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Abstract. One of the earliest attempts to rigorously prove the solv-
ability of Dirichlet’s boundary value problem was based on seeking the
solution in the form of a ”potential of double layer”, and this leads to
an integral equation whose kernel is (in general) both singular and non-
symmetric. C. Neumann succeeded with this approach for smoothly
bounded convex domains, and H. Poincaré, by a tremendous tour de
force, showed how to push through the analysis for domains with suffi-
ciently smooth boundaries but no hypothesis of convexity. In this work
he was (according to his own account) guided by consideration of a
variational problem involving the partition of energy of an electrostatic
field induced by charges placed on the boundary of a domain, more
precisely the charge distributions which render stationary the energy of
the field inside the domain divided by the energy of the field outside
the domain. Unfortunately, a rigorous treatment of this problem was
not possible with the tools available at that time (as Poincaré was well
aware). So far as we know, the only one to propose a rigorous treatment
of Poincarés problem was T. Carleman (in the two dimensional case)
in his doctoral dissertation. Thanks to later developments (especially
concerning Sobolev spaces, and spectral theory of operators on Hilbert
space) one can now give a complete, general and rigorous account of
Poincaré’s variational problem, and that is the object of the present
paper.

1991 Mathematics Subject Classification. 31B15, 31B20, 30C40, 47A75.
Key words and phrases. Newtonian potential, Neumann-Poincaré operator, symmetriz-
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ON POINCARÉ’S VARIATIONAL PROBLEM IN POTENTIAL THEORY 3

1. Introduction and historical note

Riemann built his magnificent function theoretic edifice on the solvabil-
ity of Dirichlet’s boundary value problem. When his proposed proof of this
(based on ”Dirichlet’s principle”) was found wanting, it became a priority of
the highest order to find a rigorous alternative proof. One early attempt was
through potential theory. Since it was soon discovered that it was hopeless
to express the solution to the Dirichlet problem in the form of a (”single
layer”) potential of some suitably selected function defined on the bound-
ary of the domain, emphasis shifted to ”double layer” potentials, a very
plausible choice insofar as this amounts to replacing the (in general unfind-
able) Poisson kernel, or normal derivative of the (equally unfindable) Green
function, by the normal derivative of the log (in the two dimensional case)
which constitutes the singularity of Green’s function. It is not our purpose
here to review this development, but only to remark that this reduced the
Dirichlet problem to an integral equation with ”kernel” K(z, w) , where z
and w are variables ranging over the boundary of the domain in question
(the so-called Neumann - Poincaré kernel). A significant feature of this ker-
nel is that, except in the case where the domain is a disk (or ball in Rd)
K is not symmetric, so the usual expansion theorems for integral operators
were not applicable. Nonetheless, the few examples that were understood
indicated that this integral operator had lots of real eigenvalues, as well as
(non-orthogonal) eigenfunctions, and there was no general theory available
that could explain such behavior. Later, Marty and Korn introduced the
notion of symmetrizability of an operator, and showed that this applied to
the N - P operator. But, over a decade before this happened Poincaré initi-
ated the study of a certain (self adjoint!) variational problem that did not
seem prima facie to be related to the N - P kernel, but turns out to be the
”high ground” which fully clarifies the ”self adjoint features” of the N - P
integral operator. So far as we know this fascinating approach has not yet
been fully worked out. To do so is our purpose in this paper.

C. Neumann had proven the solvability of Dirichlet’s problem in convex
domains by a recursive (and in principle constructive) procedure based on
calculating an infinite sequence of double layer potentials which were the
summands in a series converging to the solution. Later Poincaré had proven
by an altogether different method (which he called ”balayage”) the solvabil-
ity in domains of quite general character. Thus, in 1897, when Poincaré’s pa-
per [34] appeared, there was already a rigorous proof at hand, but Poincaré
set himself the task to find an alternate proof based on establishing the con-
vergence of the Neumann series also for nonconvex domains. This he suc-
ceeded to do (under fairly strong regularity assumptions: the domain had a
C2 boundary and the boundary values were sufficiently differentiable). Mo-
tivation for this undertaking was that the balayage method was not suitable
for numerical computation of solutions, and a solution based on Neumann’s
series was superior in this regard.
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Poincaré’s new proof was extremely long and technical, and we won’t enter
into the details here. It is based on energy estimates for the electrostatic
field due to charges distributed on the boundary of a domain, more precisely
how the energy is partitioned between the part of the field inside the domain
and the part lying outside. The final section of the paper has an unusual
character: Poincaré poses an extremal problem (more precisely, a sequence
of such problems) concerning this partition of energy, which he says guided
his steps through the preceding demonstration. But this is placed in a
sort of quarantine , and not referred to in the course of the demonstration
because, as Poincaré repeatedly tells us, he has been unable to establish
the salient details of the extremal problem on a rigorous basis. The paper
concludes with the words: ”After having established these results [concerning
convergence of the Neumann series] rigorously, I felt obliged in the two final
chapters to give an idea of the insights which initially led me to foresee these
results. I thought that, despite their lack of rigor, these could be useful as
tools for research insofar as I had already used them successfully once.”

Here is what is involved. Consider (we use here, for the most part,
Poincaré’s notations) a closed surface Γ in R3 and denote by Ω,Ω′ respec-
tively the interior and exterior domains into which R3 is partitioned by Γ.
Let there be given a real valued continuous function u on R3 and whose
restrictions to Ω and Ω′ (denoted by W and W ′) are harmonic functions
with finite Dirichlet integrals (denoted J(W ) and J(W ′) ). Then u is the
potential of an electrostatic charge distributed on Γ. (In modern language,
this charge is f := ∆u in the distributional sense, it is a Schwartz distri-
bution with support in Γ.) If we assume the total energy J(W ) + J(W ′)
equals 1, what is the minimum value possible for J(W )? It is 0, and this
is attained if, and only if W is a constant c, and W ′ is the solution to
the Dirichlet problem for the exterior domain with data W ′ = c on Γ (the
”conductor potential” of Γ). Here c is to be chosen so that J(W ′) = 1.
The corresponding charge distribution f is (modulo a constant factor) the
equilibrium measure for the compact set Γ. All this was well understood
at the time. But now Poincaré embarks into terra incognita: Consider the
analogous extremal problem, but with u conditioned to be orthogonal to
the extremal potential for the preceding problem (in the sense that, if u0

denotes the extremal for that problem,
∫
R3 ∇u · ∇u0dx = 0). What is now

the minimum for J(W )/(J(W )+J(W ′)) ? (We may as well assume the de-
nominator equals 1). Here arises the first of a series of difficulties Poincaré
was not able to overcome: is this minimum attained? If so, then denoting
by r1 the minimum and by u1 some extremal, Poincaré obtains by a routine
formal variational procedure the condition that the normal derivative of W1

equals −r1 times the normal derivative of W ′
1 at each point of Γ, where

W1 and W ′
1 are the restrictions of u1 to Ω, Ω′. (Again there is a lack of

rigor insofar as, even assuming existence of an extremal, the existence of the
normal derivatives along S is unclear.) Poincaré now proceeds to the next



ON POINCARÉ’S VARIATIONAL PROBLEM IN POTENTIAL THEORY 5

problem in the succession, whereby u is conditioned to be orthogonal in the
indicated sense to u0 and u1. And so forth.

The pattern is now clear to a modern observer. There is in the background
a Hilbert space H whose entries are pairs of harmonic functions (V, V ′)
defined on Ω,Ω′ respectively, the inner product between two such pairs given
by

〈(V, V ′), (W,W ′)〉 =
∫

Ω
∇V · ∇Wdx +

∫

Ω′
∇V ′ · ∇W ′dx.

(Well, this is not quite accurate since we need some adjustment to rule out
elements of the form V = c, V ′ = c′ where c, c′ are constants not both 0,
yet (V, V ′) would have norm zero. We’ll deal with such technical points
later.) In other terms we are in the framework of a Hilbert space H which
is the direct sum of the Sobolev spaces W 1,2(Ω) and W 1,2(Ω′) and its closed
subspace P (the potentials) consisting of those pairs (V, V ′) whose traces on
Γ coincide. We have two Hermitian forms on H:

J(V, V ′) =
∫

Ω
|∇V |2dx

and

J ′(V, V ′) =
∫

Ω′
|∇V ′|2dx.

