. The simplest example example of a 2-set is the set of vertices in a rectangle
{(a, c), (b, c), (b, d), (a, d)} with a 6= b and c 6= d. If a 2-set S is contained in a complex
algebraic variety V and V is the zero locus of the polynomial P (z, w), then the degree of
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P as a polynomial in z (with coefficients that are polynomials in w) as well as that of P
as a polynomial in w is at least 2.

Now, let Ω be a simply connected bounded domain in R2 ∼= C with smooth real algebraic
boundary, i.e. ∂Ω is a smooth curve that is contained in the zero locus of a real-valued
polynomial P (z, z̄). Without loss of generality, we may assume that P (z, w) is irreducible
(over C). We shall denote by V∂Ω the complex algebraic irreducible curve {(z, w) ∈
C2 : P (z, w) = 0}. If we identify R2 ∼= C with the anti-diagonal {(z, w) : w = z̄} of
C2 in the usual way, then V∂Ω is the unique irreducible variety in C2 whose intersection
with R2 ∼= C contains the boundary ∂Ω. We shall refer to V∂Ω as the complexification of
∂Ω. (We should point out here that we could also have considered the complexification
in the product X × X∗, where X = C and X∗ is the conjugate Riemann surface, and
embedded X = C along the diagonal in X × X∗ as in the introduction. However, in
the case of X = C, it seems more standard to consider X × X and embed X = C as
the anti-diagonal.) For instance, the complexification of the unit circle {|z|2 = 1} is the
variety V = {(z, w) : zw − 1 = 0}. Since the degree of zw − 1 as a polynomial in z (and
also that as a polynomial in w is less than 2, it cannot contain any 2-sets as observed
above. A less trivial example of a simply connected domain whose complexified boundary
does not contain any 2-sets is the ellipse

E = {z : zz̄ + A(z2 + z̄2) < R},
where A ∈ R \ {0} (A = 0 corresponds to a circle) and R > 0. We shall leave the
verification of this to the reader. (It also follows from the arguments in [E92].) Observe
that no Riemann mapping ϕ : E → D, where D denotes the unit disk, is algebraic. (See
e.g. [N52]). The main result in this section is the following.

Theorem 12. Let Ω be a bounded simply connected domain in C with smooth boundary.
Assume that a Riemann mapping ϕ : Ω → D is algebraic and that the inverse ϕ−1 : D → Ω
is not rational. Then, the complexified boundary V∂Ω contains a family of 2-sets S(t) =
{(zj(t), wj(t)) : j = 1, . . . n}, t ∈ (−ε, ε), such that each set zj((−ε, ε)) and wj((−ε, ε)), for
j = 1, . . . n, is a real-analytic variety of dimension one.

Remark 13. The property that the inverse Riemann mapping ϕ−1 : D → Ω is not rational
is equivalent to Ω not being a quadrature domain (see e.g. [S92]).

As an immediate corollary of Theorem 12, we obtain the following.

Corollary 14. Let Ω be a bounded simply connected domain in C with smooth boundary.
Assume that a Riemann mapping ϕ : Ω → D is rational with degϕ ≥ 2. Then, the
complexified boundary V∂Ω contains a family of 2-sets S(t) = {(zj(t), wj(t)) : j = 1, . . . n},
t ∈ (−ε, ε), such that each set zj((−ε, ε)) and wj((−ε, ε)), for j = 1, . . . n, is a real-analytic
variety of dimension one.

Proof of Theorem 12. First, it will be convenient, as in the proof of Theorem 2, to compose
the Riemann mapping ϕ : Ω → D with a linear fractional transformation D → U, where
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U denotes the upper half plane. We shall denote by ψ the resulting biholomorphism
ψ : Ω → U. Observe that ψ is also algebraic. As above, we denote by P the Riemann
sphere (a.k.a. the extended complex plane) and embed Ω, U in P via the inclusion C ⊂ P.
Let X be the (compact) Riemann surface of ψ realized as a branched covering π : X → P
and Ψ the meromorphic function on X obtained by lifting ψ to X via the projection
π. Recall from the introduction that there is a simply connected domain Ω̃ ⊂ X and
a meromorphic function Ψ on X such that π|Ω̃ is a biholomorphism of Ω̃ → Ω and
Ψ|Ω̃ = ψ ◦ π|Ω̃. Since ψ is holomorphic in a neighborhood of the closure Ω (by the

smoothness assumption of ∂Ω), π is a actually a biholomorphism of a neighborhood of Ω̃
to a neighborhood of Ω. In particular, ∂Ω̃ is also a smooth real-analytic curve.

We may view Ψ as a holomorphic mapping Ψ: X → P sending Ω̃ biholomorphically
onto the upper half plane U ⊂ P. We shall let X0 denote the open Riemann surface
X \ (Ψ−1(∞) ∪ π−1(∞)). We shall need the complexification of the (connected) real-
analytic curve ∂Ω̃∩X0. Since there is no notion of complex conjugation on X0, we need to
define the complexification of a real-analytic curve in X0 slightly differently than we did in
the case of a real-analytic curve in C (see above). However, it is easily seen that if X0 = C,
then the two notions of complexification are equivalent. We denote, as in the introduction,
by X∗

0 the Riemann surface X0 with the conjugate complex structure, i.e. X∗
0 = X0 as

smooth manifolds, but the holomorphic functions on X∗
0 are of the form H(ζ) where H(ζ)

is holomorphic on X0. We embed X0 as the diagonal D := {(ζ, τ) ∈ X0 ×X∗
0 : τ = ζ} in

X0×X∗
0 . The complexification V∂Ω̃ is the unique irreducible complex analytic subvariety

of X0 × X∗
0 that contains ∂Ω̃ ⊂ D ⊂ X0 × X∗

0 . Since π is a biholomorphism of a

neighborhood of Ω̃ onto a neighborhood of Ω, the complexification V∂Ω̃ can be described
as the component of the complex variety{

