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Abstract
We consider a family of explicitly position dependent hierarchies

(In)∞0 , containing the NLS (non-linear Schrödinger) hierarchy. All
(In)∞0 are involutive and fulfill DIn = nIn−1, where D = D−1V0, V0

being the Hamiltonian vector field v δ
δv −u δ

δu afforded by the common
ground state I0 = uv. The construction requires renormalisation of
certain function parameters.

It is shown that the ‘quantum space’ C[I0, I1, ...] projects down to
its classical counterpart C[p], with p = I1/I0, the momentum density.
The quotient is the kernel of D. It is identified with classical semi-
invariants for forms in two variables.

Introduction: Consider in 1+1 dimensions the (free) heat equation system
(u and v are functions of time, t, and space q)

u̇+
1

2
u′′ = 0; −v̇ +

1

2
v′′ = 0. (1)

With appropriate ‘boundary conditions’ on u and v (e.g. rapid decrease at
infinity or periodicity), all In := 1

2
(u(n)v+(−1)nuv(n)) are conservation laws:

d

dt

∫
In dq = 0, n = 0, 1, 2, ... (2)
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This is an immediate consequence of the equations being invariant under
space translations. There is an additional first order conservation law, viz.
tI1 − qI0.

The counterpart of (In)∞0 for the free classical (Newton) equation q̈ = 0
is the sequence (pn)∞0 , of constants of motion. (p = q̇, as usual.) Obviously,
all pn commute in the Poisson bracket

{ξ, η} :=
∂ξ

∂p

∂η

∂q
− ∂ξ

∂q

∂η

∂p
(3)

The additional first order (in p) constant of motion pt− q satisfies

{pt− q, pn} = npn−1 = dpn/dp. (4)

(t is looked upon as a parameter.)
Similarly, with the (field theory) bracket {F,G} :=

∫ (
δF
δu

δG
δv
− δF

δv
δG
δu

)
dq,

we have
{tI1 − qI0, In} = {−qI0, In} =: DIn = nIn−1. (5)

This is of course related to 〈1, p, pt − q〉 and 〈I0, I1, tI1 − qI0〉, respectively,
being representations of the Heisenberg algebra.

Suppose now that we form C[I0, I1, I2, ....]: all polynomials in the variables
I0, I1, I2, .... What, if any, is the relation to the classical version, viz. C[p],
all polynomials in p?

Below it is shown that there is a projection

C[I0, I1, I2, ....] → C[I1/I0] ' C[p] (6)

with ‘fibre’ ker D, which in its turn is related to the classical 19th century
semi-invariants of Cayley and others. See Gurevich [9], Ibragimov [10], Olver
[27, 28].

The paper is devoted to this and some related questions, among them
renormalisation, for a wider class of commuting conservation laws, containing
a version of the non-linear Schrödinger hierarchy, NLS.

As background serve the papers on invariance properties, including be-
haviour under mappings between manifolds, for Schrödinger and related dif-
fusion processes [4, 6, 14, 16, 17, 18, 22, 30, 31], in particular the case of
Gaussian diffusions [2, 3, 18]. At the centre of much of this is the heat Lie
algebra, first described by Lie in 1881 [21]. See e.g. Ibragimov [10, 11, 12]
and Olver [28]. Other general background references are [2], [6] and [19, 20],
and for the NLS equation primarily [7], together with [23, 24] and [32].
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1 Outline and formulation of results

Consider all C∞ curves (u(q), v(q)), q ∈ R, in C2. We are interested in func-
tionals or differential functions of the form F = f(q, u, u1, ..., un; v, v1, ..., vn),
where uj = u(j), vj = v(j) and where it is understood that all the ui and vj de-
pend on q, the coordinate in the base space. Here f is C∞ in the appropriate
space, a jet bundle. With D = d/dq we form variational derivatives:

δF

δu
=
∂F

∂u
−D

∂F

∂u1

+D2 ∂F

∂u2

+ ....,
δF

δv
=
∂F

∂v
−D

∂F

∂v1

+D2 ∂F

∂v2

+ ... (7)

The variational gradient δF of F is the transpose of the vector (δF/δu, δF/δv).
Two functionals F and G are identified whenever δ(F−G) = 0. This is equiv-
alent to saying that F −G ∈ imD. The interpretation is that we have put
extra ‘gauge’ conditions on u and v, e.g. on their behaviour at infinity.