The successive minimum problems considered by Poincaré are precisely those
employed nowadays (following F. Riesz) in the standard proof of the spectral
theorem for compact self-adjoint operators. More precisely, if T is such an
operator on a Hilbert space with elements denoted x, y, ... and inner product
〈., .〉 we consider the two Hermitian forms 〈Tx, x〉 and 〈x, x〉 , and begin by
(say) seeking the minimum of the former while restricting the latter to be 1.
We then repeat the procedure with the competing elements x restricted to
be orthogonal to the extremal element x0 from the first stage, and so forth.

Coming back to Poincaré’s problem seen in this light, the immediate
question is: Is there a compact linear operator lurking behind the form J?
Yes, there is, but we must first replace J by J−J ′ (which clearly leads to an
extremal problem equivalent to the former insofar as the ratios J/(J + J ′)
and (J − J ′)/(J + J ′) ...or for that matter J/J ′ , which Poincaré actually
uses...are simply related. It is a highly nontrivial fact that, restricted to the
subspace P of H consisting of pairs (V, V ′) with equal traces on Γ, the form
J−J ′ is completely continuous (to use an older terminology, that held sway
when ”operators on Hilbert space” were exhibited in terms of Hermitian
forms rather than operators). This was first established rigorously by T.
Carleman in his remarkable doctoral dissertation [4]. Following modern
practice we shall, below, rework all this in the language of operators along
the lines of the abstract treatment given by M. G. Krein [20].

This gets us off the ground: extrema in Poincaré’s problem are always
attained. In terms of the abstract model, we can continue to seek (and find)
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the minima of 〈Tx, x〉 subject to the successively stricter orthogonality con-
straints imposed on the unit vector x. But one point has to be emphasized:
If we assume (as is the case in Poincaré’s problem) that 〈Tx, x〉 takes neg-
ative values it attains a minimum on the unit sphere. In general, for any
compact operator T, 〈Tx, x〉 attains a maximum and a minimum on the unit
ball but only in the case of a positive maximum or a negative minimum can
we assert the extremal element has norm 1. Thus, the sequence of mini-
mum problems will continue to furnish an increasing sequence of negative
eigenvalues of T so long as 〈Tx, x〉 attains negative values for x among the
remaining (competing) vectors. If this is not so, the process terminates,
and either all remaining x are in the kernel of T , or 〈Tx, x〉 takes positive
values for some x. If this is the case, we can maximize 〈Tx, x〉 among all
unit vectors, and then, analogously as before continue to find a decreasing
sequence of positive eigenvalues (and associated eigenvectors) of T , which
process only terminates if at some point 〈Tx, x〉 takes no positive values
on the eligible set of x. From modern spectral theory we know moreover
that to each negative and each positive eigenvalue is associated only a finite
dimensional family of eigenvectors, whereas corresponding to the spectral
point 0 there may be either no eigenvector, or a family of finite or infinite
dimension.

Poincaré seems to have conjectured that (translated into our terminol-
ogy) an infinite sequence of increasing negative eigenvalues (the first being
−1) would exist (i.e. his recursive process would never terminate ) and that
moreover the associated eigenfunctions would span the Hilbert space. This
is a very bold conjecture, implying that the operator associated to the form
J ′− J(which we shall later relate to the so-called Neumann - Poincaré inte-
gral operator) has only positive spectrum and moreover is injective. These
assertions are true in case Γ is a sphere, but we will show they do not hold
generally, indeed not even for ellipsoids of revolution in R3. For d = 2 there
are some notable anomalies.

To complete this survey of Poincaré’s extremal problem we should take up
his variational condition for extrema, which characterizes the extremal po-
tentials u = (W,W ′) by the condition that the normal derivatives of W and
W ′ , computed along Γ from opposite sides with respect to the same normal
vector, are a (negative) constant multiple of one another. We postpone the
further examination of this condition, which relates to the aforementioned
integral operator and its symmetrization, to a later section.

Let us briefly describe the contents of the paper. Section 2 contains some
terminology and conventions plus a collection of known facts from the New-
tonian potential theory, seen from the modern point of view of distribution
theory and Sobolev spaces. Section 3 is devoted to an abstract symmetriza-
tion principle for linear bounded operators acting on a Hilbert space. This
theme was popular precisely because of potential theoretic applications, dur-
ing the first decades of the XX-th century, see for instance [14, 17, 19, 23, 28];
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later on, symmetrizable operators have appeared in more abstract studies,
for example, of partial differential equations on spaces with two norms, see
[9, 25, 38]. We owe to Carleman [4] and Krein [20] the clarification of the
subject. We follow their treatment, simplifying whenever possible the rea-
soning with the help of modern operator theory.

Section 4 presents Poincaré’s variational problem in a new light: as the
study of the angle operator between two orthogonal decompositions of the
space of harmonic fields of finite energy. Roughly speaking, in the presence
of a smooth closed surface Γ , this amounts to the decomposition into the
fields of single and double layer potential, and respectively that of inner and
outer fields. When passing from Euclidean space to Γ, this interpretation,
well correlated with the symmetrization scheme, naturally leads to the char-
acteristic values and eigenfunctions of the double layer integral operator (the
Neumann-Poincaré operator) in a ”negative norm” space defined by the sin-
gle layer operator. We offer here (as far as we know for the first time for the
modern reader) complete proofs of existence, smoothness and completeness
of the eigenfunctions appearing in Poincaré’s variational problem.

In Section 5 we extend the Hilbert-Beurling transform to act on gradients
of harmonic functions in all dimensions and show how one can read the
spectrum of the Neumann-Poincaré (boundary) operator, and implicitly that
of Poincaré’s problem, from this spatial singular integral operator. Section
6 is a brief and novel account of the Beurling operator in its original two
real variable form. Without aiming at completeness, we unify and simplify
here some classical works in complex analysis revolving around the Fredholm
eigenfunctions of a planar domain [1, 2, 3, 40, 41].

Section 7 deals with applications of Poincaré’s variational principle. They
amply illustrate the flexibility and advantages of his point of view: work on
the entire Euclidean space with harmonic fields, and their energy norm,
rather than with charges on complicated function spaces supported on the
boundary. Specifically, we prove the existence of a domain in R3 with neg-
ative spectrum (of its associated N-P operator), the possibility of ”gluing
together” finite parts of such disjoint spectra, and analyze the oscillations of
certain eigenfunctions of this operator. Section 8 contains examples, com-
ments and open problems. In particular, the ball in Rn is characterized by
the symmetry of its N-P operator.

Acknowledgements. The authors are indebted to the Mathematical
Research Intitute at Oberwolfach, Germany (the Research in Pairs Pro-
gramme) for support and excellent working conditions. The first named
authors gratefully acknowledge the support from the National Science Foun-
dation.
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2. Prerequisites of potential theory

The aim of this section is to assemble some terminology and basic facts
of Newtonian potential theory.

Let Ω be a bounded domain in Rd with boundary Γ. We assume that
Γ is at least C2-smooth. The (d − 1)-dimensional surface measure on Γ is
denoted by dσ and the unit outer normal to a point y ∈ Γ will be denoted
ny.

Throughout this article E(x, y) = E(x− y) denotes the normalized New-
tonian kernel:

E(x, y) =

{
1
2π log 1

|x−y| , d = 2,

cd|x− y|2−d, d ≥ 3,
(1)

where c−1
d is the surface area of the unit sphere in Rd. The signs were chosen

so that ∆E = −δ (Dirac’s delta-function).
For a C2-smooth function (density) f(x) on Γ we form the fundamental

potentials: the single and double layer potentials in Rd; denoted Sf and Df

respectively:

Sf (x) =
∫

Γ
E(x, y)f(y)dσ(y)

Df (x) =
∫

Γ

∂

∂ny
E(x, y)f(y)dσ(y).