(ζ, τ) : P (π(ζ), π(τ)) = 0
}

that contains ∂Ω̃ ⊂ D; here, P (z, z̄) is an irreducible polynomial whose zero locus contains
∂Ω. Note that the projection

(23) Π(ζ, τ) := (π(ζ), π(τ))

is a proper holomorphic mapping of V∂Ω̃ to V∂Ω. The notion of a 2-set generalizes easily
to subsets of X0 ×X∗

0 : A finite subset S = {(ζj, τj) ∈ X0 ×X∗
0 : j = 1, . . . n} is a 2-set if

each of the intersections S ∩ {(ζ, τ) : ζ = ζj} and S ∩ {(ζ, τ) : τ = τj}, for j = 1, . . . , n,
consists of precisely two points. To find 2-sets on V∂Ω, we shall look for 2-sets on V∂Ω̃ and
project these to V∂Ω by Π. More precisely, we shall need the following result.

Proposition 15. Let Ω̃, X, and Ψ be as above. Then, the complexification V∂Ω̃ ⊂ X0×X∗
0

contains a family of 2-sets S(t) = {(ζj(t), τj(t)) : j = 1, . . . n}, t ∈ (−ε, ε), such that each
set ζj((−ε, ε)) and τj((−ε, ε)), for j = 1, . . . n, is a real-analytic variety of dimension one.
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Moreover, there is a real-analytic mapping x : (−ε, ε) → R such that, for each t ∈ (−ε, ε),
we have x(t) = Ψ(ζj(t)) = Ψ(τj(t)) for j = 1, . . . ,m.

Proof of Proposition 15. We first claim that the degree of the mapping Ψ: X → P is at
least two. If it were one, then Ψ would be a biholomorphism X → P (and so X = P).
Hence, π ◦ Ψ−1, restricted to U would be the inverse of ψ. However, π ◦ Ψ−1 would be
a holomorphic mapping P → P, i.e. a rational function, and this would contradict the
assumption in Theorem 12 that ϕ−1 is not rational (since ϕ and ψ differ by a linear
fractional transformation).

Now, let L ⊂ P denote the lower half plane and G ⊂ X be the connected component
of Ψ−1(L) whose boundary meets that of Ω̃. Since Ψ is a biholomorphic map Ω̃ → U
that extends biholomorphically across ∂Ω̃, it follows that G is uniquely determined (and
that ∂Ω̃ is a connected component of ∂G). Since the degree of Ψ is at least two and Ψ is
biholomorphic Ω̃ → U, Ψ−1(U) must have at least two connected components. Since one of
these components is the simply connected domain Ω̃, it follows that ∂G is disconnected.
Now, let a be a point of ∂Ω̃ ⊂ ∂G such that Ψ(a) is not the point at infinity and
not a critical value of Ψ; recall that the latter is equivalent to Ψ−1(Ψ(a)) consisting of
m := deg Ψ distinct points and Ψ being a local biholomorhism near each of these points.
We shall denote the points of Ψ−1(Ψ(a)) by a1 = a, a2, . . . , am. Since ∂G has at least two
boundary components, at least one of the points a2, . . . , am, say a2, must be on ∂G \ ∂Ω̃.
Let c : [0, 1] → Ḡ, with c : (0, 1) → G, be a curve starting at a1 ∈ ∂Ω̃ ⊂ ∂G and ending
at a2 ∈ ∂G \ ∂Ω̃. We define L : [0, 1] → L̄, with L : (0, 1)) → L, by L(t) = Ψ(c(t)). Thus,

L is a closed loop in L starting and ending at x := Ψ(a). Let L∗(t) = L(t). We shall
require, as we may, that both L and L∗ avoid the (finite number of) critical values of
Ψ. Each choice of a point aj ∈ Ψ−1(x) identifies uniquely a local inverse of Ψ near x
with the property that the inverse of x is aj. Let us label the local inverses Ψ−1

1 , . . . ,Ψ−1
m .

We obtain two permutations M and M∗ on the finite set of m elements {1, . . . ,m} by
the standard monodromy action of the loops L and L∗ on the local inverses of Ψ. More
precisely, for j ∈ {1, . . . ,m}, we define M(j) as follows. We continue Ψ−1

j analytically

around the loop L. Upon returning to x, the analytic continuation of Ψ−1
j will still be a

local inverse of Ψ. We define M(j) to be the index i of the resulting local inverse. The
permutation M∗ is defined in the same way by performing analytic continuation along
the loop L∗ instead L. Observe that, by construction, M(1) = 2. Moreover, since Ψ is a
biholomorphism of Ω̃ onto U sending a1 to x, the local inverse Ψ−1

1 is holomorphic in the
whole upper half plane and, hence, M∗(1) = 1.

We shall use the permutations M and M∗ to find 2-sets on V∂Ω̃ as follows. We observe,

since Ψ maps ∂Ω̃ to the real line, that V∂Ω̃ is the component of the complex variety

(24) W :=
{
(ζ, τ) ∈ X0 ×X∗

0 : Ψ(ζ)−Ψ(τ) = 0
}
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that contains ∂Ω̃ ⊂ D. Clearly, the points (ai, aj), for i, j = 1, . . . ,m, are all on the
variety W (since x = Ψ(ai) = Ψ(aj) is real) and the point (a1, a1) is on V∂Ω̃ (since

a1 = a ∈ ∂Ω̃). If we pick a point (ai, aj), continue Ψ−1
i around L and Ψ−1

j around

L∗, and denote by ci(t) := Ψ−1
i (L(t)), c∗j(t) := Ψ−1

j (L∗(t)), then t 7→ (ci(t), c
∗
j(t)) is a

curve on the regular part of W connecting (ai, aj) to (aM(i), aM∗(j)). Consequently, if
(ai, aj) is on the complexification V∂Ω̃, then so is (aM(i), aM∗(j)). Completely analogous
arguments show that if (ai, aj) is on V∂Ω̃, then so are (aM∗(i), aM(j)), (aM−1(i), a(M∗)−1(j)),
and (a(M∗)−1(i), aM−1(j)). We now define two permutations K and K∗ on the product
{1, . . . ,m} × {1, . . . ,m} by

(25) K(i, j) := (M(i),M∗(j)), K∗(i, j) = (M∗(i),M(j)).