The bracket is, when emphasising the Hamiltonian densities F and G,

{F,G} :=
δF

δu

δG

δv
− δF

δv

δG

δu
(mod imD). (8)

We will also use the more customary representation
∫ (

δF
δu

δG
δv
− δF

δv
δG
δu

)
dq of

the bracket. In this picture the central objects are Hamiltonians
∫
F ,
∫
G...

Remark: Everything we do here could be done for for general elements u
and v in a commutative algebra, not necessarily C∞(R), with a derivation.

We shall consider sequences of functionals I0, I1, I2, ... given by a (recur-
sion or) creation operator C:

(i) In = CIn−1 = CnI0, n ≥ 0,

or, infinitesimally, δIn = CδIn−1. Throughout this paper, we will have

I0 = uv. (9)

The operator D given by

DF := D−1

(
v
δF

δv
− u

δF

δu

)
= {−qI0, F}, (10)

is well defined on the space A of equivalence classes of functionals that com-
mute with I0. We want the In to satisfy

(ii) DIn = nIn−1, n ≥ 0.
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Together, properties (i) and (ii) yield a representation of the Heisenberg al-
gebra: we have [D, C] = 1 (the identity) on

⊕
n≥0 CIn. D is the annihilation

operator. There are traces of (ii) in Dickey’s book [5], in connection with the
KdV equation.

We also want the In to be involutive, i.e. to commute:

(iii) {In, Im} = 0, all n,m ≥ 0.

Properties (ii) and (iii) imply that the expected value of position, q, taken
in the (ground) state I0,

〈q〉 =

∫
qI0 dq, (11)

fulfills the free Newton equations

d2〈q〉
dtndtm

= 0, all n,m ≥ 0. (12)

Here tn is the ‘time’ obtained using the Hamiltonian In. Property (iii) means
that for any m,n, dIn/dtm = 0 in the space of equivalent functionals: each
In is a conservation law w.r.t. any choice of time tm.

Define an auxiliary creation operator Ĉ by

ĈδF :=

(
δĈF

δu
,
δĈF

δv

)T

=

(
−D 0
0 D

)
δF − 2λ

(
v
u

)
DF, (13)

where λ is a (real or complex) parameter. (This is a slight adaption of [8].)
Let the sequence of functionals În be given by

În = ĈnI0, n ≥ 0. (14)

Consider two special cases:
λ = 0 leads to the free case (we write D† = −D)

În(0) = 1
2
(unv + (−1)nuvn) = 1

2
(Dnu · v + uD†nv). (15)

For real non-zero λ, say λ = 1, we get a version of the NLS (non-linear
Schrödinger) hierarchy (Faddeev-Takhtajan [8]). Î0 = I0 and Î1 are the
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same, whereas the next few are

Î2 = Î2(0)− u2v2, Î3 = Î3(0)− 3
2
uv(u1v − uv1),

Î4 = Î4(0)− uv(u2v + uv2) + 4uu1vv1 + 2u3v3,

Î5 = Î5(0) + 5uv(u2v1 − u1v2) + 5u2v2(u1v − uv1),

Î6 = Î6(0)− 3(uu2v
2
1 + u2

1vv2)− 12uu2vv2 + 5u2
1v

2
1

− (u2
2v

2 + u2v2
2)− 50u2u1v

2v1 − 10uv(u2
1v

2 + u2v2
1)− 5u4v4.

Here, Î2 is the Hamiltonian for the NLS equations. I3 leads to KdV upon
putting v ≡ 1. The entire KdV hierarchy can be deduced from the odd-
indexed În.

We introduce an extended family In = In(λ, φ), n ≥ 0 as follows: Let
φ ∈ C∞(R) and put

Λ = D + φ, Λ† = −D + φ. (16)

We note in passing that [Λ,Λ†] = 2φ′ (as a multiplication operator). The case
when φ = q (or a first order polynomial in q) gives the Heisenberg algebra.