(2)

The surface Γ divides Rd into two domains Ω = Ωi (interior to Γ) and the
exterior Ωe. Thus the potentials above define pairs of functions (Si

f , Se
f ) and

(Di
f , De

f ) which are harmonic in Ωi and Ωe respectively.
As is well known from classical potential theory (cf. [15, 42]) denoting by

Si
f (x), ∂

∂nx
Si

f (x) (and corresponding symbols with superscript e) the limits
at x ∈ Γ from the interior (or exterior), the following relations (known as
the jump formulas for the potentials) hold for all x ∈ Γ:

Si
f (x) = Se

f (x);
∂

∂nx
Si

f (x) =
1
2
f(x) +

∫

Γ

∂

∂nx
E(x, y)f(y)dσ(y);

∂

∂nx
Di

f (x) =
∂

∂nx
De

f (x);

Di
f (x) = −1

2
f(x) +

∫

Γ

∂

∂ny
E(x, y)f(y)dσ(y);

∂

∂nx
Se

f (x) = −1
2
f(x) +

∫

Γ

∂

∂nx
E(x, y)f(y)dσ(y);

De
f (x) =

1
2
f(x) +

∫

Γ

∂

∂ny
E(x, y)f(y)dσ(y).

(3)

We warn the reader that different conventions (on the choice of the sign
of the fundamental solution or the unit normal) may affect these formulas.
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Rather direct computations ( see for instance Chapter II in [15], Chapters
18-19 in [42] or [29]) show that the integral kernels

K(x, y) := − ∂

∂ny
E(x− y); K∗(x, y) = − ∂

∂nx
E(x− y)

satisfy on Γ the following estimates, for d ≥ 3:

|K(x, y)| = O(
1

|x− y|d−2
), x, y ∈ Γ, x 6= y,

|K∗(x, y)| = O(
1

|x− y|d−2
), x, y ∈ Γ, x 6= y.

(4)

For d = 2, due to the fact that log |z − w| is the real part of a complex
analytic function log(z − w) = log |z − w| + i arg(z − w), z, w ∈ Γ, and by
Cauchy-Riemann’s equations one obtains

K(z, w) =
∂

∂τw
arg(z − w),

where τw is the unit tangent vector to the curve Γ. Thus, on any smooth
curve Γ ⊂ R2, the kernels K(z, w) and K∗(z, w) are uniformly bounded.

Returning to the general d-dimensional case, we define on L2(Γ, dσ) the
Neumann-Poincaré operator K:

(Kf)(x) = 2
∫

Γ
K(x, y)f(y)dσ(y), f ∈ L2(Γ, dσ). (5)

The L2 adjoint K∗ will be an integral operator with kernel K∗(x, y). The
nature of the diagonal singularity of the kernel K(x, y) shows that K is a
compact operator in the Schatten-von Neumann class Cp(L2(Γ)), p > d− 1,
see [15]. Since the kernel K is bounded when d = 2, it is Hilbert-Schmidt
on any smooth planar curve. We will show in the next section that K∗ is
symmetrizable, that is K∗ becomes self-adjoint with respect to a different
(incomplete) inner product on L2(Γ).

Similarly, the linear operator

Sf = Sf |Γ, f ∈ L2(Γ),

turns out to be bounded (from L2(Γ) to the same space). Remark that the
representing kernel E(x, y) of S is pointwise non-negative for d ≥ 3. With
these conventions the jump formulas become, as functions on Γ:

Si
f = Se

f = Sf ;

∂nSi
f =

1
2
f − 1

2
K∗f ;

∂nSe
f = −1

2
f − 1

2
K∗f ;

Di
f = −1

2
f − 1

2
Kf ;

De
f =

1
2
f − 1

2
Kf.

(6)
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Above, and always in this paper n designates the outer normal to Ω.

In this paper we shall mostly be concerned with the relationship between
the spectral analysis of the Neumann-Poincaré operator K and some ex-
tremal problems arising from comparing the energies in Ωi and Ωe of the
single layer potentials defined by densities supported by Γ, cf. the Introduc-
tion. To this aim we will use a Sobolev space on Ωi∪Ωe, its trace on Γ, and
some closed subspaces imposed by our considerations.

Let H be the space of harmonic functions on Ωi∪Ωe, vanishing at infinity
and with finite energy seminorm:

‖h‖2
H =

∫

Ωi∪Ωe

|∇h|2dx. (7)

Only locally constant functions are annihilated by this seminorm. It will
be necessary to distinguish between the two restrictions of h to the inner
and outer domain; we denote h = (hi, he) where hi = h|Ωi and similarly
he = h|Ωe . In virtue of Poincaré’s inequality the functions hi and he are in
the Sobolev W 1,2-spaces of the corresponding domains. To simplify notation
we put henceforth W s = W s,2.

We can regard an element h ∈ H ⊂ D′(Rd) as a distribution defined on the
whole space. Then ∆h = µ ∈ D′Γ(Rd) (the lower index means supp(µ) ⊂ Γ)
and, by a slight abuse of notation

−h(x) = Sµ(x) =
∫

Γ
E(x, y)dµ(y), x ∈ Rd \ Γ. (8)

If the distribution µ is given by a smooth function times the surface measure
of Γ, then h = Sµ and by (6) hi|Γ = he|Γ. Our next aim is to identify the
closed subspace of H characterized by the latter matching property.

By assumption the surface Γ is smooth. Hence there are linear continuous
trace operators

Tr : W 1(Ωi,e) −→ W 1/2(Γ).

Moreover, the trace operator from each side of Γ is surjective (and hence it
has a continuous right inverse), see for instance [27]. We will denote in short

h|Γ = Tr h.

If d ≥ 3, then for any function f ∈ W 1/2(Γ) there exist solutions (hi, he) ∈ H
to the inner and outer Dirichlet problems with boundary data f : hi|Γ =
he|Γ = f , see [24].

In the case d = 2 the additional assumption
∫
Γ fdσ = 0 must be made,

to assure the existence of he with he(∞) = 0 and finite energy, see [24] .
The following consequence of Green’s formula will be frequently used in

this section. For a harmonic function u in Ω, of class C2 on the closed
domain:

2
∫

Γ
u

∂u

∂n
dσ =

∫

Ω
∆(u2)dx = 2

∫

Ω
|∇u|2dx. (9)
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Another common form of Green’s formula, for arbitrary functions φ, ψ ∈
C2(Ω) reads: ∫

Ω
∇φ · ∇ψdx +

∫

Ω
φ∆ψdx =

∫

Γ
φ∂nψdσ.

As a first application we note an important isometric identification, see
[24].

Lemma 2.1. Let f ∈ L2(Γ). Then

〈Sf, f〉 = ‖Sf‖2
H. (10)

We deduce from here that S is a non-negative self-adjoint operator on
L2(Γ). Moreover Sf = 0 implies ∇Sf = 0 in Rd \ Γ, whence Sf is constant
on both sides of Γ. But Sf (∞) = 0, so Sf = 0 as a distribution on Rd.
Therefore f = −∆Sf = 0. This proves that S is a strictly positive operator
on L2(Γ). We will prove below that S is not invertible.

Proposition 2.2. Assume d ≥ 3 and let h = (hi, he) ∈ H. Then hi|Γ = he|Γ
if and only if there exists ρ ∈ W−1/2(Γ) such that h = Sρ.

Proof. Let H− be the completion of L2(Γ) with respect to the Hermitian
form 〈Sf, f〉 = ‖√Sf‖2. Let H+ = Ran

√
S, viewed as a non-closed vector

subspace of L2(Γ), and also regarded as the domain of the positive un-
bounded operator

√
S
−1

. Note that H+ is a complete space with respect to
the norm induced by the form 〈√S

−1
f,
√

S
−1

f〉. Then the positive operator
S can be extended by continuity to an isomorphism S : H− −→ H+, and
the L2-pairing

〈
√

Sf, g〉 = 〈f,
√

Sg〉
defines a duality between the Hilbert spaces H+ and H−.

