Position Dependent NLS Hierarchies: Involutivity, Commutation Relations, Renormalisation and Classical Invariants

Torbjörn Kolsrud
Department of Mathematics
Royal Institute of Technology
SE-100 44 Stockholm, Sweden
kolsrud@math.kth.se

May – October 2005

Abstract

We consider a family of explicitly position dependent hierarchies $(I_n)_0^\infty$, containing the NLS (non-linear Schrödinger) hierarchy. All $(I_n)_0^\infty$ are involutive and fulfill $D I_n = n I_{n-1}$, where $D = D^{-1} V_0$, V_0 being the Hamiltonian vector field $v^\delta_\partial q - u^\delta_\partial q$ afforded by the common ground state $I_0 = uv$. The construction requires renormalisation of certain function parameters.

It is shown that the ‘quantum space’ $\mathbb{C}[I_0, I_1, \ldots]$ projects down to its classical counterpart $\mathbb{C}[p]$, with $p = I_1/I_0$, the momentum density. The quotient is the kernel of D. It is identified with classical semi-invariants for forms in two variables.

Introduction: Consider in 1+1 dimensions the (free) heat equation system (u and v are functions of time, t, and space q)

$$\dot{u} + \frac{1}{2} u'' = 0; \quad -\dot{v} + \frac{1}{2} v'' = 0.\quad (1)$$

With appropriate ‘boundary conditions’ on u and v (e.g. rapid decrease at infinity or periodicity), all $I_n := \frac{1}{2} (u^{(n)} v + (-1)^n u v^{(n)})$ are conservation laws:

$$\frac{d}{dt} \int I_n \, dq = 0, \quad n = 0, 1, 2, \ldots \quad (2)$$
This is an immediate consequence of the equations being invariant under space translations. There is an additional first order conservation law, viz. \(tI_1 - qI_0 \).

The counterpart of \((I_n)^\infty_0 \) for the free classical (Newton) equation \(\ddot{q} = 0 \) is the sequence \((p^n)^\infty_0 \), of constants of motion. (\(p = \dot{q} \), as usual.) Obviously, all \(p^n \) commute in the Poisson bracket

\[
\{\xi, \eta\} := \frac{\partial \xi}{\partial p} \frac{\partial \eta}{\partial q} - \frac{\partial \xi}{\partial q} \frac{\partial \eta}{\partial p}
\]

(3)

The additional first order (in \(p \)) constant of motion \(pt - q \) satisfies

\[
\{pt - q, p^n\} = np^{n-1} = dp^n/dp.
\]

(4)

(\(t \) is looked upon as a parameter.)

Similarly, with the (field theory) bracket \(\{F, G\} := \int \left(\frac{\delta F}{\delta u} \frac{\delta G}{\delta v} - \frac{\delta F}{\delta v} \frac{\delta G}{\delta u} \right) dq \), we have

\[
\{tI_1 - qI_0, I_n\} = \{-qI_0, I_n\} =: DI_n = nI_{n-1}.
\]

(5)

This is of course related to \(\langle 1, p, pt - q \rangle \) and \(\langle I_0, I_1, tI_1 - qI_0 \rangle \), respectively, being representations of the Heisenberg algebra.

Suppose now that we form \(\mathbb{C}[I_0, I_1, I_2, \ldots] \): all polynomials in the variables \(I_0, I_1, I_2, \ldots \). What, if any, is the relation to the classical version, viz. \(\mathbb{C}[p] \), all polynomials in \(p \)?

Below it is shown that there is a projection

\[
\mathbb{C}[I_0, I_1, I_2, \ldots] \to \mathbb{C}[I_1/I_0] \simeq \mathbb{C}[p]
\]

(6)

with ‘fibre’ ker \(D \), which in its turn is related to the classical 19th century semi-invariants of Cayley and others. See Gurevich [9], Ibragimov [10], Olver [27, 28].

The paper is devoted to this and some related questions, among them renormalisation, for a wider class of commuting conservation laws, containing a version of the non-linear Schrödinger hierarchy, NLS.

As background serve the papers on invariance properties, including behaviour under mappings between manifolds, for Schrödinger and related diffusion processes [4, 6, 14, 16, 17, 18, 22, 30, 31], in particular the case of Gaussian diffusions [2, 3, 18]. At the centre of much of this is the heat Lie algebra, first described by Lie in 1881 [21]. See e.g. Ibragimov [10, 11, 12] and Olver [28]. Other general background references are [2], [6] and [19, 20], and for the NLS equation primarily [7], together with [23, 24] and [32].
1 Outline and formulation of results

Consider all \(C^\infty \) curves \((u(q), v(q)), q \in \mathbb{R}\), in \(\mathbb{C}^2 \). We are interested in functionals or differential functions of the form \(F = f(q, u, u_1, \ldots, u_n; v, v_1, \ldots, v_n) \), where \(u_j = u^{(j)}, v_j = v^{(j)} \) and where it is understood that all the \(u_i \) and \(v_j \) depend on \(q \), the coordinate in the base space. Here \(f \) is \(C^\infty \) in the appropriate space, a jet bundle. With \(D = d/dq \) we form variational derivatives:

\[
\frac{\delta F}{\delta u} = \frac{\partial F}{\partial u} - D \frac{\partial F}{\partial u_1} + D^2 \frac{\partial F}{\partial u_2} + \ldots, \quad \frac{\delta F}{\delta v} = \frac{\partial F}{\partial v} - D \frac{\partial F}{\partial v_1} + D^2 \frac{\partial F}{\partial v_2} + \ldots \tag{7}
\]

The variational gradient \(\delta F \) of \(F \) is the transpose of the vector \((\delta F/\delta u, \delta F/\delta v) \). Two functionals \(F \) and \(G \) are identified whenever \(\delta(F - G) = 0 \). This is equivalent to saying that \(F - G \in \text{im} D \). The interpretation is that we have put extra ‘gauge’ conditions on \(u \) and \(v \), e.g. on their behaviour at infinity.