We define

CδF =

(
Λ† 0
0 Λ

)
δF − 2λ

(
v
u

)
DF (17)

with the above requirement on F . One finds

I1 = Î1 + φÎ0 and I2 = Î2 + 2φÎ1 + φ2Î0. (18)

Below we shall prove

Theorem 1 For n ≥ 3, there are polynomials ψn = ψn(φ, φ′, ..., φ(n−1)) of
degree n− 2, such that

In =
n∑

k=0

(
n

k

)(
φk − ψk

)
În−k, n = 0, 1, 2, .... (19)

By definition ψ0 = ψ1 = ψ2 = 0.

The properties (ii) and (iii) hold in the general case:

Theorem 2 {In, Im} = 0 for all n,m ≥ 0, and DIn = nIn−1 for all n ≥ 0.
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We shall also make use of the following result. Needless to say, it holds
in the sense of equivalence of functionals.

Theorem 3 For any f ∈ C∞(Cn+1) we have

D (f(I0, I1, ...., In)) =
n∑

ν=0

∂f

∂Iν
(I0, I1, ...., In)νIν−1. (20)

This leads to a bundle where the ‘quantum space’ C[I0, I1, I2, ...] of all
polynomials in the variables (conservation laws) In, projects down to the
‘classical space’ C[I1/I0]. The fibre is the kernel of D and may be identified
with classical semi-invariants. We refer to the precise details in §5 below.

2 Preliminaries and background.

2.1 Symmetries and conservation laws for linear heat
equations.

Assume that u and v satisfy

u̇+
1

2
u′′ − V u = 0; −v̇ +

1

2
v′′ − V v = 0, (21)

where V is a given, smooth, potential. Then

d

dt

∫
uv dq = 0, (22)

assuming sufficently rapid decrease at infinity of u and v. Let f = f(t, q)
and put Kf = ḟ + 1

2
f ′′ − V f . It is easy to show (see Brandão and Kolsrud

[4]) that
d

dt

∫
f uv dq =

∫
∂f uv dq =

∫
∂∗f uv dq, (23)

where

∂f : =
1

u
K(fu) = ḟ + 1

2
f ′′ +

u′

u
f, (24)

∂∗f : = −1

v
K†(fv) = ḟ − 1

2
f ′′ − v′

v
f. (25)
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The first identity can be written

∂ = u−1Ku or u∂u−1 = K. (26)

Suppose the linear PDO Λ = T∂t +Q∂q + U belongs to the heat Lie algebra
of K:

[K,Λ] = KΛ− ΛK = Φ ·K (27)

for some function Φ = ΦΛ. Using u∂u−1 = K we obtain

u∂(Λu/u) = KΛu = ([K,Λ] + ΛK)u = (ΦΛ + Λ)Ku = 0. (28)

This is an alternative way of expressing that Λu · v is the density of a con-
servation law:

d

dt

∫
Λu · v dq =

∫
∂(u−1Λu) · uv dq =

∫
(ΦΛ + Λ)Ku · uv dq = 0. (29)

In more detail, the equation ∂(Λu/u) = 0 above may be written

∂

(
T
u̇

u
+Q

u′

u
+ U

)
= 0, (30)

very much as in the classical case, where the Noether theorem leads to a
constant of motion of the form ET+Tp+U , where E = −1

2
p2+V (Euclidean

convention) and p = q̇. The coefficients u̇u−1 = −1
2
u′′u−1 + V and u′u−1 are,

respectively, the energy density and the momentum density in a form that
emphasises the backward motion, and the classical total time derivative is
replaced by ∂.

The basic density is the ground state I0 = uv, and for instance u′v = u′

u
·I0

is an equivalent form for 1
2
(u1v − uv1) = Î1(0). We write p̄ for the moment

density u′/u. Then we have the Euclidean Newton/Hamilton equations (cf
Landau-Lifshitz [20], Eq. (19.3))

∂q = p̄ = −Hp̄, ∂p = V ′ = Hq, (31)

with H denoting the Euclidean Hamiltonian −1
2
p2 +V . Similarly the energy

density Ē satisfies ∂Ē = V̇ .
Repeating the argument above one finds that for Λj in the Lie algebra of

K and sj ≥ 0 integers, we have

d

dt

∫
Λs1

1 · · ·Λsm
m u · v dq = 0, (32)

i.e. Λs1
1 · · ·Λsm

m u · v is the density of a conservation law. Its probabilistic
version is that Λs1

1 · · ·Λsm
m u/u is a martingale for a certain diffusion process.
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2.2 The operator D.