The above standard duality construction can be correlated to the Dirichlet
space seminorm of H. First we polarize the identity in the Lemma:

〈Sf, g〉2,Γ = 〈Sf , Sg〉H, f, g ∈ L2(Γ).

Let h ∈ H be an element with equal traces on Γ:

hi|Γ = he|Γ = f ∈ W 1/2(Γ).

For a C2-smooth density g on Γ we find via Green’s formula:

〈f, g〉2,Γ = 〈h, Sg〉H.

Thus the linear functional
g 7→ 〈g, f〉2,Γ

is continuous with respect to the seminorm 〈Sg, g〉 and hence Riesz’ lemma
implies the existence of an element k ∈ L2(Γ) such that

〈g, f〉2,Γ = 〈g,
√

Sk〉2,Γ, g ∈ L2(Γ).

That is W 1/2(Γ) ⊂ √
SL2(Γ) = H+.
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Conversely, an element f ∈ H+, can be written as f = Sk with k ∈ H−.
Then the coupling 〈Sk, k〉 is well defined. Let (kn) be a sequence in L2(Γ)
which converges to k in the topology of H−. Then

‖Skn − Skm‖2
H = 〈S(kn − km), kn − km〉H .

Thus the sequence of potentials (Skn) is Cauchy in H and its limit h satisfies
hi = Sk = f , by the continuity of the trace map. Therefore f ∈ W 1/2(Γ).

In conclusion H+ = W 1/2(Γ), and the L2(Γ) dual of this space is H− =
W−1/2(Γ). As noted before, the operator S extends continuously to the
space W−1/2(Γ), and

SW−1/2(Γ) = W 1/2(Γ).

In other terms, the density distribution ρ = ∆h, h ∈ H, represents a match-
ing pair h = (hi, he), hi|Γ = he|Γ if and only if ρ ∈ W−1/2(Γ). ¤

The case d = 2 requires again the additional assumption that ρ(1) = 0.
Otherwise Sρ would not have a square summable gradient on the exterior
domain.

We define the subspace of single layer potentials by

S = {h ∈ H, hi|Γ = he|Γ}.
The orthogonal complement in H will be denoted D = S⊥ and we will
identify this with the space of double layer potentials belonging to H.

First we have to define, in a weak sense, the normal derivative of a dis-
tribution along Γ. Let (hi, he), (gi, ge) be the representatives of elements
h, g ∈ H. Assume first that both hi, gi ∈ C2(Ω). Then Green’s formula
yields

|
∫

Γ

∂hi

∂n
gidσ| = |

∫

Ω
∇hi · ∇gidx| ≤ ‖∇hi‖2,Ω‖∇gi‖2,Ω.

By Banach’s open mapping theorem, the continuous bijective trace operator

Tr : {h ∈ W 1(Ω), ∆h = 0} −→ W 1/2(Γ)

is bicontinuous, hence, in our situation we find a positive constant C such
that

‖∇gi‖2,Ω ≤ C‖gi|Γ‖W 1/2 .

Consequently

|
∫

Γ

∂hi

∂n
gidσ| ≤ C‖∇hi‖2,Ω‖gi‖W 1/2 .

A standard regularization argument shows that every harmonic function
gi in Ω, having finite energy inside Ω (i.e. ‖∇gi‖2,Ω < ∞) can be approxi-
mated in the energy metric by harmonic functions which are smooth up to
the boundary. And we know that the traces gi exhaust the space W 1/2(Γ).
Thus ∂hi

∂n dσ defines a linear continuous functional on W 1/2(Γ), which via
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the L2(Γ) duality can be identified with a distribution ∂hi
∂n ∈ W−1/2(Γ).

Moreover, the above estimate implies

‖∂hi

∂n
‖W−1/2(Γ) ≤ C‖∇hi‖2,Ω.

Again by regularization we obtain the following statement.

Proposition 2.3. The normal derivatives of the boundary values of a pair
(hi, he) ∈ H are distributions ∂hi

∂n , ∂he
∂n ∈ W−1/2(Γ) depending continuously

on ‖hi‖H, ‖he‖H, respectively, and satisfying the duality identities:
∫

Γ

∂hi

∂n
gidσ =

∫

Γ
hi

∂gi

∂n
dσ =

∫

Ω
∇hi · ∇gidx,

∫

Γ

∂he

∂n
gedσ =

∫

Γ
ge

∂he

∂n
dσ = −

∫

Ω
∇he · ∇gedx,

(11)

for every g = (gi, ge) ∈ H.

We are ready to identify double layer potentials in the space H.

Corollary 2.4. Let h = (hi, he) ∈ H. The following conditions are equiva-
lent:

a) h ∈ D(= S⊥);
b) ∂hi

∂n = ∂he
∂n (in W−1/2(Γ));

c) There exists f ∈ W 1/2(Γ) such that h = Df .
In this case f = he − hi.

Proof. Assume that h, g ∈ H are orthogonal elements. Then the above
proposition yields ∫

Γ
(
∂hi

∂n
gi − ∂he

∂n
ge)dσ = 0.

Any element f ∈ W 1/2(Γ) can be realized as f = gi = ge for a proper choice
of g, hence b) follows. Conversely, if b) holds, then the same identity implies
a).

Assume that b) is true and define f = he − hi. Then Df is well defined
and satisfies by (6) (Df )e − (Df)i = f,

∂(Df )i

∂n = ∂(Df )e

∂n . This proves that
the pair of harmonic functions h −Df form a single harmonic function on
Rd which vanishes at infinity, and hence identically. Therefore h = Df . ¤

The only elements of H annihilated by the energy seminorm are scalar
multiples of (1, 0). This is the double layer potential of the constant function,
and is, therefore, orthogonal to S. By the boundary formula (Df )e =
1
2f − 1

2K we infer K1 = 1.
Another distinguished element of H is provided by the equilibrium distri-

bution ρ on Γ; namely (1, h) ∈ S, that is Sρ = 1 and h = Se
ρ, see Example

1.
The following result is known as Plemelj’s symmetrization principle, see

[33, 16, 18] .
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Lemma 2.5. The operators S, K : L2(Γ) −→ L2(Γ) satisfy the identity

KS = SK∗. (12)

Proof. Let f ∈ C2(Γ). It is sufficient to prove

DSf (x) = S∂nSf (x), x ∈ Ωe.

Indeed, passing from x to a point x0 of the boundary we would obtain

Sf(x0)−KSf(x0) = −SK∗f(x0) + Sf(x0)

and the proof would be complete.
The asserted identity follows again from Green’s fromula:

DSf (x) =
∫

Γ

∂

∂ny
E(x, y)[

∫

Γ
E(y, z)f(z)dσ(z)] =

∫

Γ
f(z)[

∫

Γ

∂

∂ny
E(x, y)E(z, y)dσ(y)]dσ(z) =

∫

Γ
f(z)[

∫

Γ
E(x, y)

∂

∂ny
E(z, y)dσ(y)]dσ(z) =

∫

Γ
E(x, y)[

∂

∂ny

∫

Γ
f(z)E(z, y)dσ(z)]dσ(y) = S∂nSf (x).

¤

3. Symmetrizable operators

In the present section we closely follow Carleman ([4], §11) and isolate
an abstract symmetrization principle for linear bounded operators. A few
decades after Carleman, the same symmetrization technique was analyzed
in detail, in a very flexible general framework, by M.G. Krein [20].

To be more specific, we are studying a bounded non-selfadjoint operator
acting on a Hilbert space H which becomes symmetric with respect to a
another, bounded scalar product on H. Prior works related to the same
idea have appeared early in the study of the Neumann-Poincaré operator.
A good account of these works is contained in the survey article by Hellinger
and Toeplitz [14].

The theorem below is aimed at and will be directly applicable to the
Neumann-Poincaré operator.

Let H be an infinite dimensional, separable, complex Hilbert space and let
Cp = Cp(H), p ≥ 1, be the Schatten-von Neumann class of compact operators
acting on H, see [12].

Theorem 3.1. Let p ≥ 1 and let M ∈ Cp(H) be a linear bounded operator
with the property that there exists a strictly positive bounded operator R such
that R2M is self-adjoint.