Let H be the group of permutations generated by K and K∗. We may summarize the
discussion above in terms of the orbit of (1, 1) under H as follows.

Proposition 16. Let O ⊂ {1, . . . ,m} × {1, . . . ,m} be the orbit of (1, 1) under the group
H, i.e.

(26) O := {(i, j) : (i, j) = h(1, 1) for some h ∈ H}.
Then the finite subset

(27) S̃ := {(ai, aj) : (i, j) ∈ O}
is contained in V∂Ω̃.

We shall now show that S̃ ⊂ V∂Ω̃ contains a 2-set S. This is equivalent to showing
that O contains a subset O′ such that, for every (i, j) ∈ O′, the two intersections O′ ∩
{(k, l) : k = i} and O′ ∩ {(k, l) : l = j} both contain precisely two points. Before doing
this, however, we first claim that we may assume, without loss of generality, that the
permutation group J generated by M and M∗ is transitive on {1, . . . ,m}. If it is not,
then it is transitive on some subset {1, . . . ,m′} (after possibly renumbering the points
a3, . . . , am), where 2 ≤ m′ ≤ m. The orbit of (1, 1) under H is then a subset of the
product {1, . . . ,m′} × {1, . . . ,m′}. The arguments below would then go through with m
replaced by m′ and a 2-set on V∂Ω̃ would still result. Thus, we shall proceed under the
assumption that J is transitive on {1, . . . ,m}.

Proposition 17. Let O be as in Proposition 16. Then, O is symmetric, i.e. invari-
ant under the involution (i, j) 7→ (j, i), and the intersection with each horizontal line
{(i, j) : j = j0}, for j0 = 1, . . . ,m, contains at least two points.

Remark 18. Since O is symmetric, the intersection with each vertical line {(i, j) : i = i0},
for i0 = 1, . . . ,m, contains at least two points as well.

Proof of Proposition 17. The symmetry is obvious since O is the orbit of a group. Let J ,
as above, be the transitive permutation group on {1, ...,m} generated by M and M∗. We
define an involution T : J → J (i.e. T is a homomorphism with T 2 = I) by T (M) = M∗.
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Note that any element h in H is of the form h(i, j) = (Tg(i), g(j)) for some g ∈ J . Fix j0
as in the statement of the proposition. Thus, we need to show that there are i1 6= i2 and
g1, g2 ∈ J such that g1(1) = g2(1) = j0 and Tg1(1) = i1, Tg2(1) = i2. Pick any g1 ∈ J such
that g1(1) = j0 (which can be done by the transitivity) and set i1 = Tg1(1). Let J1 be the
subgroup of J consisting of the elements that fix 1. The subgroup J1 is nontrivial since
M∗ is in J1, and TJ1 is not contained in J1 since M is not in J1. Pick g in J1 such that Tg
is not in J1 and set g2 := g1g. Clearly, g2(1) = j0. Also, Tg2(1) = Tg1(Tg(1)) = Tg1(i),
where i := Tg(1) is not 1 since Tg is not in J1. It follows that i2 = Tg1(i) is different
from i1 = Tg1(1) since i 6= 1). This completes the proof of the proposition. �

We shall now construct a subset O′ ⊂ O, where O is as in Proposition 16, such that,
for every (i, j) ∈ O′, the two intersections O′∩{(k, l) : k = i} and O′∩{(k, l) : l = j} both
contain precisely two points, which, as we recall, is equivalent to S := {(ai, aj) : (i, j) ∈ O′}
being a 2-set contained V∂Ω̃. To this end, we consider the following construction. Set
p0 = (1, 1). Pick i1 6= 1 such that p1 = (i1, 1) is in O (which is possible by Proposition 17)).
By symmetry (Proposition 17)), q1 = (1, i1) is also in O. Pick i2 6= 1 such that p2 = (i2, i1)
is in O. If i2 = i1, then O′ := {p0, p1, q1, p2} is a 2-set and the construction is finished.
If not, then we set q2 = (i1, i2). Observe that q2 is also in O and q2 6= p2. Set i0 := 1.
Assume that we have defined a sequence i0, i1, . . . , ik such that ik 6∈ {i0, ii, . . . , ik−1} and
such that the points pl := (il, il−1), l = 1, . . . , k, and ql := (il−1, il), l = 1, . . . , k, all belong
to O. Since ik 6∈ {i0, ii, . . . , ik−1}, we can find, in view of by Proposition 17, ik+1 6= ik−1

such that pk+1 := (ik+1, ik) is in O. Now, one of three things can happen:
(i) ik+1 ∈ {i0, . . . , ik−2}. We set qk+1 = (ik, ik+1) andO′ := {p1, q1, p2, q2, . . . , pk+1, qk+1}.

By construction, the points in O′ are distinct and O′ is symmetric,. Moreover, ql and pl+1

have the same second coordinate il and no other point does. It follows that, for every
(i, j) ∈ O′, the two intersections O′ ∩ {(k, l) : k = i} and O′ ∩ {(k, l) : l = j} both contain
precisely two points and, hence, that S := {(ai, aj) : (i, j) ∈ O′} is a 2-set contained V∂Ω̃.

(ii)ik+1 = ik. We then set O′ := {p0, p1, q1, p2, q2, . . . , qk, pk+1}. Again, the points of O′

are distinct and O′ is symmetric (since pk+1 = (ik, ik)). It follows, as in case (i) above,
that S := {(ai, aj) : (i, j) ∈ O′} is a 2-set contained in V∂Ω̃.