Consider a slightly more general situation, in which our space is built from
one independent variable q and m dependent variables uα, α = 1, ....,m.
We define A as all smooth (C∞) functions of the variables q and uα

j , where
j = 0, ..., n, so that the order n is arbitrary but finite.

Given a (canonical) vector field

X = aα ∂

∂uα
, aα ∈ A (33)

together with its (infinite order) extension (prolongation), Ibragimov [10-12]
or Olver [26],

X̃ =
∑
k≥0

aα
k

∂

∂uα
k

, aα
k = Dkaα. (34)

(Any vector field as above lifts in a canonical way to a vector field on the
appropriate jet bundle.) Summation over the repeated index α = 1, ....,m is
understood.

Write Ξ for the variational counterpart of X:

Ξ = aα δ

δuα
. (35)

Lemma 1 For I ∈ A we have

(X̃ − Ξ)I = D
∑
k≥0

âα
k

∂I

∂uα
k+1

,

where âα
k denotes the differential operator

âα
k := Dkaα −Dk−1aαD + ...+ aα(−D)k.

Proof: Fix I. It suffices to consider the case when I only depends on one
variable u and its derivatives. Write ∂jI = ∂I/∂uj. Then

(X̃ − Ξ)I =
∞∑

k=0

(Dka∂kI − a(−D)k∂kI) = (Da∂1I + aD∂1I)

+(D2a∂2I − aD2∂2I) + ...+ (Dna∂nI + (−1)n−1Dn∂nI) + ...

=D(a∂1I + (Da∂2I − aD∂2I) + (D2a∂3I −DaD∂3I + aD2∂3I) + ....
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as stated.

We define the operator

DX := D−1(Ξ− X̃). (36)

The following is a key result:

Theorem 4 On the space of equivalence classes of functionals A = A/DA,
we have

DX = −
∑
k≥0

(k + 1)aα
k

∂

∂uα
k+1

. (37)

In particular, DX is a derivation on A.

Proof: Clearly

(Dkaα −Dk−1aαD + ...+ aα(−D)k)
∂I

∂uα
k+1

is equivalent to

(k + 1)Dkaα ∂I

∂uα
k+1

modulo the image of D.

Corollary 1 If X̃I = 0, then

DXI = D−1ΞI = D−1aα δI

δuα
. (38)

In particular, for X = v∂/∂v − u∂/∂u and I0 = uv, we have

DXI = D−1

(
v
δI

δv
− u

δI

δu

)
= DI = {−qI0, I}, (39)

provided X̃I = 0.

Definition: Let m = 2. A differential function on the form constant times

us0
0 u

s1
1 · · ·usN

N vt0
0 v

t1
1 · · · t

tN
N ,

where sj, tk ∈ N, is a balanced monomial if the number of ujs and vks are
equal, i.e., if

∑
sj =

∑
tk. A finite sum of balanced monomials is a balanced

polynomial.
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Corollary 2 Let X = v∂/∂v − u∂/∂u. Any functional of the form I =

f(A1, ..., AN), where f is C∞ and Aj are balanced polynomials, satisfies X̃I =
0. Consequently,

DI =
∑
k≥0

(k + 1)

(
uk+1

∂I

∂uk

− vk+1
∂I

∂vk

)
(40)

for such I.

Proof. It suffices to show that X̃F = 0 for any balanced monomial F .
Thus, consider F = us0us1

1 · · ·usN
N vt0vt1

1 · · · v
tN
N with

∑
sn =

∑
tn. Then

X̃F :=
∑

n

(
vn
∂F

∂vn

− un
∂F

∂un

)
=
∑

(tn − sn)F = 0.

Remark: All elements in the NLS hierarchy are balanced monomials.

3 Theorem 1.

3.1 Proof of Theorem 1.

We start with the case λ = 0, and consider a bit more generally, a sequence
of functionals

Tn =
n∑

k=0

(
n

k

)
αkÎn−k(0), n = 0, 1, 2, ....,

where α0 ≡ 1, α1, α2, ... are given, smooth, functions, and, as above, Îs(0) =
1
2
(usv + (−1)suvs), s = 0, 1, 2, 3, .....