Then the spectrum of M is real and for every non-zero eigenvalue λ, if
(M − λ)mf = 0 for some m > 1, then (M − λ)f = 0.

Moreover, the eigenvectors of M∗, including the null vectors, span H.
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By R strictly positive we mean R ≥ 0 and kerR = 0.

Proof. Let us define on H the bounded sesquilinear form:

〈f, g〉R = 〈Rf, Rg〉, f, g ∈ H.

Note that the space H is complete with respect to this new norm if and only
if the operator R is invertible.

The assumption in the statement implies

〈Mf, g〉R = 〈RMf, Rg〉 = 〈Rf,RMg〉 = 〈f, Mg〉R.

That is M is a symmetric operator with respect to the new scalar product.
We prove a little more than the statement. Namely that there exists a

bounded self-adjoint operator A ∈ Cp with the property:

AR = RM. (13)

Let N denote the self-adjoint operator:

N = R2M = M∗R2.

We regularize the inverse of R by a small positive parameter ε; to the effect
that the strong operator topology limit (R+ ε)−1R → I exists when ε tends
to zero. And for any operator L ∈ Cq the limit (R + ε)−1RL → L exists in
the norm topology of Cq (by a finite rank approximation argument).

Fix a positive integer n so that p < 2n and consider the operator:

Aε = (R + ε)−1R2M(R + ε)−1.

Then Aε ∈ Cp ⊂ C2n, and

|Aε|2 = A2
ε = (R + ε)−1R2M(R + ε)−2R2M(R + ε)−1.

In virtue of the cyclic invariance of the trace we obtain:

tr|Aε|2n = tr[(R + ε)−2R2M ]2n → trM2n < ∞.

Thus the family of operators (Aε)ε>0 is bounded in C2n, hence relatively
compact in the weak topology of the same ideal.

On the other hand, AεR converges in the norm topology of C2n to RM .
This implies that any weak limit point A of (Aε)ε>0 must satisfy the identity
AR = RM . Since the operator R was assumed to be injective, all limit points
coincide with a uniquely determined operator A ∈ C2n satisfying identity (1).

Moreover,
RAR = R2M = M∗R2 = N. (14)

Since R is injective with dense range, it follows from

〈ARf, Rg〉 = 〈Rf, ARg〉, f, g ∈ H,

that A is self-adjoint.



16 DMITRY KHAVINSON, MIHAI PUTINAR, AND HAROLD S. SHAPIRO

It remains to prove that A ∈ Cp. Let λk be a non-zero value in the
spectrum of A and let fk be a corresponding eigenvector, normalized by the
condition ‖fk‖ = 1. Then, by (13),

M∗Rfk = RAfk = Rλkfk.

Hence λk ∈ σ(M∗). Since M∗ ∈ Cp, the convergence of the series
∞∑

k=1

|λk|p < ∞

shows that A ∈ Cp. In the enumeration λk we allow multiplicities and can
assume by the compactness of A that |λk| ≥ |λk+1|, for all values of k.

As for the zero eigenvectors h of A, they span its kernel, and each element
Rh is annihilated by M∗, as follows from the identity M∗Rh = RAh = 0.
Since the vectors (fk)k≥1 span, together with h ∈ kerA, the space H, the
M∗-eigenvectors (Rfk)k≥1 and (Rh)Ah=0 span H by the density of the range
of R. This proves the last part of the theorem.

Remark next that the spectral decomposition of A provides a norm con-
vergent series:

Af =
∑

k

λk〈f, fk〉fk, f ∈ H. (15)

In general, if E(µ, T ) denotes the spectral projection of an isolated point
in the spectrum of a linear bounded operator T , then:

E(µ, T )∗ = E(µ, T ∗),

see [6] Theorem VII.3.10. Hence the spectral spaces Hλ(M), Hλ(M∗) of
M and M∗ corresponding to the same isolated eigenvalue λ have the same
dimension. Now, due to the intertwining relations AR = RM, RA = M∗R,
the operator R induces injective maps:

Hλ(M) R−→ Hλ(A) R−→ Hλ(M∗),

for all λ 6= 0. Since dimHλ(M) = dimHλ(M∗) we deduce that the three
spectral spaces above are isomorphic.

Furthermore, let E(λ, M)H be the spectral subspace of M corresponding
to the eigenvalue λ ∈ σ(M) \ {0}. By compactness, E(λ,M)H is a finite
dimensional space, and in general it may contain generalized eigenvectors of
M , that is solutions g of the equation (M − λ)mg = 0. But by hypothesis,
M |E(λ,M)H is symmetric with respect to the new scalar product induced by
R, and therefore diagonalizable on that subspace. Hence E(λ,M)H only
contains eigenvectors of M .

¤

We expand below a couple of comments and corollaries derived from the
preceding proof.
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1. Eigenfunction expansions. Let gk ∈ H be the eigenvector of M corre-
sponding to the non-zero eigenvalue λk. In case of higher multiplicities, we
repeat λk accordingly in the enumeration of the spectrum. Set fk = Rgk,
and normalize gk so that ‖fk‖ = 1. The spectral decomposition of A implies
the norm convergent expansion

RMf =
∑

k

λk〈f,R2gk〉Rgk, f ∈ H,

or equivalently, the ‖.‖R-convergent series:

Mf =
∑

k

λk〈f, gk〉R gk.

By applying another R we obtain

M∗R2f =
∑

k

λk〈R2f, gk〉R2gk.

In general, however, the stronger continuity assumption

‖Mf‖ ≤ C‖Rf‖, f ∈ H,

(with C a positive constant) is needed for the series

Mf =
∑

k

λk〈f,R2gk〉gk, f ∈ H,

to be norm convergent. See for details [20].
Along the same lines, note that the self-adjoint operator N = RAR admits

a non-orthogonal, norm convergent decomposition into rank-one self-adjoint
operators (cf. (13)):

Nh =
∑

k

λk〈h,Rfk〉Rfk, h ∈ H. (16)

It does not follow from (16) that the eigevectors of M are complete in H.

2. Compactness and eigenvalues in the negative space. Let H̃ be the com-
pletion of H in the ‖.‖R-norm, and let M̃ be the linear continuous extension
of M there. We call H̃ the negative space by analogy with distribution
theory (and the theory of Gelfand triples).

Our next aim is to prove that M̃ is compact and self-adjoint on H̃ and
that every eigenvector of M̃ corresponding to a non-zero eigenvalue belongs
to H, and hence it is an eigenvector of M .

The intertwining identity AR = RM implies that M̃ is compact on H̃
( even in the same class Cp). We prove the compactness of M̃ . Let (φn)
be a bounded sequence in H̃. We can find a sequence (hn) in H such
that ‖R(φn − hn)‖ ≤ 2−n, n ≥ 1. Then by the compactness of A, the
sequence (ARhn) has a convergent subsequence which we will denote by the
same symbols (ARhn). But ARhn = RMhn. That is the sequence Mhn is
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convergent in the ‖.‖R-norm. Thus the sequence (M̃hn) is convergent in H̃,
and so is the sequence (M̃φn).

We extend next the operator R to H̃. Let h̃ ∈ H̃ and consider a sequence
(hn) in H which converges in H̃ to h̃. By the very definition of the negative
norm, the sequence (Rhn) is Cauchy in H. Define R̃h = limn Rhn. More-
over, this definition implies that the operator R̃ : H̃ −→ H is continuous in
the respective norms, and

‖R̃h̃‖ ≤ ‖h̃‖R.