(iii) ik+1 6∈ {i0, i1, . . . , ik}. In this case, we set qk+1 = (ik, ik+1) and observe that we are
back in the situation above with k replaced by k + 1.

Eventually, this process must stop (since there are only m choices of indices il), i.e.
for some k one of the two cases (i) or (ii) must occur. In either case, we are left with a
2-set S contained in V∂Ω̃. To find a family of 2-sets S(t), t ∈ (−ε, ε), with the properties

described in Proposition 15, we note that we could have picked any a ∈ ∂Ω̃, except for
at most a finite subset, to start our construction. Moreover, as a varies continuously
along ∂Ω̃, the curves L and L∗ can be made to vary continuously. As a consequence, the
monodromy action (and hence the group H) will remain the same. It follows that if we
let t→ a(t), t ∈ (−ε, ε), be a parametrization of a piece of the real-analytic curve ∂Ω̃ such
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that a = a(t) is a point allowed in the construction, then the resulting family of 2-sets
S(t) satisfies the conditions in Proposition 15. �

To complete the proof of Theorem 12, we let SX(t) be a family of 2-sets on V∂Ω̃ ∈ X0×X∗
0

as in Proposition 15. Recall that, except for at most a finite number of points ζ0 ∈ X, if
ζ1, . . . , ζn are points such that Ψ(ζj) = Ψ(ζ0), for j = 1, . . . , n, then the points π(ζj) ∈ P,
for j = 0, . . . , n, are all distinct. (Ψ and π generate the function field on X.) Thus, there
is a subinterval I ⊂ (−ε, ε) such that, for t ∈ I, the points π(ζj(t)), j = 1, . . . , n, are
all distinct and different from the point at infinity as are the points π(τj), j = 1, . . . , n.
Clearly, this means that S(t) := Π(SX(t)), where Π(ζ, τ) is given by (23) and t ∈ I, is a
family of 2-sets on V∂Ω ⊂ C2 with the properties prescribed in Theorem 12. �

5. Proofs of Theorems 5, 6 and 7

In this section, we provide the remaining proofs of the results stated in the introduction.

Proof of Theorem 6. Let us assume, in order to reach a contradiction, that the inverse of
the Riemann mapping ϕ is not rational, but that the solution u(z, z̄) to (1), for every v
that is the restriction of a polynomial R(z, z̄), extends meromorpically to X×X∗. Let X0,
Ω̃ ⊂ X0 (⊂ X) and its complexification V∂Ω̃ ⊂ X0×X∗

0 be as in section 4. By Proposition
15, there is a family of 2-sets S(t) = {(ζj(t), τj(t)) : j = 1, . . . , n}, for t ∈ (−ε, ε), contained
in V∂Ω̃. Let us renumber the points in the 2-set, if necessary, so that τj(t) = τj+1(t) for j
odd, and ζj(t) = ζj+1(t) for j even. (We pick a starting point and then we traverse the
2-set by alternately moving horizontally and vertically. Once the starting point has been
fixed, this can only be done in one way.) Observe that, for each j odd, there is a unique
index k = k(j) such that ζj(t) = ζk(t) and, similarly, for j even, there is k = k(j) such
that τj(t) = τk(t). We claim that |j − k(j)| is always odd. This is easy to see if we think
of the ordering as traversing the 2-set by alternately moving horizontally and vertically.
If j is, say, odd (and let us assume, for simplicity, that j < k(j)), then our next move
is a horizontal one, i.e. τj(t) = τj+1(t) and, hence, ζj(t) 6= ζj+1(t). After that, we move
vertically, i.e. ζj+1(t) = ζj+2(t) and, hence τj+1(t) 6= τj+2(t). Clearly, in order to reach a
point (ζk(t), τk(t)) such that again ζj(t) = ζk(t), our last move must be a horizontal one.
Hence, the number of steps k(j)− j we have taken is odd. The other cases are completely
analogous. Note, in particular, that j and k(j) are of opposite parity. By using this fact
and the fact that S(t) is a 2-set, we conclude that j 7→ k(j) is a permutation of the set
{1, . . . , n}.

Let us define a family of discrete measures µ(t) on V∂Ω̃ ⊂ X0 ×X∗
0 as follows

(28) µ(t) :=
n∑

j=1

(−1)jδpj(t),

where pj(t) := (ζj(t), τj(t)) and δpj(t) denotes a unit point mass at the point pj(t). Recall
from the end of the proof of Theorem 12 that the points Π(pj(t)) ⊂ C2, for j = 1, . . . , n,
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are all distinct (i.e. Π(S(t)) is a 2-set) except, possibly, for a finite number of values for
t; here Π: X0 ×X∗

0 → C2 is the projection given by (23). We may assume, without loss
of generality of course, that t = 0 is not one of these excluded values. Let ν(t) be the
discrete measure in C2 (supported on the 2-set Π(S(t)) obtained by pushing µ(t) forward
by Π and R(z, w) a polynomial that is not annihilated by ν(0), i.e.∫

R(z, w)dν(0) =
n∑

j=1

(−1)jR(Π(ζj(0)),Π(τj(0))) 6= 0.

(For instance, let R(z, w) be a polynomial that vanishes at all but one point of Π(S(0)).)