We get

δTn

δv
= un +

1

2

n∑
k=1

(
n

k

)(
αkun−k +Dn−k(αku)

)
,
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which, upon resumming, becomes

= un + nα1un−1 +
1

2

n∑
k=2

(
2

(
n

k

)
αk +

k−1∑
j=1

(
n

k − j

)(
n− k + j

j

)
Djαk−j

)

= un + nα1un−1 +
1

2

n∑
k=2

(
n

k

)(
2αk +

k−1∑
j=1

(
k

j

)
Djαk−j

)
un−k

= un + nα1un−1 +
n∑

k=2

(
n

k

)
Akun−k.

Choosing
αk =: φk := φk − ψk,

Tn becomes In(0). Assume that ψ3, ..., ψn−1 have been chosen so that

δIn(0)

δv
= un +

n−1∑
k=1

Λk−1φ · un−k + Anu,

where

An = φn − ψn +
1

2

n−1∑
j=1

(
n

j

)
Dj(φn−j − ψn−j) = A0

n − ψn.

Our task is to choose ψn, satisfying the criteria in Theorem 1, such that
φn − ψn = Λn−1φ. Before doing this, we remark that the coefficient

1

2

(
n

k

)(
2αk +

k−1∑
j=1

(
k

j

)
Djαk−j

)

of un−k in the formula above only depends on n through the binomial coef-
ficient

(
n
k

)
. It shows that : φk :, the renormalisation of the kth power of φ, is

independent of n.
We note that both A0

n and Bn ≡ Λn−1φ are polynomials satisfying the
criteria in Theorem 1. The choice ψn = A0

n −Bn determines ψn uniquely.
In the general case, In = În(0) + Jn−2, where Jn−2 only depends on

uj, vj, : φ
j : for j ≤ n− 2. The renormalisation term : φn : only occurs in the

first term În(0), which we have already discussed. A similar argument works
for δIn/δu. Theorem 1 follows.
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3.2 Comments on renormalisation.

We consider the linear case λ = 0. Variation of the space-time action∫∫
Ldtdq, with (space-time) Lagrangian density

L =
1

2
(uv̇ − u̇v) +

1

2
I2, (41)

leads to the Euler-Lagrange equations u̇ = −1
2

δI2
δv
, v̇ = 1

2
δI2
δu

. (See Ibragimov
and Kolsrud [13].) In more detail:

u̇+
1

2
u2 + φu1 +

1

2
(φ2 + φ′)u = u̇−Hu = 0; (42)

−v̇ +
1

2
v2 − φv1 +

1

2
(φ2 − φ′)v = −v̇ −H†v = 0. (43)

Remark: The variational principle appears for the Schrödinger equation in
Goldstein [8], and the same trick is used in classical mechanics in Morse and
Feshbach [25]. It is related to the Hilbert integral, in, e.g. [1].

The Hamiltonian H is evidently unsymmetric, and H → H† precisely
when φ→ −φ. In the non-linear case λ 6= 0 the equations become

u̇−Hu = λu2v; −v̇ −H†v = λuv2. (44)

Writing :φn: ≡ φn − ψn, as above, one finds

:φ3: = φ3 − 1
2
φ′′, :φ4:= φ4 − 2φφ′′ − 3φ′2, (45)

:φ5: = φ5 − 5φ2φ′′ − 15φφ′2, (46)

:φ6: = φ6 − 40φ3φ′′ − 45φ2φ′2 + 6φφiv + 30φ′φ′′′ + 10φ′′
2
, .... (47)

Examples: It is known that the Lie algebra is maximal when the poten-
tial is quadratic in q. Then the Lie algebra contains an sl2, in addition to
the Heisenberg algebra. The latter occurs only in this case, and the case of
inverse square potential, V = c/q2.

(i) In the case φ = cq no renormalisation occurs for n = 3. For c = 1 we
get

:qn:= qn − 3

(
n

4

)
qn−4, n ≥ 4. (48)

This is related to the harmonic oscillator and the : qn : share some prop-
erties with Hermite polynomials, notably D : qn := n : qn−1 :. However, to
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get a potential with correct sign we must take c imaginary. (For Gaussian
renormalisation, see Simon [29].)

(ii) The choice φ = c/q is related to the inverse square potential. For
c = 1 we have

: q−n := λnq
−n, n ≥ 0. (49)

The first few odd-indexed :q−n: vanish. In particular, :q−3:= 0. This happens
only in this case. Here, one can keep c real and get correct sign for one, but
not both, of the potentials, 1

2
(φ2 ± φ′). Many formulae become particularly

simple in this case, because Λ(1/q) = 0.