Since the range of R is dense in H, it follows that R̃H̃ = H.
On the other hand, we can consider R−1 : RH −→ H as an unbounded

self-adjoint operator. Its domain, H+ = RH is complete with respect to the
graph norm ‖h‖H+ = ‖R−1h‖. Let L be a linear continuous functional on
H+. By the Riesz representation lemma, and by the preceding definition of
R̃ there exists an element g = R̃g̃ ∈ H such that

L(Rh) = 〈h, g〉 = 〈h, R̃g̃〉 = 〈Rh, h̃〉.
Therefore, the scalar product of H defines a non-degenerate continuous

pairing between the Hilbert spaces H+ = RH and H̃. We claim that M̃ is
the adjoint of M with respect to this duality pairing. Indeed, let h̃ ∈ H̃ and
f ∈ H+ be arbitrary elements. The above definitions imply:

〈M̃h̃, f〉 = 〈R̃M̃ h̃, R−1f〉 =

〈AR̃h̃,R−1f〉 = 〈R̃h̃, AR−1f〉 =

〈h̃, RAR−1f〉 = 〈h̃, M∗f〉.
Consequently, by general duality theory for the spectral spaces, the spec-

trum of M̃ is real, equal to the spectrum of the compact operator M∗ :
H+ −→ H+, and the multiplicities of the non-zero eigenvalues are equal.
But every eigenvalue of M∗ : H+ −→ H+ is an eigenvalue of M∗ : H −→ H.
And conversely, we have proved that every eigenvalue of M∗ is of the form
R2gk, where Mgk = λkgk. Hence the spectral subspace corresponding to
a non-zero eigenvalue of M∗ : H −→ H is included in H+, and has the
same multiplicity as the spectral subspace of M . But the operator M is
a restriction of M̃ to H and as such coincides with the latter on all finite
dimensional subspaces of H. Therefore, all eigenvectors of M̃ corresponding
to a non-zero eigenvalue belong to H, and coincide with the eigenvectors of
M .

For more details about the above proof, and another way of reaching the
same conclusion, the reader may consult [20].

3. Min-max. Having understood the full spectral picture of the operator
M and its continuous extension M̃ we are now prepared to discuss the
meaning of the abstract variational principle which makes the subject of the
present article.
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We know that M̃ : H̃ −→ H̃ is a compact operator, with the same real
spectrum as M , and the same eigenfunctions: M̃g = λg, λ 6= 0, g ∈ H.
The spectrum can have positive and negative eigenvalues, with only 0 as an
accumulation point. We denote the positive eigenvalues by:

λ+
0 ≥ λ+

1 ≥ λ+
2 ≥ . . . ≥ 0,

and, similarly,
λ−1 ≤ λ−2 ≤ . . . ≤ 0.

The associated eigenfunctions are correspondingly denoted by g+
k , g−k . The

asymmetry in the notation comes from the particular integral operator we
deal with in this paper.

Both sequences might be finite (in case M is a finite rank operator), or
one can be finite and the other infinite, etc.

The classical Courant-Fischer minimax principle yields:

min
V

max
f∈V \{0}

〈M̃f, f〉R
‖f‖R

= λ+
k ,

where V ⊂ H̃ is a subspace of codimension k. Moreover, the minimum is
attained on the subspace V = {g+

0 , . . . , g+
k−1}⊥ ⊂ H̃.

Note that in this process we obtain a non-increasing sequence of optimal
values which converges, or stabilizes to 0. Due to the compactness of M̃ ,
the min-max process will never detect the negative eigenvalues.

On the other hand, keeping the same notational conventions (in case of
finite negative spectrum) we obtain:

max
V

min
f∈V \{0}

〈M̃f, f〉R
‖f‖R

= λ−k ,

where V ⊂ H̃ is a subspace of codimension k−1. Again the optimal subspace
is generated by the vectors which are orthogonal to g−1 , . . . , g−k−1. For the
same reason this max-min process will not reach non-negative eigenvalues.

The next Proposition is obtained by assembling a part of the above ob-
servations. As a step towards unifying the notation used in the rest of the
paper we put S = R2.

Proposition 3.2. Let M ∈ Cp(H), p ≥ 1, be a linear operator satsifying
the identity M∗S = SM , where S is a positive bounded operator on H. Let
λ+

0 ≥ λ+
1 ≥ . . . ≥ 0 ≥ . . . ≥ λ−2 ≥ λ−1 be the eigenvalues of M repeated

according to their multiplicity, and let g+
k , g−k ∈ H be the corresponding

eigenvalues.
Then,

λ+
k = max

f⊥{g+
0 ,...,g+

k−1}
〈SMf, f〉
〈Sf, f〉 . (17)
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and similarly

λ−k = min
f⊥{g−1 ,...,g−k−1}

〈SMf, f〉
〈Sf, f〉 . (18)

4. Operators with a continuous kernel. A slightly stronger assumption
than the S-symmetry of the compact operator M discussed above is the
factorization M = LS, where S > 0 and L ≥ 0 is a compact operator.
Indeed, SM = SLS = M∗S.

This is the class of symmetrizable operators with a continuous kernel, in
the terminology of Krein [20]. We put as before R =

√
S. Since M = (LR)R,

we find
‖Mf‖ ≤ ‖LR‖‖f‖R, f ∈ H.

Therefore the continuous extension M̃ maps continuously and compactly
the negative space H̃ into H.

Henceforth we assume that S > 0 and L ≥ 0. As a consequence of the
compactness and positivity of L one obtains the convergence in H of the
series:

Lf =
∑

k

λk〈f, gk〉gk, f ∈ H, (19)

see Theorem 9 of [20]. Indeed, recall that (gk)k is an orthonormalized system
of eigenvectors in H̃, which spans together with ker M̃ the whole space. In
particular, for a vector f ∈ H we have the convergent Fourier series in H̃:

f =
∑

k

〈f, Sgk〉gk +
∑

j

〈f, ξj〉H̃ξj ,

where (ξj) is a completion of (gk), with vectors in ker M̃ , to an orthonormal
basis. By applying the operator M to the above sum we find

LSf = Mf =
∑

k

λk〈Sf, gk〉gk,

where the convergence is now assured in H. Let

LNf =
∑

k≤N

λk〈Sf, gk〉gk,

so that
〈LSf, Sf〉 =

∑

k

λk|〈Sf, gk〉|2 ≥
∑

k≤N

λk|〈Sf, gk〉|2 = 〈LNSf, Sf〉, f ∈ H.

But the range of S is dense in H, so that LN ≤ L, as self-adjoint operators.
Then it is well known that L′ = SOT − limN LN exists, it is a bounded
operator and moreover L(Sf) = L′(Sf) for all f . In conclusion L = L′ and
the convergence of the expansion (19) is proved.
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Assume in addition that the operator L is strictly positive. Then the
system (gk) ⊂ H of eigenfunctions of M spans H, and at the same time it
is an orthonormal basis in H̃. Indeed, if 〈x, gk〉 = 0 for all k, then Lx = 0
and x = 0.

The expansion (19) can be regarded as an abstract analogue of Mercer’s
theorem in the theory of integral operators, see [20].

5. The norm of a symmetrizable operator. Let L(H) denote the C∗-
algebra of linear bounded operators acting on the Hilbert space H. Assum-
ing R2M = M∗R2 as in Theorem 3.1 we immediately obtain the formula

‖M‖L(H̃) = λ+
0 . (20)

Indeed,using the notation introduced in the proof of Theorem 3.1,

〈Mf, f〉H̃ = 〈ARf, Rf〉H ≤ λ+
0 ‖f‖2

H̃
= λ+

0 ‖Rf‖2
H ,

and the inequality is attained by the compactness of the operator A.
For a symmetrizable operator M as before, the following non-trivial norm

estimate holds:
‖M‖L(H̃) ≤ ‖M‖L(H),

see [20].

The applications envisaged in this article are more natural in the context
of real Hilbert spaces. However, all operators arising in potential theory have
real kernels, and, accordingly, all the results discussed in the present section
apply to them. To see this formally, the reader should consider an antilinear
isometric involution J on H (complex conjugation on function spaces, or on
the coefficients of a distinguished orthonormal basis) and assume that the
operators M,S, R, in our notation are real, that is they commute with J .

4. Poincaré’s variational problem

We keep the notation and conventions introduced in the preliminaries: H
is the space of pairs of harmonic functions (hi, he) defined on Ωi, respectively
Ωe, he(∞) = 0, and having finite energy.

The prehilbertian space H possesses two natural direct sum decomposi-
tions:

H = S⊕D = Hi ⊕ He.