It follows that the meromorphic function R̃(ζ, τ) := R(Π(ζ),Π(τ)) on X0 × X∗
0 is not

annihilated by µ(0) and, by continuity, not by µ(t), for t sufficiently small. Let u(z, z̄) =

f(z) + g(z) be the solution to (1), where v is the restriction to ∂Ω of R(z, z̄). Thus,

f(z) + g(z) = R(z, z̄) on ∂Ω. By assumption, f and g lift to meromorphic functions F

and G on X0 and, for ζ ∈ ∂Ω̃, we have F (ζ) + G(ζ) = R(π(ζ),Π(ζ)). By polarization
(complexification), we conclude that

(29) F (ζ) +G(τ) = R̃(ζ, τ)

for (ζ, τ) on the complexification V∂Ω̃. Let us now fix a sufficiently small t0 such that

R̃(ζ, τ) is not annihilated by µ(t0) and such that F has no poles at the points ζj(t0), for
j = 1, . . . n, and G has no poles at the points τj(t0), for j = 1, . . . n. (This can be done,
since t 7→ ζj(t) and t 7→ τj(t) trace out non-trivial piecewise real-analytic curves.) We

claim that F (ζ) +G(τ) is annihilated by µ(t0). Indeed, if we use the notation µ = µ(t0),
ζj = ζj(t0), and τj = τj(t0), then we have

(30)

∫ (
F (ζ) +G(τ)

)
dµ =

n∑
j=1

(−1)j
(
F (ζj) +G(τj)

)
=

1

2

n∑
j=1

(−1)j
(
F (ζj) +G(τj)

)
+

1

2

n∑
j=1

(−1)k(j)
(
F (ζk(j)) +G(τk(j))

)
= 0.

The second identity follows from the fact that j 7→ k(j) is a permutation and the third
from the fact that j and k(j) have opposite parity. This is a contradiction, in view of
(29), and hence the proof is complete. �

Proof of Theorem 7. We first observe that if u(z, z̄) extends as a period free harmonic
function in C \ A, then there are holomorphic functions f and g in C \ A such that

u(z, z̄) = f(z)+ g(z). To see this, observe that the function v(z, z̄) :=
∫ z

z0
∗du, where z0 is
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any fixed point and the integration takes place along any curve in C\A connecting z0 to z,
is well defined. Moreover, it is easy to see that v(z, z̄) is a conjugate harmonic function to
u (i.e. u and v are related by the Cauchy-Riemann equations). It follows that f = u+ iv

and g = ū+ iv̄ are holomorphic functions in C \ A and that u(z, z̄) = f(z) + g(z).
We first claim, under the hypotheses of the theorem, that the inverse of the Riemann

mapping ϕ must be rational. Assume, in order to reach a contradiction, that ϕ−1 is
not rational. Let S(t) be a family of 2-sets in the complexified boundary V∂Ω as given
by Theorem 12. Construct a family of discrete measures µ(t) in C2 as in the proof of
Theorem 6 (cf. (28)), let R(z, z̄) be any polynomial that is not annihilated by the measure

µ(0), and let u(z, z̄) = f(z) + g(z) be the solution to the Dirichlet problem (1), where v

is the restriction of R(z, z̄). Since f(z) + g(z) = R(z, z̄) on ∂Ω and f and g extend, by
assumption, holomorphically to C \A, for some discrete set A, we may proceed as in the
proof of Theorem 6 above to reach the desired contradiction. We leave the details of this
to the reader.

To complete the proof, we must show, under the hypotheses in the theorem and the
additional hypothesis that ϕ−1 is rational, that Ω actually must be a disk. Let S(z) be
the Schwarz function of ∂Ω as in section 3. Since ϕ−1 is rational, S(z) is an algebraic
function that extends as a meromorphic function to a neighborhood of Ω (see e.g. [S92]).
Let P (z) be a polynomial such that f(z) = P (z)S(z) is holomorphic in Ω. Note that, on
the boundary, f(z) = P (z)z̄. It follows that u(z, z̄) = f(z) is the solution to the Dirichlet
problem (1), where v is the restriction of the polynomial R(z, z̄) := P (z)z̄. Since f(z), by
assumption, extends as a holomorphic function in C \ A, it follows that S(z) extends as
a meromorphic function to C \A. However, since S(z) is also algebraic and A is discrete,
S(z) must in fact be rational. This proves that Ω is a disk by Davis’ theorem (as in
section 3; see [D74]). This completes the proof. �

Proof of Theorem 5. The implication (ii) =⇒ (i) follows from Theorem 6. To prove
the opposite implication, we recall a result from [E92] stating that the solutions to the
Dirichlet problems considered in Theorem 5 lift to meromorphic functions on Y × Y ∗,
where Y denotes the Riemann surface of the Schwarz function S(z) of ∂Ω and Y ∗ the
conjugate Riemann surface. Recall that

S(z) = ϕ−1(1/ϕ(z)).

Since ϕ−1 is rational, it follows that the Riemann surface Y coincides with the Riemann
surface X of ϕ. Consequently, the implication (i) =⇒ (ii) is a direct consequence of the
above mentioned result from [E92]. �
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6. Concluding remarks

In this final section, we shall address a few questions that arose during the completion
of this paper. We shall also briefly indicate the relation between our construction of 2-
sets (in Section 4 above) and the notion of lightning bolts in approximation theory. The
material below is arranged in three separate subsections.

6.1. 2-sets and lightning bolts. The notion of a 2-set (introduced in Section 4) is
closely related to the notion of a closed lightning bolt in Rn introduced by Arnold and
Kolmogorov to study Hilbert’s thirteenth problem on expressing a function in n variables
as a superposition of functions of fewer variables. We shall refer to [Kh97] for the history
of the problem, detailed discussions and relevant references. Here we just very briefly
sketch how this notion applies to our situation and the proof of Theorem 6.