The bracket is, when emphasising the Hamiltonian densities \(F \) and \(G \),

\[
\{F, G\} := \frac{\delta F}{\delta u} \frac{\delta G}{\delta v} - \frac{\delta F}{\delta v} \frac{\delta G}{\delta u} \pmod{\text{im} D}. \tag{8}
\]

We will also use the more customary representation \(\int \left(\frac{\delta F}{\delta u} \frac{\delta G}{\delta v} - \frac{\delta F}{\delta v} \frac{\delta G}{\delta u} \right) dq \) of the bracket. In this picture the central objects are Hamiltonians \(\int F, \int G \ldots \)

Remark: Everything we do here could be done for for general elements \(u \) and \(v \) in a commutative algebra, not necessarily \(C^\infty(\mathbb{R}) \), with a derivation.

We shall consider sequences of functionals \(I_0, I_1, I_2, \ldots \) given by a (recursion or) creation operator \(C \):

\[
(i) \quad I_n = CI_{n-1} = C^n I_0, \quad n \geq 0,
\]

or, infinitesimally, \(\delta I_n = C\delta I_{n-1} \). Throughout this paper, we will have

\[
I_0 = uv. \tag{9}
\]

The operator \(D \) given by

\[
D F := D^{-1} \left(v \frac{\delta F}{\delta v} - u \frac{\delta F}{\delta u} \right) = \{-qI_0, F\}, \tag{10}
\]

is well defined on the space \(\overline{A} \) of equivalence classes of functionals that commute with \(I_0 \). We want the \(I_n \) to satisfy

\[
(ii) \quad DI_n = nI_{n-1}, \quad n \geq 0.
\]
Together, properties (i) and (ii) yield a representation of the Heisenberg algebra: we have $[D, C] = 1$ (the identity) on $\bigoplus_{n \geq 0} CI_n$. D is the annihilation operator. There are traces of (ii) in Dickey’s book [5], in connection with the KdV equation.

We also want the I_n to be involutive, i.e. to commute:

$$(iii) \quad \{I_n, I_m\} = 0, \quad \text{all } n, m \geq 0.$$

Properties (ii) and (iii) imply that the expected value of position, q, taken in the (ground) state I_0,

$$\langle q \rangle = \int qI_0 \, dq, \quad (11)$$

fulfills the free Newton equations

$$\frac{d^2\langle q \rangle}{dt_n dt_m} = 0, \quad \text{all } n, m \geq 0. \quad (12)$$

Here t_n is the ‘time’ obtained using the Hamiltonian I_n. Property (iii) means that for any m, n, $dI_n/dt_m = 0$ in the space of equivalent functionals: each I_n is a conservation law w.r.t. any choice of time t_m.

Define an auxiliary creation operator \hat{C} by

$$\hat{C}\delta F := \left(\frac{\delta \hat{C} F}{\delta u}, \frac{\delta \hat{C} F}{\delta v} \right)^T = \begin{pmatrix} -D & 0 \\ 0 & D \end{pmatrix}\delta F - 2\lambda \begin{pmatrix} v \\ u \end{pmatrix}DF, \quad (13)$$

where λ is a (real or complex) parameter. (This is a slight adaption of [8].)

Let the sequence of functionals \hat{I}_n be given by

$$\hat{I}_n = \hat{C}^n I_0, \quad n \geq 0. \quad (14)$$

Consider two special cases:

$\lambda = 0$ leads to the free case (we write $D^\dagger = -D$)

$$\hat{I}_n(0) = \frac{1}{2}(u_n v + (-1)^n uv_n) = \frac{1}{2}(D^nu \cdot v + uD^ln v). \quad (15)$$

For real non-zero λ, say $\lambda = 1$, we get a version of the NLS (non-linear Schrödinger) hierarchy (Faddeev-Takhtajan [8]). $\hat{I}_0 = I_0$ and \hat{I}_1 are the
same, whereas the next few are

\[\hat{I}_2 = \hat{I}_2(0) - u^2v^2, \quad \hat{I}_3 = \hat{I}_3(0) - \frac{3}{2}uv(u_1v - uv_1), \]
\[\hat{I}_4 = \hat{I}_4(0) - uv(u_2v + uv_2) + 4uu_1v_1v + 2u^3v^3, \]
\[\hat{I}_5 = \hat{I}_5(0) + 5uv(u_2v_1 - u_1v_2) + 5u^2v^2(u_1v - uv_1), \]
\[\hat{I}_6 = \hat{I}_6(0) - 3(uu_2v_1^2 + u_2^2v_1v_2) - 12uu_2vv_2 + 5u^2v^2 \]
\[- (u_2^2v^2 + u^2v_2^2) - 50u^2u_1v^2v_1 - 10uv(u_1^2v^2 + u^2v_1^2) - 5u^4v^4. \]

Here, \(\hat{I}_2 \) is the Hamiltonian for the NLS equations. \(I_3 \) leads to KdV upon putting \(v \equiv 1 \). The entire KdV hierarchy can be deduced from the odd-indexed \(\hat{I}_n \).

We introduce an extended family \(I_n = I_n(\lambda, \phi), n \geq 0 \) as follows: Let \(\phi \in C^\infty(\mathbb{R}) \) and put

\[\Lambda = D + \phi, \quad \Lambda^\dagger = -D + \phi. \] (16)

We note in passing that \([\Lambda, \Lambda^\dagger] = 2\phi' \) (as a multiplication operator). The case when \(\phi = q \) (or a first order polynomial in \(q \)) gives the Heisenberg algebra.