By definition, the latter subspaces are

Hi = {(hi, 0) ∈ H}, He = {(0, he) ∈ H}.
Let Ps, Pd, Pi, Pe be the corresponding orthogonal projections. The only
subspace N = C(1, 0) annihilated by the seminorm satisfies:

N ⊂ D ∩ Hi.

Sometimes we will prefer to work within a Hilbert space, and then we will
replace tacitly H by HªN.
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Recall that the boundary single layer potential S is an L2-positive op-
erator mapping W−1/2(Γ) onto W 1/2(Γ). The L2 pairing between the two
Sobolev spaces is still denoted 〈Sρ, f〉2,Γ, ρ ∈ W−1/2(Γ), f ∈ W 1/2(Γ).

We will prove that the quadratic form used by Poincaré in his variational
problem is essentially the “angle operator” between these orthogonal decom-
positions (that is PsPiPs or an affine combination such as Ps(Pe − Pi)Ps).

Lemma 4.1. Let g ∈ W−1/2(Γ) (assuming g(1) = 0 in case d = 2). Then

〈(Pe − Pi)Sg, Sg〉H
‖Sg‖2

H

=
〈KSg, g〉2,Γ

〈Sg, g〉22,Γ

. (21)

Proof. Due to the continuity of all terms we can assume that g is a smooth
function on Γ. By Green’s formula, the jump formulas (6) and the opposite
orientation of Γ with respect to the exterior domain we find∫

Ωe

|∇Sg|2dx = −
∫

Γ
Sg ∂nSe

gdσ = 〈Sg,
1
2
g +

1
2
K∗g〉2,Γ,

and ∫

Ωi

|∇Sg|2dx =
∫

Γ
Sg ∂nSi

gdσ = 〈Sg,
1
2
g − 1

2
K∗g〉2,Γ.

Therefore,
〈(Pe − Pi)Sg, Sg〉H = 〈KSg, g〉2,Γ,

‖Sg‖2
H = 〈Sg, g〉2,Γ.

¤

In view of Plemelj’s symmetrization principle (Lemma 2.5), the conditions
of the abstract symmetrization scheme in Theorem 3.1 are met for the second
Rayleigh quotient above. Accordingly we can state the following theorem,
whose main points were foreseen by Poincaré.

Theorem 4.2. Let Ω ⊂ Rd be a bounded domain with smooth boundary Γ
and let Ωe = Rd\Ω. Let Sρ denote the single layer potential of a distribution
ρ ∈ W−1/2(Γ), (ρ(1) = 0 in case d = 2).

Define successively, as long as the maximum is positive, the energy quo-
tients

λ+
k = max

ρ⊥{ρ+
0 ,...,ρ+

k−1}

‖∇Sρ‖2
2,Ωe

− ‖∇Sρ‖2
2,Ω

‖∇Sρ‖2
2,Rd

, (22)

where the orthogonality is understood with respect to the total energy norm.
The maximum is attained at a smooth distribution ρ+

k ∈ W 1/2(Γ).
Similarly, define

λ−k = min
ρ⊥{ρ−1 ,...,ρ−k−1}

‖∇Sρ‖2
2,Ωe

− ‖∇Sρ‖2
2,Ω

‖∇Sρ‖2
2,Rd

. (23)

The minimum is attained at a smooth distribution ρ−k ∈ W 1/2(Γ).
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The potentials Sρ±k
together with all Sχ ∈ kerK(χ ∈ W−1/2(Γ)), are

mutually orthogonal and complete in the space of all single layer potentials
of finite energy.

The stronger than expected regularity of the eigenfunctions (ρ±k ∈ W 1/2(Γ))
was explained in abstract form, in the last section. The equilibrium distribu-
tion of Ω provides the first function ρ+

0 in this process: Sρ+
0 = 1, Sρ+

0
|Ω = 1.

The first eigenvalue is always λ+
0 = 1 and has multiplicity equal to one (cf.

Example 8.1).
Lemma 4.1 gives a precise correlation between the above Poincaré varia-

tional problem and the Neumann-Poincaré operator.

Corollary 4.3. The spectrum of the Neumann-Poincaré operator K, multi-
plicities included, coincides with the spectrum (λ±k ) of Poincaré’s variational
problem, together with possibly the point zero. The extremal distributions for
the Poincaré problem are exactly the eigenfunctions of K.

In practice it is hard to work directly with the N-P operator on L2(Γ).
Instead, the following interpretation of the extremal solutions to Poincaré’s
variational problem is simpler and more flexible. This also goes back to
Poincaré’s memoir [34] , and it was constantly present in the works of po-
tential theory in the first decades of the twentieth century, cf. for instance
[33].

Let us start with an eigenfunction f ∈ L2(Γ) of the operator K∗. Then

K∗f = λf ⇒ KSf = SK∗f = λSf,

and by the jump formulas (6)

∂nSi
f =

1− λ

2
f, ∂nSe

f =
−1− λ

2
f.

The associated energies are

Ji[f ] =
∫

Ωi

|∇Sf |2dx =
1− λ

2
〈Sf, f〉,

Je[f ] =
∫

Ωe

|∇Sf |2dx =
1 + λ

2
〈Sf, f〉.

To verify our computations, simply note that
Je[f ]− Ji[f ]
Je[f ] + Ji[f ]

= λ.

The characteristic feature of the above single layer potential Sf is encoded
in the following statement.

Proposition 4.4. A pair of harmonic functions (hi, he) ∈ H represents
an extremal potential for Poincaré’s variational problem (distinct from the
equilibrium distribution) if and only if, there are non-zero constants α, β
such that

hi|Γ = αhe|Γ ∂nhi|Γ = β∂nhe|Γ. (24)
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Proof. For the proof we simply change he into αhe, and remark that this is
a single layer potential of a charge ρ. The second proportionality condition
implies, via the jump formulas, K∗Sρ = λSρ for a suitable λ. By the
injectivity of S we find Kρ = λρ, and the general symmetrization framework
implies ρ ∈ W 1/2(Γ). ¤

Note that in the above proof we could as well renormalize the normal
derivatives and assume that (βhi, he) is a double layer potential of a density
f ∈ W 1/2(Γ) which turns out to be an eigenfunction of the N-P operator K.

5. Schiffer’s operator

The operator angle, in the Hilbert space H of potentials, between the
subspace of single layer potentials and that of elements supported by Ω can
also be computed as Pi(Pd − Pe)Pi. In dimension two, a recapturing of
the latter as a singular integral operator, was studied by M. Schiffer and S.
Bergman [3, 40, 41]. We present below a general d-dimensional construction
of an integral operator acting on harmonic fields as Pi(Pd − Pe)Pi. This
justifies the title of the section.

Our first aim is to link, in arbitrary dimension, Pi(Pd−Pe)Pi to a bound-
ary operator.

Let f ∈ W 1/2(Γ) and g ∈ W−1/2(Γ), and assume that

De
f + Se

g = 0.

By passing to boundary values,
1
2
f − 1

2
Kf + Sg = 0. (25)

In other terms
Sg ∈ ran(I −K) = ker(I −K∗)⊥.

But we know that the density g0 of the equilibrium distribution satisfies
Sg0 = 1, the constants are the only elements in ker(I −K) and that (I −
K)S = S(I − K∗). Whence ker(I − K∗) = Cg0. Thus equation (25) has
a solution if and only if 〈g,1〉 =

∫
gdσ = 0. Then we can write f =

2(K− I)−1Sg, based on the observation that (I−K) : 1⊥ −→ ran(I−K) is
an invertible operator. By these orthogonality assumptions we can assume
without loss of generality that both functions f, g have real values. Then,
using one more time the assumption De

f + Se
g = 0, the jump formulas (6)

and (25) we find

〈(Pd − Ps)(Df + Sg), Df + Sg〉H =
∫

Ω
∇(Df − Sg) · ∇(Df + Sg)dx =

∫

Γ
(Di

f−Si
g)∂n(Di

f +Si
g)dσ =

∫

Γ
(−1

2
f−1

2
Kf−Sg)∂n(Di

f +Si
g−De

f−Se
g)dσ =

−
∫

Γ
Kfgdσ.
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Similarly,

‖Df + Sg‖2
H =

∫

Ω
|∇(Df + Sg)|2dx = −

∫

Γ
fgdσ.