Remark: Incidentally, u = c1/q, v = c2/q solves the stationary NLS equa-
tion u′′−2u2v = 0, v′′−2uv2 = 0, provided c1c2 = 1. The same holds for the
stationary KdV system obtained from Î3, viz. u′′′−6uu′v = 0, v′′′−6uvv′ = 0,
and possibly for corresponding higher order equations. Cf. Treves [32].

4 Proof of Theorem 2.

4.1 Involutivity.

We first show that C is symmetric w.r.t. the bracket.

Lemma 2 Assume two functionals F and G commute with I0. Then

{CF,G} = −{CG,F} = {F,CG}. (50)

Proof. The second identity is a consequence of the bracket being anti-
symmetric. To prove the first identity, we write {CF,G} =∫ ((

Λ† δF

δu
− 2λvDF

)
δG

δv
−
(

Λ
δF

δv
− 2λuDF

)
δG

δu

)
dq

=

∫ ((
δF

δu
Λ
δG

δv
− δF

δv
Λ† δG

δu

)
− 2λDF

(
v
δG

δv
− u

δG

δu

))
dq

=

∫ (
δF

δu
Λ
δG

δv
− δF

δv
Λ† δG

δu
− 2λDFDDG

)
dq,

where we have used the definition D = D−1(vδ/δv − uδ/δu). Performing a
partial integration in the last term, we clearly get −{CG,F}. This proves
our claim.
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To prove that all In commute, we assume that

{Ij, Ik} = 0, 0 ≤ j, k ≤ n, (51)

and prove that it can be extended to the first n + 1 conservation laws. If
j < n, the above observation shows

{In+1, Ij} = {CIn, Ij} = {In, Ij+1},

which vanishes by hypothesis. The identity also shows that {In+1, In} =
{In, In+1}, which since the bracket is anti-symmetric allows us to conclude
that, indeed also {In+1, In} = 0.

4.2 Proof of DIn = nIn−1.

It is clear from the results in §2.2 that for any balanced I we have D(f(q)I) =
f(q)DI. Hence the formula in Theorem 1 leads to

DIn =
n∑

k=0

(
n

k

)
:φk: DÎn−k =

n∑
k=0

(
n

k

)
:φk: (n− k)În−k−1 = nIn−1,

provided the În from the NLS-hierarchy fulfill (ii). This is what we shall
prove. We drop the hats from now on, and assume that λ = 1.

Write an := DIn. In general,

an = D−1

(
v
δIn
δv

− u
δIn
δu

)
=

∫
−q
(
v
δIn
δv

− u
δIn
δu

)
dq =

∫
−qa′n dq.

Use of the creation operator C and partial integration leads to the relation

a′n+1 =u(n+1)v + (−1)nuv(n+1)

−2

(
(a1u)

(n−1)v + (−1)nu(a1v)
(n−1) + . . .

+ (an−2u)
′′v − u(an−2v)

′′ + (an−1u)
′v + u(an−1v)

′
)

= An+1 + An−1 + ......

where the index on the right refers to the total number of derivatives.

14



Assume now that ak = kIk−1 for all k ≤ n. The terms of lowest order
will come from

−2
(
an−1u)

′v + u(an−1v)
′)

if n is even, and from

−2
(
(an−2u)

′′v − u(an−2v)
′′ + (an−1u)

′v + u(an−1v)
′)

if n is odd.
In the former case, the hypothesis yields

a′n+1 = −2(n− 1)((In−2uv)
′ + I ′n−2uv) + higher order terms.

In general,
I2m = c2m(uv)m+1 + higher order terms,

where the coefficient is (if (−1)!! = 1)

c2m = (−2)m (2m− 1)!!

(m+ 1)!
, m = 0, 1, 2, . . .

This expression can be found using the following formulae for C2:

δIk+2

δu
= D2 δIk

δu
+ 2(akv)

′ − 2ak+1v,

δIk+2

δv
= D2 δIk

δv
− 2(aku)

′ − 2ak+1u.