A “complex” lightning bolt is a finite set of points (vertices) p0, q0, p1, . . . , pn, qn in C2

such that each complex line connecting pj to qj or qj to pj+1 is either “horizontal” or
“vertical”, i.e. has either its first or second coordinate fixed. A lightning bolt is said to
be irreducible if it does not contain a lightning bolt with smaller number of vertices still
connecting the first and last vertex (p0 and qn). A lightning bolt is closed if p0 = qn. Every
closed lightning bolt, as is easily seen, has an even number of vertices and supports a finite
measure µ (defined by (28)) consisting of charges with alternating signs at the vertices.
Also, it is obvious that a 2-set is an irreducible closed lightning bolt while every closed
lightning bolt is a finite union of 2-sets. The measure (28) is (cf. the proof of Theorem 6
above) an annihilating measure for all holomorphic functions in C2 representable in the
form f(z) + g(w). Therefore if a variety V supports a closed lightning bolt, there exists
a vast set of functions, holomorphic in a neighborhood of V (even polynomials!), that
cannot be approximated by sums of (holomorphic) functions of one variable, f(z)+ g(w).
Our construction in Section 4 precisely produces on the variety V , a connected component
of the complexified boundary of the domain Ω, a closed irreducible lightning bolt that
carries a measure annihilating all functions f(z) + g(w), with f, g, holomorphic in a
neighborhood of V . In fact, already the existence of a closed lightning bolt on V would be
sufficient, but of course, it is not hard to see that every closed lightning bolt contains an
irreducible lightning bolt, hence contains a 2-set that we constructed directly in Section
4. Essentially, the technical subtlety of the construction reduces to the following; since
V , as in Section 4, represents a Riemann surface of degree at least 2, we could, starting
at any non-critical point p of V construct a lightning bolt by simply going on a horizontal
{z = z0}, or vertical {w = w0} line from p until we hit V again and then proceed at
each step changing the “type” of the line emanating from a newly obtained vertex to the
opposite from the type of the complex line on which we have arrived at the vertex, of
course, avoiding critical values and critical points of V , a finite set. The difficulty is to
show that the process will terminate rather than produce a lightning bolt with infinitely
many vertices running away to infinity. This is why we needed the specific construction



24 S. R. BELL, P. EBENFELT, D. KHAVINSON, AND H. S. SHAPIRO

of a rather special family of grids of points (S(t) on V in Section 4) obtained as orbits
of a special finite subgroup of the monodromy group with two generators, to prevent an
associated lightning bolt “running away” to infinity.

In view of the above discussion, we could in fact infer the following corollary from our
construction in Section 4.

Corollary 19. Let Ω be a smoothly bounded simply connected domain in the plane satis-
fying the hypotheses in Theorem 12. Then, there exist functions holomorphic in a neigh-
borhood U of V in C2 that cannot be approximated uniformly on compact subsets of V by
functions of the form f(z) + g(w), with f, g holomorphic in U .

Finally, note that the real variable version of our problem is also of interest. Indeed,
assume that we are interested in investigating whether every continuous function on a
closed Jordan curve Γ can be uniformly approximated by functions of the form f(x)+g(y),
f, g ∈ C(Γ), i.e. by solutions of the two-dimensional wave equation ∂2u/∂x∂y = 0. Then,
in view of Schnerel’man’s theorem, Γ always supports vertices of a rectangle. Hence, by
rotating Γ, we obtain on its image Γ′ four vertices of a rectangle whose sides are parallel
to coordinate axes, i.e. Γ′ carries a closed irreducible lightning bolt and the answer to
the above question is a resounding “no” , but for Γ′ rather than for original curve Γ. Of
course, for convex curves symmetric with respect to coordinate axes, it is rather obvious
that there exists a rectangle with vertices on the curve whose sides are parallel to the
axes, e.g., consider an ellipse. For most curves, however, the answer to the above question
is still not known; cf. [Kh97] for more detailed discussion and further references.

6.2. Irreducibility of the variety {ϕ(z)ϕ(w̄) = 1}. In this section, we shall address a
question that arises naturally in our proof of Theorem 12. For clarity, we shall confine
our discussion to the situation where a Riemann map ϕ : Ω → D is rational. Recall that
the complexification of ∂Ω is denoted by V∂Ω ⊂ C2. As observed in the proof of Theorem
12, V∂Ω is an irreducible component of the algebraic variety

(31) V :=
{
(z, w) : ϕ(z)ϕ(w̄)− 1 = 0

}
.

We remark that V can also be expressed as follows

(32) V :=
{
(z, w) : p(z)p(w̄)− q(z)q(w̄) = 0

}
,

where ϕ(z) = p(z)/q(z) and p and q are relatively prime. One may ask: Under what
conditions is the algebraic variety in (31) irreducible? It is easy to see that V need not be
irreducible if we do not assume that ϕ is a biholomorphism Ω → D. For instance, suppose
that r : Ω → D is a rational map and consider ϕ(z) = (r(z))2. Clearly,

ϕ(z)ϕ(w̄)− 1 = r(z)2r(w̄)
2
− 1 = (r(z)r(w̄)− 1)(r(z)r(w̄) + 1).

The following, less trivial example shows that irreducibility of V may fail even when
ϕ : Ω → D is biholomorphic if we allow corners in the boundary of Ω. (Observe, however,
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that in this example the boundary of Ω is not contained in an irreducible real-algebraic
variety and, hence, the complexification is not irreducible.)

Example 1. Let Ω be the cigar-shaped domain given by

(33) Ω :=
{
z : |z − i/

√
2| < 1, |z + i/

√
2| < 1

}
.

The domain Ω is bounded by two circular arcs meeting at right angles at the two points
z = ±1/

√
2. We leave it to the reader to verify that the mapping w = ϕ(z), where

ϕ := ϕ3 ◦ ϕ2 ◦ ϕ1 and

(34) ϕ1(z) :=
eiπ/4

z − 1/
√

2
, ϕ2(z) := z2, ϕ3(z) :=

z − i

z + i
,

is a biholomorphic mapping Ω → D. Clearly, ϕ is rational. Moreover, the variety V
given by (31) cannot be irreducible, since it contains the complexifications of both circles
|z − 1/

√
2| = 1 and |z + 1/

√
2| = 1.

In the example above, the degree of the rational Riemann mapping is two, and the
number of distinct irreducible components of the variety V is at least two. As we shall see
below, it is the corners on the boundary that make it possible for V , in the example, to
have more than one component. Indeed, for any smoothly bounded domain with a degree
two rational Riemann mapping, the variety (31) is irreducible (see Corollary 21 below).
To see this, we shall first establish a bound on the possible number of components of V
under an additional condition on ϕ. (The condition implies that, after applying suitable
Möbius transformations, we may assume that ϕ is a polynomial mapping; see the proof
below.)