We define

\[C\delta F = \begin{pmatrix} \Lambda^\dagger & 0 \\ 0 & \Lambda \end{pmatrix} \delta F - 2\lambda \begin{pmatrix} v \\ u \end{pmatrix} DF \] (17)

with the above requirement on \(F \). One finds

\[I_1 = \hat{I}_1 + \phi \hat{I}_0 \quad \text{and} \quad I_2 = \hat{I}_2 + 2\phi \hat{I}_1 + \phi^2 \hat{I}_0. \] (18)

Below we shall prove

Theorem 1 For \(n \geq 3 \), there are polynomials \(\psi_n = \psi_n(\phi, \phi', ..., \phi^{(n-1)}) \) of degree \(n - 2 \), such that

\[I_n = \sum_{k=0}^{n} \binom{n}{k} (\phi^k - \psi_k) \hat{I}_{n-k}, \quad n = 0, 1, 2, \] (19)

By definition \(\psi_0 = \psi_1 = \psi_2 = 0 \).

The properties (ii) and (iii) hold in the general case:

Theorem 2 \(\{I_n, I_m\} = 0 \) for all \(n, m \geq 0 \), and \(DI_n = nI_{n-1} \) for all \(n \geq 0 \).
We shall also make use of the following result. Needless to say, it holds in the sense of equivalence of functionals.

Theorem 3 For any \(f \in C^\infty(\mathbb{C}^{n+1}) \) we have

\[
D (f(I_0, I_1, ..., I_n)) = \sum_{\nu=0}^{n} \frac{\partial f}{\partial I_\nu}(I_0, I_1, ..., I_n)\nu I_{\nu-1}.
\] (20)

This leads to a bundle where the 'quantum space' \(\mathbb{C}[I_0, I_1, I_2, ...] \) of all polynomials in the variables (conservation laws) \(I_n \), projects down to the 'classical space' \(\mathbb{C}[I_1/I_0] \). The fibre is the kernel of \(D \) and may be identified with classical semi-invariants. We refer to the precise details in §5 below.

2 Preliminaries and background.

2.1 Symmetries and conservation laws for linear heat equations.

Assume that \(u \) and \(v \) satisfy

\[
\dot{u} + \frac{1}{2}u'' - Vu = 0; \quad -\dot{v} + \frac{1}{2}v'' - Vv = 0,
\] (21)

where \(V \) is a given, smooth, potential. Then

\[
\frac{d}{dt} \int uv \, dq = 0,
\] (22)

assuming sufficiently rapid decrease at infinity of \(u \) and \(v \). Let \(f = f(t, q) \) and put \(Kf = f + \frac{1}{2}f'' - Vf \). It is easy to show (see Brandão and Kolsrud [4]) that

\[
\frac{d}{dt} \int f uv \, dq = \int \partial f uv \, dq = \int \partial^* f uv \, dq,
\] (23)

where

\[
\partial f : = \frac{1}{u}K(fu) = \dot{f} + \frac{1}{2}f'' + \frac{u'}{u}f,
\] (24)

\[
\partial^* f : = -\frac{1}{v}K^\dagger(fv) = \dot{f} - \frac{1}{2}f'' - \frac{v'}{v}f.
\] (25)
The first identity can be written
\[\partial = u^{-1}Ku \quad \text{or} \quad u\partial u^{-1} = K. \] (26)
Suppose the linear PDO \(\Lambda = T \partial_t + Q \partial_q + U \) belongs to the heat Lie algebra of \(K \):
\[[K, \Lambda] = K\Lambda - \Lambda K = \Phi \cdot K \] (27)
for some function \(\Phi = \Phi_\Lambda \). Using \(u\partial u^{-1} = K \) we obtain
\[u\partial (\Lambda u/u) = K\Lambda u = (\Phi_\Lambda + \Lambda)Ku = 0. \] (28)
This is an alternative way of expressing that \(\Lambda u \cdot v \) is the density of a conservation law:
\[\frac{d}{dt} \int \Lambda u \cdot v \, dq = \int \partial(u^{-1}\Lambda u) \cdot uv \, dq = \int (\Phi_\Lambda + \Lambda)Ku \cdot uv \, dq = 0. \] (29)
In more detail, the equation \(\partial(\Lambda u/u) = 0 \) above may be written
\[\partial \left(T\frac{\dot{u}}{u} + Q\frac{\dot{u}'}{u} + U \right) = 0, \] (30)
very much as in the classical case, where the Noether theorem leads to a constant of motion of the form \(ET + Tp + U \), where \(E = -\frac{1}{2}p^2 + V \) (Euclidean convention) and \(p = \dot{q} \). The coefficients \(\dot{u}u^{-1} = -\frac{1}{2}u''u^{-1} + V \) and \(\dot{u}'u^{-1} \) are, respectively, the energy density and the momentum density in a form that emphasises the backward motion, and the classical total time derivative is replaced by \(\partial \).

The basic density is the ground state \(I_0 = uv \), and for instance \(u'v = \frac{\dot{u}}{u} \cdot I_0 \) is an equivalent form for \(\frac{1}{2}(u_1v - uv_1) = \dot{I}_1(0) \). We write \(\bar{p} \) for the moment density \(u' \). Then we have the Euclidean Newton/Hamilton equations (cf Landau-Lifshitz [20], Eq. (19.3))
\[\partial q = \bar{p} = -H\bar{p}, \quad \partial p = V' = Hq, \] (31)
with \(H \) denoting the Euclidean Hamiltonian \(-\frac{1}{2}p^2 + V \). Similarly the energy density \(\bar{E} \) satisfies \(\partial \bar{E} = \dot{V} \).

Repeating the argument above one finds that for \(\Lambda_j \) in the Lie algebra of \(K \) and \(s_j \geq 0 \) integers, we have
\[\frac{d}{dt} \int \Lambda_1^{s_1} \cdots \Lambda_m^{s_m} u \cdot v \, dq = 0, \] (32)
i.e. \(\Lambda_1^{s_1} \cdots \Lambda_m^{s_m} u \cdot v \) is the density of a conservation law. Its probabilistic version is that \(\Lambda_1^{s_1} \cdots \Lambda_m^{s_m} u/u \) is a martingale for a certain diffusion process.