With n = 2m, and writing s := uv, the terms of lowest order are

− 2(2m− 1)c2(m−1)

(
(sm+1)′ + (sm)′s

)
=− 2(2m− 1)c2(m−1)(2m+ 1)sms′

=(2m+ 1)(−2)m (2m− 1)!!

m!

(sm+1)′

m+ 1
= (2m+ 1)(c2ms

m+1)′,

which proves the assertion in this case.

In the case when n is odd, n = 2m+ 1, the lowest order terms for a′2m+2

are obtained from

−2
(
2m(I2m−1s)

′

+2mI ′2m−1s+ (2m− 1)I2m−2a

+(2m− 1)(I2m−2a)
′),

15



where, in addition to s = uv, we have written a := u′v − uv′. In general,

I2m+1 = c2m+1s
ma+ h. o. t.

for some constant c2m+1. Hence the middle terms above are

2mc2m−1(s
m−1a)′s+ (2m− 1)c2m−2(s

m)′a

= (2mc2m−1(m− 1) + (2m− 1)mc2m−2)s
m−1s′a+ 2mc2m−1s

ma′

= (2(m− 1)c2m−1 + (2m− 1)c2m−2)(s
m)′a+ 2mc2m−1s

ma′

= 2mc2m−1(s
ma)′,

provided 2(m− 1)c2m−1 + (2m− 1)c2m−2 = 2mc2m−1, i.e.

c2m−1 =
2m− 1

2
c2(m−1).

One may deduce this formula from the formula for c2m together with the
formulae for C2 displayed above.

The lowest order terms become

−2(2 · 2mc2m−1 + (2m− 1)c2m−2)(s
ma)′.

The coefficient can be written

−2(2m− 1)(2m+ 1)c2m−2

= 2(m+ 1) · 2m+ 1

2
(−2)m (2m− 1)!!

(m+ 1)!
= 2(m+ 1)c2m+1,

which proves our claim

a′2(m+1) = 2(m+ 1)c2m+1(s
ma)′ + h. o. t.

By induction, we may assume that all terms of order strictly less than
the highest order, viz. n + 1, satisfy the corresponding identity. It remains
to prove that Jn := 1

2
(u(n)v + (−1)nuv(n)) fulfil

DJn = nJn−1 for all n.

This is the relation DIn = nIn−1 in the free case. It follows immediately from
noting that

u(n)v − (−1)nuv(n) = D
(
u(n−1)v − u(n−2)v′ + .....+ (−1)n−1uv(n−1)

)
,

with each term within the parentheses being equivalent to In−1.
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5 C[I0, I1, ...] and D-invariant polynomials.

5.1 General setting.

Suppose we are given
I0, I1, I2, ..... (52)

and a derivation D for which

DIn = nIn−1, n ≥ 0. (53)

Replacing In by In := In/I0, one finds that once again, DIn = nIn−1, and
I0 = 1. We may therefore assume I0 ≡ 1.

Each In is assigned the degree n. We may then define the degree of a
monomial

Mα = Iα1
1 Iα2

2 · · · Iαs
s , αi ∈ N, (54)

as

degMα :=
s∑

j=1

jαj = ||α||. (55)

A linear combination of monomials of the same degree,

P =
∑

||α||=N

cαMα, (56)

is a homogeneous polynomial of degree N . General polynomials in I1, I2, ....
are linear combinations of homogeneous polynomials. This way, the ring of
polynomials P := C[I1, I2, ....] (the field of scalars does not seem so important)
gets a natural grading by the degree:

P =
∞⊕

N=0

PN , (57)

where PN denotes all homogeneous polynomials of degree N .
D being a derivation,, we have

D{f(I1, I2, ..., In)} =
n∑

j=1

∂f

∂Ij
(I1, I2, ..., In)DIj (58)

for every polynomial f .

17



Define polynomials KN , N ≥ 2, by the formula

KN =
N−2∑
ν=0

(−1)ν

(
N

ν

)
Iν
1 IN−ν + (−1)N−1(N − 1)IN

1 . (59)

Then D annihilates all KN :

DKN = 0, N ≥ 2, (60)

as one easily checks. Together, all the KN form an algebra of invariant poly-
nomials. (Since D is a derivation, it annihilates the whole algebra, according
to the Leibniz rule.)