Proposition 20. Let ϕ(z) be rational and assume there is a point b ∈ P \ ∂D such that
ϕ−1(b) ⊂ P contains only one distinct point. Let b∗ := 1/b̄ ∈ D and denote by k the
number of distinct points in ϕ−1(b∗). Then, the number n of components of V , where V
is given by (31), counted with multiplicities satisfies the following inequality

(35) n ≤ degϕ

k
.

Proof. We regard ϕ as a holomorphic mapping P → P. Let ζ ∈ P be the distinct point
in ϕ−1(b). Let ψ1 be a Möbius transformation of the source copy of P sending ζ to ∞,
and ψ2 a Möbius transformation of the target copy of P sending b to ∞ and preserving
∂D. Observe that ψ2 sends b∗ = 1/b̄ to 0. Now, the mapping p := ψ2 ◦ ϕ ◦ ψ1 : P →
P is a polynomial (since p−1(∞) = {∞}) with deg p = degϕ, and the number k of
distinct points in ϕ−1(b∗) equals the number of distinct point in p−1(0). The variety

W := {(z, w) : p(z)p(w̄) − 1 = 0} is birationally equivalent to V and hence W and V
have, in particular, the same number of irreducible components, namely n. Thus, to
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prove the proposition, it suffices to prove the estimate

(36) n ≤ deg p

k
,

where n is the number of irreducible components of W counting multiplicites and k is
the number of distinct zeros of p. We let Aj(z, w), for j = 1, . . . , n, be irreducible
polynomials defining the n components of W , repeated according to the multiplicities of
the components. If we let a1, . . . , ak be the distinct zeros of p and let r1, . . . , rk denote
their respective multiplicities, then we have, for some constant c,

(37) c

k∏
j=1

(z − aj)
rj(w − āj)

rj − 1 =
n∏

l=1

Al(z, w).

Observe that no Al(z, w) can be a polynomial of z (or w) alone. (If, say, A1 were a
polynomial of z, then the left hand side would vanish identically for every z = z0 such
that A1(z0) = 0. Clearly, this cannot happen.) If we substitute z = a1 in (37), then we
obtain

−1 =
n∏

l=1

Al(a1, w).

Since the Al(a1, w) are polynomials, we conclude that each Al(a1, w) must be constant,
i.e.

(38) Al(z, w) = c0l + (z − a1)A
1
l (z, w),

for some constant c0l and polynomial A1
l (z, w). Note that A1

l (z, w) cannot be constant
since Al(z, w) is not a polynomial of z alone. Next, we substitute z = a2 in (37) and
conclude, in the same way, that each Al(a2, w) must be constant. Since a1 6= a2, we
conclude from (38) that A1

l (a2, w) is constant, i.e.

A1
l (z, w) = c1l + (z − a2)A

2
l (z, w),

for some constant c1l and polynomial A2
l (z, w). It follows that

(39) Al(z, w) = c0l + c1l (z − a1) + (z − a1)(z − a2)A
2
l (z, w).

Again, A2
l (z, w) cannot be constant, since Al(z, w) is not a polynomial of z. We may

proceed in the obvious way, substituting z = aj for j = 3, . . . , k in (37). In the end, we
will obtain, for each l = 1, . . . , n,

(40) Al(z, w) = c0l +
k−1∑
j=1

cjl

j∏
i=1

(z − ai) + Ak
l (z, w)

k∏
i=1

(z − ai),

where c0l , . . . , c
k−1
l are constants and Ak

l (z, w) is a nonconstant polynomial. In particular,
Aj(z, w) has degree at least k in z. It follows that the product on the right in (37) has
degree at least nk in z. On the other hand, the left hand side has degree deg p in z. Thus,
nk ≤ deg p. This proves the estimate (36) and, hence, the proposition. �
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As a corollary, we obtain the following result.

Corollary 21. Let Ω be a simply connected, bounded domain with smooth boundary.
Suppose that a Riemann mapping ϕ : Ω → D is rational with degϕ ≤ 2. Then, the variety
V , given by (31), is irreducible.

Proof. We may assume that degϕ = 2, since the case degϕ = 1 is trivial (ϕ is a Möbius
transformation). Since Ω has smooth boundary, the rational function ϕ extends as a
biholomorphism of a neighborhood of Ω to a neighbborhood of D. It follows that ϕ−1(D)
consists of two disjoint components Ω and Ω′, and ϕ is a biholomorphism also of a neigh-
borhood of Ω′ to a neighborhood of D. We conclude that G := ϕ−1(P \ D) is connected
but not simply connected, and ϕ : G → P \ D is 2-to-1. Hence, ϕ : G → P \ D must be
branched, i.e. there is a ζ ∈ G such that ζ is a root of multiplicity at least two of the
equation ϕ(z) = b with b := ϕ(ζ) ∈ P\D. Since ϕ has degree two, we conclude that ϕ−1(b)
consists only of the point ζ. Thus, we may apply Proposition 20. The point b∗ = 1/b̄ is
in D and, consequently, the set ϕ−1(b∗) consists of two points (one in Ω and one in Ω′),
i.e. k = 2. The estimate (35) implies that the number n of components is ≤ 1 and, hence,
V is irreducible. �

As a side remark, we mention that Corollary 21, in view of the discussion in the opening
paragraph of Section 4, can also be directly deduced from Corollary 14; we leave the details
of this to the interested reader. The assumption that ∂Ω is smooth in Corollary 21 is
necessary in view of Example 1. We should also point out that the rational mapping ϕ
in Example 1 does not satisfy the hypotheses of Proposition 20, since the only points b
for which ϕ−1(b) consists of a single point lie on the boundary ∂D.