7
2.2 The operator D.

Consider a slightly more general situation, in which our space is built from one independent variable q and m dependent variables u^α, $\alpha = 1, \ldots, m$. We define \mathcal{A} as all smooth (C^∞) functions of the variables q and u^α_j, where $j = 0, \ldots, n$, so that the order n is arbitrary but finite.

Given a (canonical) vector field

$$X = a^\alpha \frac{\partial}{\partial u^\alpha}, \quad a^\alpha \in \mathcal{A}$$

(33)

together with its (infinite order) extension (prolongation), Ibragimov [10-12] or Olver [26],

$$\tilde{X} = \sum_{k \geq 0} a_k^\alpha \frac{\partial}{\partial u_k^\alpha}, \quad a_k^\alpha = D^k a^\alpha.$$

(34)

(Any vector field as above lifts in a canonical way to a vector field on the appropriate jet bundle.) Summation over the repeated index $\alpha = 1, \ldots, m$ is understood.

Write Ξ for the variational counterpart of X:

$$\Xi = a^\alpha \delta \frac{\partial}{\partial u^\alpha}. \quad \text{(35)}$$

Lemma 1 For $I \in \mathcal{A}$ we have

$$(\tilde{X} - \Xi)I = D \sum_{k \geq 0} \hat{a}_k^\alpha \frac{\partial I}{\partial u_k^\alpha},$$

where \hat{a}_k^α denotes the differential operator

$$\hat{a}_k^\alpha := D^k a^\alpha - D^{k-1} a^\alpha D + \ldots + a^\alpha (-D)^k.$$

Proof: Fix I. It suffices to consider the case when I only depends on one variable u and its derivatives. Write $\partial_j I = \partial I/\partial u_j$. Then

$$(\tilde{X} - \Xi)I = \sum_{k=0}^{\infty} (D^k a \partial_k I - a(-D)^k \partial_k I) = (Da \partial_1 I + aD \partial_1 I)$$

$$+ (D^2 a \partial_2 I - aD^2 \partial_2 I) + \ldots + (D^n a \partial_n I + (-1)^{n-1} D^n \partial_n I) + \ldots$$

$$= D(a \partial_1 I + (Da \partial_2 I - aD \partial_2 I)) + (D^2 a \partial_3 I - DaD \partial_3 I + aD^2 \partial_3 I) + \ldots.$$
as stated.

We define the operator

$$D_X := D^{-1}(\Xi - \tilde{X}).$$ \hfill (36)

The following is a key result:

Theorem 4 On the space of equivalence classes of functionals $\mathcal{A} = \mathcal{A}/D\mathcal{A}$, we have

$$D_X = -\sum_{k \geq 0} (k + 1)a^\alpha_k \frac{\partial}{\partial u_{k+1}^\alpha}.$$ \hfill (37)

In particular, D_X is a derivation on \mathcal{A}.

Proof: Clearly

$$(D^k a^\alpha - D^{k-1} a^\alpha D + ... + a^\alpha (-D)^k) \frac{\partial I}{\partial u_{k+1}^\alpha}$$

is equivalent to

$$(k + 1)D^k a^\alpha \frac{\partial I}{\partial u_{k+1}^\alpha}$$

modulo the image of D.

Corollary 1 If $\tilde{X} I = 0$, then

$$D_X I = D^{-1} \Xi I = D^{-1} a^\alpha \frac{\delta I}{\delta u^\alpha}. \hfill (38)$$

In particular, for $X = v\partial/\partial v - u\partial/\partial u$ and $I_0 = uv$, we have

$$D_X I = D^{-1} \left(v \frac{\delta I}{\delta v} - u \frac{\delta I}{\delta u} \right) = DI = \{-qI_0, I\}, \hfill (39)$$

provided $\tilde{X} I = 0$.

Definition: Let $m = 2$. A differential function on the form constant times

$$u_0^{s_0} u_1^{s_1} \cdots u_N^{s_N} v_0^{t_0} v_1^{t_1} \cdots v_N^{t_N},$$

where $s_j, t_k \in \mathbb{N}$, is a *balanced monomial* if the number of u_js and v_ks are equal, i.e., if $\sum s_j = \sum t_k$. A finite sum of balanced monomials is a *balanced polynomial*.
Corollary 2 Let \(X = v \partial/\partial v - u \partial/\partial u \). Any functional of the form \(I = f(A_1, \ldots, A_N) \), where \(f \) is \(C^\infty \) and \(A_j \) are balanced polynomials, satisfies \(\tilde{X}I = 0 \). Consequently,

\[
DI = \sum_{k \geq 0} (k + 1) \left(u_{k+1} \frac{\partial I}{\partial u_k} - v_{k+1} \frac{\partial I}{\partial v_k} \right)
\]

for such \(I \).

Proof. It suffices to show that \(\tilde{X}F = 0 \) for any balanced monomial \(F \). Thus, consider \(F = u_{s_0} u_{t_1} \ldots u_N v_{t_0} v_{t_1} \ldots v_t \) with \(\sum s_n = \sum t_n \). Then

\[
\tilde{X}F := \sum_n \left(v_n \frac{\partial F}{\partial v_n} - u_n \frac{\partial F}{\partial u_n} \right) = \sum (t_n - s_n) F = 0.
\]

Remark: All elements in the NLS hierarchy are balanced monomials.