Theorem 5 PN has the decomposition

PN = HN ⊕ VN , (61)

where
HN := I1PN−1 and VN = C[K2, K3, ..., KN ] ∩ PN . (62)

Proof: The monomials in PN are divided into two classes according to
whether the monomial contains a factor I1 or not. Clearly, the first case
corresponds to the space HN , as defined above.

The remaining monomials can be identified with those partitions of N ,
for which all summands fulfil 2 ≤ λi ≤ N . The trivial partition, i.e. N itself,
is identified with KN . The other partitions satisfy 2 ≤ λi ≤ N − 2, and
can be identified with Kλ1Kλ2 · · ·Kλs . (Typically there are repetitions of the
Kj.) This proves the theorem.

The theorem leads to
PN/VN ' HN . (63)

From K2 = 0 follows I2 = I2
1 and K3 = 0 leads to I3 = 3I1I2 − 2I3

1 = I3
1 etc.

We get In = In
1 for 0 ≤ n ≤ N . In particular, HN can be identified with the

one-dimensional space that IN
1 generates.

The result as N →∞ may be written

Corollary 3 C[I1, I2, .....]/C[K2, K3, ....] = C[I1].

The invariant polynomials have integer coefficients and it holds that
Z[I1, I2, .....]/Z[K2, K3, ....] = Z[I1].
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5.2 Invariants and semi-invariants.

To see how the KN arise, we start from the quotient I2/I
2
1 , homogeneous of

degree zero. Acting on it by the vector field I1D we get a new function with
the same homogeneity. The obtained relation may be written as

−I1D(I2/I
2
1 ) = 2K2/I

2
1 . (64)

More generally, one finds

−I1D
(
In+1

In+1
1

)
= (n+ 1)

n−1∑
j=0

(
n

j

)
Kn+1−j

In+1−j
1

. (65)

This can be used to obtain a kind of generating function relation between
the In and the KN .

If we bring back I0, the first few KN are

K2 = I0I2 − I2
1 , K3 = I2

0I3 − 3I0I1I2 + 2I3
1 , (66)

K4 = I3
0I4 − 4I2

0I1I3 + 6I0I
2
1I2 − 3I4

1 (67)

These expressions are semi-invariants, or relative invariants, related to forms,
i.e. homogeneous polynomials in two variables, and projective representa-
tions of GL(2,R) or SL(2,R). We refer to Gurevich [9] , Ibragimov [10], and
Olver [27, 28] for more about this classical, fascinating subject.

K2, the discriminant, is a true invariant. It can be written

∣∣∣∣I0 I1
I1 I2

∣∣∣∣.
Instead of K4 we could have chosen the well-known invariant (for quartic

polynomials) K̂4 := I0I4 − 4I1I3 + 3I2
2 . Except for the (irrelevant) factor I2

0 ,

K4 and K̂4 differ by a multiple of K2
2 .

The 3 × 3 determinant with rows, from the top, (I0 I1 I2), (I1 I2 I3),
(I2 I3 I4), is another well-known invariant related to quartic polynomials
(Olver, [27], p. 97). It is a linear combination of K3

2 , K2
3 and K2K4.

For N even, there is an alternative choice of KN , , with K̂4 as a special
case, namely

K̂2n :=
n−1∑
k=0

(−1)k

(
2n

k

)
IkI2n−k +

(−1)n

2

(
2n

n

)
I2
n.
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5.3 Proof of Theorem 3.

Every In is a balanced polynomial with q-dependent coefficients. Hence the
formula in Corollary 2 applies. It shows that D is a derivation on functionals
of the form f(I0, ..., In). Thus

D{f(I0, ..., In)} =
n∑

ν=0

∂νf(I0, .., In)DIν ,

which according to Theorem 2 yields the desired result.

Corollary 4 Let (In)∞0 be given by Theorem 1. Then

C[I0, I1, I2, .....]/C[K2, K3, ....] = C[I0, I1, .....]/kerD = C[I1/I0] ' C[p].

5.4 A final remark.

One may ask what happens if we switch between I1 and I∗1 := −qI0. The
sequence I∗n := −qnI0 forms, of course, an abelian algebra. Using D∗ := adI1 ,
we get the same derivation property as above. In this case, however, the
recursion operator I∗n → I∗n+1 is trivial.

Acknowledgements: This article was written in memory of my friend Au-
gusto Brandão Correia, 1961-2004, co-author of several papers, and discus-
sion partner for many years.
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