We conclude this subsection by pointing out that we do not know of any examples
where V , given by (31), is reducible (i.e. has more than one irreducible component) when
∂Ω is smooth (necessarily real-analytic in this case; in particular, its complexification is
irreducible) and ϕ : Ω → D is a rational biholomorphic mapping.

6.3. Cusps and poles. In Lemma 10, it was shown that if Ω is simply connected, a
harmonic function u(z, z̄) = f(z) + g(z) extends continuously to ∂Ω, and f , g extend
meromorphically across ∂Ω, then f and g cannot have poles on ∂Ω except possibly at
outward pointing cusps on ∂Ω. This result suffices for the proof of Theorem 2 since
outward pointing cusps can be ruled out in that situation. As mentioned in the remark
following Lemma 10, however, poles can actually occur at cusps in the general case. For
completeness, we give here a result that shows that poles cannot occur at cusps under a
stronger condition on the boundary data of the harmonic function.

Proposition 22. Let Ω be a bounded simply connected domain in C. Let U be an open
disk that intersects the boundary of Ω and assume that Γ := ∂Ω∩U is a piecewise smooth
curve. Suppose that u(z, z̄) is a harmonic function that extends continuously up to Γ and
coincides there with a function R(z, z̄) that is smooth in U . If f and g are holomorphic
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functions in Ω such that u(z, z̄) = f(z) + g(z), and f and g extend meromorphically to
U , then f and g cannot have poles on Γ.

Proof. In view of Lemma 10, it suffices to show that f and g do not have poles at outward
pointing cusps on Γ. Let z0 be such a cusp and assume, in order to reach a contradiction,
that f and g extend meromorphically to a full neighborhood of z0 with a pole of order
p ≥ 1 at z0. (As in the proof of Lemma 10, it is easy to see that if one of the functions
has a pole at z0, then the other function must, by the continuity of u up to Γ, have a
pole of the same order at that point.) After a translation and rotation if necessary, we
may assume that z0 = 0, that Ω ∩ U is contained in {Re z > 0}, and that the common
tangent of the two curves making up Γ near z0 is the x-axis. The piecewise smooth curve
Γ near z = 0 is made up of two curves γj : [0, ε) → C, for j = 1, 2, such that γj(0) = 0
and γ′j(0) = 1. Let h(x) be a function, defined for x ≥ 0, such that one of these curves,
say γ := γ1, is given by the graph y = h(x), for x ≥ 0. We note that the function h(x) is
smooth for x > 0 and, since Γ has a cusp pointing along the negative x-axis, h(x) is C1

up to x = 0 with h(0) = h′(0) = 0. (We remark that in general, even if Γ is piecewise
real-analytic, the function will not be better than C1 up to x = 0; consider e.g. the cusp
y2 − x3 = 0.)

Let us expand f(z) and g(z) in their Laurent series at z = 0 as in (15). The arguments
in the proof of Lemma 10 show that the leading coefficients a and b in (15) must be related
by a = −b (cf. (19) with ζ = 1). Hence, we can write u(z, z̄) as follows

(41)

u(z, z̄) =z−p − z̄−p +

p−1∑
j=1

(ajz
−j + bj z̄

−j) + v(z, z̄)

=
1

|z|2p

(
z̄p − zp +

p−1∑
j=1

(ajz
p−j z̄p + bjz

pz̄p−j)

)
+ v(z, z̄)

where v(z, z̄) is real-analytic in a neighborhood z = 0. The fact that u(z, z̄) and R(z, z̄)
coincide on γ means, of course, that u(x+ ih(x), x− ih(x)) = R(x+ ih(x), x− ih(x)) for
x ≥ 0. We may rewrite this relation as follows

(42) (x− ih(x))p − (x+ ih(x))p + p(x, h(x))

= (x2 + h(x)2)p
(
R(x+ ih(x), x− ih(x))− v(x+ ih(x), x− ih(x))

)
,

where p(x, y) is the polynomial given by

(43) p(x, y) :=

p−1∑
j=1

(
aj(x+ iy)p−j(x− iy)p + bj(x+ iy)p(x− iy)p−j

)
Observe that p(x, xt) = xp+1q(x, t), where q(x, t) is a polynomial. Recall that h(x) is C1

up to x = 0 with h(0) = h′(0) = 0. Thus, we may write h(x) = xk(x), where k(x) is
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continuous up to x = 0 with k(0) = 0. If we substitute h(x) = xk(x) in (42) and cancel
a factor xp, we obtain

(44) (1− ik(x))p − (1 + ik(x))p + xq(x, k(x))

− xp(1 + k(x)2)p
(
R(x+ ixk(x), x− ixk(x))− v(x+ ixk(x), x− ixk(x))

)
= 0.

This means that t = k(x) solves the equation

(45) F (x, t) = 0,

where

(46) F (x, t) := (1− it)p − (1 + it)p + xq(x, t)

− xp(1 + t2)p
(
R(x+ ixt, x− ixt)− v(x+ ixt, x− ixt)

)
.

Observe that F (x, t) is smooth in a neighborhood of (x, t) = (0, 0), F (0, 0) = 0, and

∂F

∂t
(0, 0) = −2ip.

By the implicit function theorem, the equation Im F (x, t) = 0 has a unique smooth
solution t = k(x) with k(0) = 0. Recall also that the solution obtained by the implicit
function theorem is actually unique among all possible, say continuous, solutions. Since
the function F (x, t) only depends on the dataR(z, z̄) and the solution u(z, z̄) = f(z)+g(z),
we conclude that if f and g extend meromorphically with a pole of order p ≥ 1 at 0, then
u and R can only coincide on one single curve y = h(x), where h(x) = xk(x) and t = k(x)
is the unique solution of F (x, t) = 0, through the origin. This contradicts the fact that
u and R coincide on two curves that form a cusp at z = 0 and, hence, completes the
proof. �
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