3 Theorem 1.

3.1 Proof of Theorem 1.

We start with the case \(\lambda = 0 \), and consider a bit more generally, a sequence of functionals

\[
T_n = \sum_{k=0}^{n} \binom{n}{k} \alpha_k \hat{I}_{n-k}(0), \quad n = 0, 1, 2, \ldots,
\]

where \(\alpha_0 \equiv 1, \alpha_1, \alpha_2, \ldots \) are given, smooth, functions, and, as above, \(\hat{I}_s(0) = \frac{1}{2}(u_1 v + (-1)^s u v_s), s = 0, 1, 2, 3, \ldots \)

We get

\[
\frac{\delta T_n}{\delta v} = u_n + \frac{1}{2} \sum_{k=1}^{n} \binom{n}{k} \left(\alpha_k u_{n-k} + D^{n-k} \alpha_k u \right),
\]
which, upon resumming, becomes

\[u_n + n\alpha_1 u_{n-1} + \frac{1}{2} \sum_{k=2}^{n} \left(2 \binom{n}{k} \alpha_k + \sum_{j=1}^{k-1} \binom{n}{k-j} \binom{n}{j} D^j \alpha_{k-j} \right) \]

Choosing \(\alpha_k =: \phi^k = \phi^k - \psi_k \),

\(T_n \) becomes \(I_n(0) \). Assume that \(\psi_3, ..., \psi_{n-1} \) have been chosen so that

\[\frac{\delta I_n(0)}{\delta v} = u_n + \sum_{k=1}^{n-1} \Lambda^{k-1} \phi \cdot u_{n-k} + A_n u, \]

where

\[A_n = \phi^n - \psi_n + \frac{1}{2} \sum_{j=1}^{n-1} \binom{n}{j} D^j (\phi^{n-j} - \psi_{n-j}) = A_0^n - \psi_n. \]

Our task is to choose \(\psi_n \), satisfying the criteria in Theorem 1, such that \(\phi^n - \psi_n = \Lambda^{n-1} \phi \). Before doing this, we remark that the coefficient

\[\frac{1}{2} \binom{n}{k} \left(2\alpha_k + \sum_{j=1}^{k-1} \binom{k}{j} D^j \alpha_{k-j} \right) \]

of \(u_{n-k} \) in the formula above only depends on \(n \) through the binomial coefficient \(\binom{n}{k} \). It shows that : \(\phi^k : \), the renormalisation of the \(k \)th power of \(\phi \), is independent of \(n \).

We note that both \(A_0^n \) and \(B_n \equiv \Lambda^{n-1} \phi \) are polynomials satisfying the criteria in Theorem 1. The choice \(\psi_n = A_0^n - B_n \) determines \(\psi_n \) uniquely.

In the general case, \(I_n = \hat{I}_n(0) + J_{n-2} \), where \(J_{n-2} \) only depends on \(u_j, v_j, : \phi^j : \) for \(j \leq n-2 \). The renormalisation term : \(\phi^n : \) only occurs in the first term \(\hat{I}_n(0) \), which we have already discussed. A similar argument works for \(\delta I_n/\delta u \). Theorem 1 follows.
3.2 Comments on renormalisation.

We consider the linear case $\lambda = 0$. Variation of the space-time action $\int \int L \, dtdq$, with (space-time) Lagrangian density

$$L = \frac{1}{2}(uv - \dot{uv}) + \frac{1}{2}l_2,$$

(41)

leads to the Euler-Lagrange equations $\dot{u} = -\frac{1}{2} \frac{\delta I_2}{\delta v}$, $\dot{v} = \frac{1}{2} \frac{\delta I_2}{\delta u}$. (See Ibragimov and Kolsrud [13].) In more detail:

$$\dot{u} + \frac{1}{2} u_2 + \phi u_1 + \frac{1}{2}(\phi'^2 + \phi')u = \dot{u} - Hu = 0;$$

(42)

$$-\dot{v} + \frac{1}{2} v_2 - \phi v_1 + \frac{1}{2}(\phi'^2 - \phi')v = -\dot{v} - H^1 v = 0.$$

(43)

Remark: The variational principle appears for the Schrödinger equation in Goldstein [8], and the same trick is used in classical mechanics in Morse and Feshbach [25]. It is related to the Hilbert integral, in, e.g. [1].

The Hamiltonian H is evidently unsymmetric, and $H \to H^1$ precisely when $\phi \to -\phi$. In the non-linear case $\lambda \neq 0$ the equations become

$$\dot{u} - Hu = \lambda u^2 v; \quad -\dot{v} - H^1 v = \lambda u v^2.$$

(44)

Writing $:\phi^n : \equiv \phi^n - \psi_n$, as above, one finds

$$:\phi^3 : = \phi^3 - \frac{1}{2}\phi''; \quad :\phi^4 : = \phi^4 - 2\phi\phi'' - 3\phi'^2,$$

(45)

$$:\phi^5 : = \phi^5 - 5\phi^2\phi'' - 15\phi\phi'^2,$$

(46)

$$:\phi^6 : = \phi^6 - 40\phi^3\phi'' - 45\phi^2\phi'^2 + 6\phi\phi^{iv} + 30\phi\phi'' + 10\phi''^2, \ldots.$$

(47)

Examples: It is known that the Lie algebra is maximal when the potential is quadratic in q. Then the Lie algebra contains an sl_2, in addition to the Heisenberg algebra. The latter occurs only in this case, and the case of inverse square potential, $V = c/q^2$.

(i) In the case $\phi = cq$ no renormalisation occurs for $n = 3$. For $c = 1$ we get

$$:q^n : = q^n - 3\left(\frac{n}{4}\right)q^{n-4}, \quad n \geq 4.$$

(48)

This is related to the harmonic oscillator and the $:q^n :$ share some properties with Hermite polynomials, notably $D : q^n : = n : q^{n-1} :$. However, to
get a potential with correct sign we must take \(c \) imaginary. (For Gaussian renormalisation, see Simon [29].)

(ii) The choice \(\phi = c/q \) is related to the inverse square potential. For \(c = 1 \) we have

\[
: q^{-n} := \lambda_n q^{-n}, \quad n \geq 0. \tag{49}
\]

The first few odd-indexed : \(q^{-n} \): vanish. In particular, : \(q^{-3} := 0 \). This happens only in this case. Here, one can keep \(c \) real and get correct sign for one, but not both, of the potentials, \(\frac{1}{2}(\phi^2 \pm \phi') \). Many formulæ become particularly simple in this case, because \(\Lambda(1/q) = 0 \).

Remark: Incidentally, \(u = c_1/q, \ v = c_2/q \) solves the stationary NLS equation \(u'' - 2u^2v = 0, \ v'' - 2uv^2 = 0 \), provided \(c_1c_2 = 1 \). The same holds for the stationary KdV system obtained from \(\hat{I}_3 \), viz. \(u''' - 6uu'v = 0, \ v''' - 6uvv' = 0 \), and possibly for corresponding higher order equations. Cf. Treves [32].

4 Proof of Theorem 2.

4.1 Involutivity.

We first show that \(C \) is symmetric w.r.t. the bracket.

Lemma 2 Assume two functionals \(F \) and \(G \) commute with \(I_0 \). Then

\[
\{CF, G\} = - \{CG, F\} = \{F, CG\}. \tag{50}
\]

Proof. The second identity is a consequence of the bracket being antisymmetric. To prove the first identity, we write \(\{CF, G\} = \int \left(\left(\Lambda^1 \frac{\delta F}{\delta u} - 2\lambda vD \frac{\delta G}{\delta v} - \Lambda \frac{\delta G}{\delta u} - 2\lambda uD \frac{\delta F}{\delta v} \right) \frac{\delta G}{\delta u} - \Lambda \frac{\delta F}{\delta v} - 2\lambda D \frac{\delta F}{\delta u} \right) dq \right. \]

\[
= \int \left(\left(\frac{\delta F}{\delta u} \Lambda \frac{\delta G}{\delta v} - \frac{\delta F}{\delta v} \Lambda \frac{\delta G}{\delta u} - 2\lambda D \left(\frac{\delta G}{\delta v} - \frac{\delta F}{\delta u} \right) \right) \frac{\delta G}{\delta u} - \Lambda \frac{\delta F}{\delta v} - 2\lambda D \frac{\delta F}{\delta u} \right) dq \]

\[
= \int \left(\frac{\delta F}{\delta u} \Lambda \frac{\delta G}{\delta v} - \frac{\delta F}{\delta v} \Lambda \frac{\delta G}{\delta u} - 2\lambda D \frac{\delta F}{\delta u} \right) dq,
\]

where we have used the definition \(D = D^{-1}(v\delta/\delta v - u\delta/\delta u) \). Performing a partial integration in the last term, we clearly get \(-\{CG, F\} \). This proves our claim.
To prove that all I_n commute, we assume that
\[
\{I_j, I_k\} = 0, \quad 0 \leq j, k \leq n,
\]
and prove that it can be extended to the first $n + 1$ conservation laws. If $j < n$, the above observation shows
\[
\{I_{n+1}, I_j\} = \{CI_n, I_j\} = \{I_n, I_{j+1}\},
\]
which vanishes by hypothesis. The identity also shows that
\[
\{I_{n+1}, I_n\} = \{I_n, I_{n+1}\},
\]
which since the bracket is anti-symmetric allows us to conclude that, indeed also $\{I_{n+1}, I_n\} = 0$.

4.2 Proof of $DI_n = nI_{n-1}$.

It is clear from the results in §2.2 that for any balanced I we have $D(f(q)I) = f(q)DI$. Hence the formula in Theorem 1 leads to
\[
DI_n = \sum_{k=0}^{n} \binom{n}{k} :\phi^k: DI_{n-k} = \sum_{k=0}^{n} \binom{n}{k} :\phi^k: (n-k)\hat{I}_{n-k-1} = nI_{n-1},
\]
provided the \hat{I}_n from the NLS-hierarchy fulfill (ii). This is what we shall prove. We drop the hats from now on, and assume that $\lambda = 1$.

Write $a_n := DI_n$. In general,
\[
a_n = D^{-1} \left(\frac{\delta I_n}{\delta v} - u \frac{\delta I_n}{\delta u} \right) = \int -q \left(\frac{\delta I_n}{\delta v} - u \frac{\delta I_n}{\delta u} \right) dq = \int -qa'_n dq.
\]

Use of the creation operator C and partial integration leads to the relation
\[
a'_{n+1} = u^{(n+1)}v + (-1)^n uv^{(n+1)}
\]
\[\quad -2 \left((a_1 u)^{(n-1)}v + (-1)^n u(a_1 v)^{(n-1)} \right) + \ldots \]
\[\quad + (a_{n-2} u)^{(n-1)}v - u(a_{n-2} v)^{(n-1)} + (a_{n-1} u)'v + u(a_{n-1} v)'
\]
\[= A_{n+1} + A_{n-1} + \ldots \]

where the index on the right refers to the total number of derivatives.
Assume now that $a_k = kI_{k-1}$ for all $k \leq n$. The terms of lowest order will come from

$$-2((a_{n-1}u)'v + u(a_{n-1}v)')$$

if n is even, and from

$$-2((a_{n-2}u)''v - u(a_{n-2}v)'' + (a_{n-1}u)'v + u(a_{n-1}v)')$$

if n is odd.

In the former case, the hypothesis yields

$$a_{n+1}' = -2(n - 1)((I_{n-2}uv)' + I'_{n-2}uv) + \text{higher order terms}.$$

In general,

$$I_{2m} = c_{2m}(uv)^{m+1} + \text{higher order terms},$$

where the coefficient is (if $(-1)!! = 1$)

$$c_{2m} = (-2)^m \frac{(2m - 1)!!}{(m + 1)!}, \quad m = 0, 1, 2, \ldots$$

This expression can be found using the following formulae for C^2:

$$\frac{\delta I_{k+2}}{\delta u} = D^2 \frac{\delta I_k}{\delta u} + 2(a_k v)' - 2a_{k+1} v,$$

$$\frac{\delta I_{k+2}}{\delta v} = D^2 \frac{\delta I_k}{\delta v} - 2(a_k u)' - 2a_{k+1} u.$$

With $n = 2m$, and writing $s := uv$, the terms of lowest order are

$$-2(2m - 1)c_{2(m-1)}((s^{m+1})' + (s^m)'s)$$

$$= -2(2m - 1)c_{2(m-1)}(2m + 1)s^m s'$$

$$= (2m + 1)(-2)^m \frac{(2m - 1)!!}{m!} \frac{(s^{m+1})'}{m + 1} = (2m + 1)(c_{2m}s^{m+1})',$$

which proves the assertion in this case.

In the case when n is odd, $n = 2m + 1$, the lowest order terms for a'_{2m+2} are obtained from

$$-2(2m(I_{2m-1} s)')$$

$$+ 2m I'_{2m-1} s + (2m - 1)I_{2m-2} a$$

$$+ (2m - 1)(I_{2m-2} a)'$$,
where, in addition to \(s = uv \), we have written \(a := u'v - uv' \). In general,
\[I_{2m+1} = c_{2m+1}s^ma + \text{ h. o. t.} \]
for some constant \(c_{2m+1} \). Hence the middle terms above are
\[
2mc_{2m-1}(s^{m-1}a)'s + (2m - 1)c_{2m-2}(s^m)'a
= (2mc_{2m-1}(m - 1) + (2m - 1)mc_{2m-2})s^{m-1}s'a + 2mc_{2m-1}s^ma'
= (2(m - 1)c_{2m-1} + (2m - 1)c_{2m-2})(s^m)'a + 2mc_{2m-1}s^ma'
= 2mc_{2m-1}(s^m)'
\]
provided \(2(m - 1)c_{2m-1} + (2m - 1)c_{2m-2} = 2mc_{2m-1} \), i.e.
\[c_{2m-1} = \frac{2m - 1}{2}c_{2(m-1)}. \]
One may deduce this formula from the formula for \(c_{2m} \) together with theformulae for \(C^2 \) displayed above.

The lowest order terms become
\[-2(2\cdot 2mc_{2m-1} + (2m - 1)c_{2m-2})(s^m)'.\]
The coefficient can be written
\[-2(2m - 1)(2m + 1)c_{2m-2} = 2(m + 1)\cdot \frac{2m + 1}{2}(-2)^m\frac{(2m - 1)!!}{(m + 1)!} = 2(m + 1)c_{2m+1},\]
which proves our claim
\[a_{2(m+1)}' = 2(m + 1)c_{2m+1}(s^m)' + \text{ h. o. t.} \]

By induction, we may assume that all terms of order strictly less than the highest order, viz. \(n + 1 \), satisfy the corresponding identity. It remains to prove that \(J_n := \frac{1}{2}(u^{(n)}v + (-1)^n uv^{(n)}) \) fulfill
\[DJ_n = nJ_{n-1} \quad \text{for all } n. \]
This is the relation \(DI_n = nI_{n-1} \) in the free case. It follows immediately from noting that
\[u^{(n)}v - (-1)^n uv^{(n)} = D \left(u^{(n-1)}v - u^{(n-2)}v' + \cdots + (-1)^{n-1}uv^{(n-1)} \right), \]
with each term within the parentheses being equivalent to \(I_{n-1} \).
5 \(\mathbb{C}[I_0, I_1, ...] \) and D-invariant polynomials.

5.1 General setting.

Suppose we are given

\[I_0, I_1, I_2, \] \hspace{2cm} (52)

and a derivation \(D \) for which

\[DI_n = nI_{n-1}, \quad n \geq 0. \] \hspace{2cm} (53)

Replacing \(I_n \) by \(I_n := I_n/I_0 \), one finds that once again, \(DI_n = nI_{n-1} \), and \(I_0 = 1 \). We may therefore assume \(I_0 = 1 \).

Each \(I_n \) is assigned the degree \(n \). We may then define the degree of a monomial

\[M_\alpha = I_1^{\alpha_1}I_2^{\alpha_2} \cdots I_s^{\alpha_s}, \quad \alpha_i \in \mathbb{N}, \] \hspace{2cm} (54)

as

\[\deg M_\alpha := \sum_{j=1}^{s} j\alpha_j = ||\alpha||. \] \hspace{2cm} (55)

A linear combination of monomials of the same degree,

\[P = \sum_{||\alpha||=N} c_\alpha M_\alpha, \] \hspace{2cm} (56)

is a homogeneous polynomial of degree \(N \). General polynomials in \(I_1, I_2, \) are linear combinations of homogeneous polynomials. This way, the ring of polynomials \(\mathbb{P} := \mathbb{C}[I_1, I_2,] \) (the field of scalars does not seem so important) gets a natural grading by the degree:

\[\mathbb{P} = \bigoplus_{N=0}^{\infty} \mathbb{P}_N, \] \hspace{2cm} (57)

where \(\mathbb{P}_N \) denotes all homogeneous polynomials of degree \(N \).

\(D \) being a derivation, we have

\[D\{f(I_1, I_2, ..., I_n)\} = \sum_{j=1}^{n} \frac{\partial f}{\partial I_j}(I_1, I_2, ..., I_n)DI_j \] \hspace{2cm} (58)

for every polynomial \(f \).
Define polynomials K_N, $N \geq 2$, by the formula

$$K_N = \sum_{\nu=0}^{N-2} (-1)^\nu \binom{N}{\nu} I_1^\nu I_{N-\nu} + (-1)^{N-1}(N-1)I_1^N.$$ \hfill (59)

Then D annihilates all K_N:

$$DK_N = 0, \quad N \geq 2,$$ \hfill (60)

as one easily checks. Together, all the K_N form an algebra of invariant polynomials. (Since D is a derivation, it annihilates the whole algebra, according to the Leibniz rule.)

Theorem 5 \(P_N \) has the decomposition

$$P_N = H_N \oplus V_N,$$ \hfill (61)

where

$$H_N := I_1P_{N-1} \quad \text{and} \quad V_N = \mathbb{C}[K_2, K_3, ..., K_N] \cap P_N.$$ \hfill (62)

Proof: The monomials in P_N are divided into two classes according to whether the monomial contains a factor I_1 or not. Clearly, the first case corresponds to the space H_N, as defined above.

The remaining monomials can be identified with those partitions of N, for which all summands fulfil $2 \leq \lambda_i \leq N$. The trivial partition, i.e. N itself, is identified with K_N. The other partitions satisfy $2 \leq \lambda_i \leq N - 2$, and can be identified with $K_{\lambda_1}K_{\lambda_2} \cdots K_{\lambda_s}$. (Typically there are repetitions of the K_j.) This proves the theorem.

The theorem leads to

$$P_N/V_N \simeq H_N.$$ \hfill (63)

From $K_2 = 0$ follows $I_2 = I_1^2$ and $K_3 = 0$ leads to $I_3 = 3I_1I_2 - 2I_1^3 = I_1^3$ etc. We get $I_n = I_1^n$ for $0 \leq n \leq N$. In particular, H_N can be identified with the one-dimensional space that I_1^N generates.

The result as $N \to \infty$ may be written

Corollary 3 \(\mathbb{C}[I_1, I_2,]/\mathbb{C}[K_2, K_3,] = \mathbb{C}[I_1] \).

The invariant polynomials have integer coefficients and it holds that \(\mathbb{Z}[I_1, I_2,]/\mathbb{Z}[K_2, K_3,] = \mathbb{Z}[I_1] \).
5.2 Invariants and semi-invariants.

To see how the K_N arise, we start from the quotient I_2/I_1^2, homogeneous of degree zero. Acting on it by the vector field $I_1 D$ we get a new function with the same homogeneity. The obtained relation may be written as

$$-I_1 D (I_2/I_1^2) = 2K_2/I_1^2. \quad (64)$$

More generally, one finds

$$-I_1 D \left(\frac{I_{n+1}}{I_1^{n+1}} \right) = (n+1) \sum_{j=0}^{n-1} \binom{n}{j} \frac{K_{n+1-j}}{I_1^{n+1-j}}, \quad (65)$$

This can be used to obtain a kind of generating function relation between the I_n and the K_N.

If we bring back I_0, the first few K_N are

$$K_2 = I_0 I_2 - I_1^2, \quad K_3 = I_0^2 I_3 - 3I_0 I_1 I_2 + 2I_1^3, \quad (66)$$
$$K_4 = I_0^3 I_4 - 4I_0^2 I_1 I_3 + 6I_0 I_1^2 I_2 - 3I_1^4 \quad (67)$$

These expressions are semi-invariants, or relative invariants, related to forms, i.e. homogeneous polynomials in two variables, and projective representations of $GL(2, \mathbb{R})$ or $SL(2, \mathbb{R})$. We refer to Gurevich [9], Ibragimov [10], and Olver [27, 28] for more about this classical, fascinating subject.

K_2, the discriminant, is a true invariant. It can be written $\begin{vmatrix} I_0 & I_1 \\ I_1 & I_2 \end{vmatrix}$.

Instead of K_4 we could have chosen the well-known invariant (for quartic polynomials) $\tilde{K}_4 := I_0 I_4 - 4I_1 I_3 + 3I_2^2$. Except for the (irrelevant) factor I_0^2, K_4 and \tilde{K}_4 differ by a multiple of K_2^2.

The 3×3 determinant with rows, from the top, $(I_0 I_1 I_2)$, $(I_1 I_2 I_3)$, $(I_2 I_3 I_4)$, is another well-known invariant related to quartic polynomials (Olver, [27], p. 97). It is a linear combination of K_2^3, K_3^2 and $K_2 K_4$.

For N even, there is an alternative choice of K_N, , with \tilde{K}_4 as a special case, namely

$$\tilde{K}_{2n} := \sum_{k=0}^{n-1} (-1)^k \binom{2n}{k} I_k I_{2n-k} + (-1)^n \binom{2n}{n} I_n^2.$$
5.3 Proof of Theorem 3.

Every I_n is a balanced polynomial with q-dependent coefficients. Hence the formula in Corollary 2 applies. It shows that D is a derivation on functionals of the form $f(I_0, \ldots, I_n)$. Thus

$$D\{f(I_0, \ldots, I_n)\} = \sum_{\nu=0}^{n} \partial_\nu f(I_0, \ldots, I_n) DI_\nu,$$

which according to Theorem 2 yields the desired result.

Corollary 4 Let $(I_n)_{0}^{\infty}$ be given by Theorem 1. Then

$$\mathbb{C}[I_0, I_1, I_2, \ldots]/\mathbb{C}[K_2, K_3, \ldots] = \mathbb{C}[I_0, I_1, \ldots]/\ker D = \mathbb{C}[I_1/I_0] \simeq \mathbb{C}[p].$$

5.4 A final remark.

One may ask what happens if we switch between I_1 and $I_1^* := -qI_0$. The sequence $I_n^* := -q^n I_0$ forms, of course, an abelian algebra. Using $D^* := ad_{I_1}$, we get the same derivation property as above. In this case, however, the recursion operator $I_n^* \rightarrow I_{n+1}^*$ is trivial.

Acknowledgements: This article was written in memory of my friend Augusto Brandão Correia, 1961-2004, co-author of several papers, and discussion partner for many years.

References

[21] Lie, S. Über die Integration durch bestimmte Integrale von einer Klasse linearer partieller Differentialgleichungen, Arch. Math. 6 (1881), 328-68.