We have arrived at the following isometric identification.

Lemma 5.1. Let h ∈ H be an element supported by the inner domain, i.e.
he = 0. Decompose h = Df + Sg, f ∈ W 1/2(Γ), g ∈ W−1/2(Γ). Then
g, f ⊥ 1, (I −K)−1Sg is well defined, and

〈(Pd − Ps)h, h〉H
‖h‖2

H

=
〈K(I −K)−1Sg, g〉2,Γ

〈(I −K)−1Sg, g〉2,Γ
. (26)

To put this into the abstract symmetrization scheme we have only to re-
place L2(Γ) by the codimension one subspace H = 1⊥ of vectors orthogonal
to the constants. The operator (I − K)−1S is strictly positive on H, and
can replace S in Proposition 3.2. However, in general, the operator K does
not leave H invariant. To correct this we consider the orthogonal projection
PH of K onto H and the compression K1 = PHKPH of K; then

K1(I −K)−1S = (I −K)−1SK∗
1 .

Indeed, start with f, g ∈ H satisfying f = (I −K)−1Sg, that is (I −K)f =
Sg. Then (I−K)Kf = KSg = SK∗g, or equivalently (I−K)K1f = SK∗

1g,
which is the relation to be proved.

The following analogue of Poincaré’s principle holds.

Theorem 5.2. Let Ω ⊂ Rd be a bounded domain with smooth boundary.
Let Ps, Pd denote the orthogonal projections of the energy space H onto the
subspace of single, respectively double layer potentials. Let Hi be the subspace
of functions vanishing on the complement of Ω.

Define successively, as long as the maximum is positive, the energy quo-
tients

λ+
k = max

h∈Hi

h⊥{h+
1 ,...,h+

k−1}

〈(Pd − Ps)h, h〉Hi

‖h‖2
Hi

. (27)

Then the maximum is attained at an element h+
k ∈ Hi.

Similarly, define

λ−k = min
h∈Hi

h⊥{h−1 ,...,h−k−1}

〈(Pd − Ps)h, h〉Hi

‖h‖2
Hi

. (28)

The minimum is attained at h−k ∈ Hi.

Exactly as before, the link to the operator K is very simple.

Corollary 5.3. In the conditions of the Theorem, the spectrum of the
Neumann-Poincaré operator K consists, including mutiplicities, of {λ±k ; k ≥
1} together with the points {0, 1}.
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Remark that the eigenvalue λ+
0 = 1 cannot be detected by the above vari-

ational scheme. This is due to the fact that the corresponding eigenfunction
1 of K cannot satisfy the compatibility condition −1

2 1 + 1
2K1 − Sg = 0,

(which would mean g = 0). This scenario would produce the pair (1, 0) of
zero total energy.

The extremal solutions to the above problem are precisely

h±k = Su±k
+ Dg±k

,

where
Kg±k = λ±k g±k ,

and
2Su±k = (1− λ±k )g±k .

Next we describe a realization of the abstract angle operator Pi(Pd−Ps)Pi.
To this aim we consider an arbitrary element h ∈ H and its harmonic field
∇h ∈ L2(Rd, dx). We define, for points x ∈ Ω

Π(∇h)(x) = p.v.∇x

∫

Rd

∇yE(x, y) · ∇yhdy. (29)

Lemma 5.4. The operator Π acts as follows:

Π(∇Sg)(x) = −∇Sg(x), Π(∇Df )(x) = 0,

whenever x ∈ Ω, f ∈ W 1/2(Γ), g ∈ W−1/2(Γ).

Proof. Let x ∈ Ω and choose ε > 0 small enough so that the closed ball
Bε(x) is contained in Ω. Denote by Ωε = Ω \Bε(x). Let f, g be densities as
in the statement. By a repeated use of Green’s formula and Gauss’ mean
value theorem on the sphere |x− y| = ε we obtain:∫

Ωε∪Ωe

∇yE(x, y) · ∇ySg(y)dy =

−
∫

Ωe

Sg(y)∆E(x− y)dy −
∫

Γ
Sg(y)(∂e

n − ∂i
n)E(x, y)dσ(y)

−
∫

Ωε

Sg(y)∆E(x− y)dy −
∫

|x−y|=ε
Sg(y)∂nE(x− y)dσ(y) =

−Sg(x).
Thus Π(∇Sg)(x) = −∇Sg(x).

We proceed similarly for double layer potentials:∫

Ωε∪Ωe

∇yE(x, y) · ∇yDf (y)dy =

−
∫

Γ
E(x, y)∂e

nDf (y)dσ(y) +
∫

Γ
E(x, y)∂i

nDf (y)dσ(y)

+
∫

|x−y|=ε
E(x− y)∂nDf (y)dσ(y) =
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E(ε)
∫

|x−y|=ε
∂nDf (y)dσ(y) = 0.

¤
In order to properly define our angle operator on harmonic fields we con-

sider the analogue of the Bergman space in Ω:

B(Ω) = {∇u; ∆u = 0 in Ω, ‖∇u‖2,Ω < ∞}.
It is a Hilbert space of vector valued functions. We also define

TΩ : B(Ω) −→ B(Ω),

by
TΩ(∇u)(x) = (I + 2Π)(∇u, 0)(x), x ∈ Ω.

Recall that every element (u, 0) ∈ H can be expressed as (u, 0) = Df + Sg.
Thus, for such a pair

TΩ∇(Df + Sg) = ∇(Df − Sg) ∈ B(Ω).

Moreover, the computations at the beginning of this section yield the fol-
lowing result.

Proposition 5.5. The linear operator TΩ : B(Ω) −→ B(Ω) is compact and
its spectrum coincides with the spectrum of the Neumann-Poincaré operator,
with the exception of the point 1.

Proof. For the proof we have only to observe the validity of the identity

〈TΩ(∇u),∇u〉
‖∇u‖2

=
〈K1(I −K)−1Sg, g〉2,Γ

〈(I −K)−1Sg, g〉2,Γ
,

where (u, 0) = Df + Sg.
The point 1 is missing from the spectrum of TΩ because (u, 0) = Sg + Df

imples f, g ∈ H, that is f, g ⊥ 1 and the compression of K to the space H
eliminates the point 1 from the spectrum, cf. the text following (26).

¤
Since the operator TΩ is invariant under homotheties x 7→ tx, t > 0, we

deduce that the spectrum of the Neumann-Poincaré operator associated to
a domain Ω is invariant under all shape preserving transformations (i.e.,
translations, rotations and homotheties) of Ω.

6. Neumann-Poincaré’s operator in two dimensions

The natural connection to complex analytic functions provides a better
understanding of the spectral analysis of the Neumann-Poincaré operator in
two dimensions. There are a few specific two dimensional phenomena, whose
discovery goes back to the works of Ahlfors [1] , Bergman [2, 3], Plemelj [33],
Schiffer [40, 41] and Springer [43]. This section is devoted to the proofs of
some of the specifically two dimensional results which are related to the
main theme of the present article. We do not aim at completeness, and for
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example we do not discuss the link between the eigenvalues of the Neumann-
Poincaré operator and quasiconformal mappings. These and other results
are well exposed in the aforementioned works. On the other side none of
these papers emphasizes on the relationship between the spectrum of the
N-P operator and Poincaré’s extremum problem, the focus of the present
study.

We return to the notation introduced in the preliminaries, with some
specific adaptations to dimension two: Γ is a C2-smooth Jordan curve, sur-
rounding the domain Ω ⊂ C, and having Ωe as exterior domain. We denote
by z, w, ζ, ... the complex coordinate in C and by ∂z = ∂

∂z the Cauchy Rie-
mann operator, and so on. The area measure will be denoted dA. The space
H consists of (real-valued) harmonic functions h on C\Γ having square sum-
mable gradients:

h ∈ H ⇔
∫

Ω∪Ωe

| ∂zh(z)|2dA(z) < ∞, h(∞) = 0.

Note that the gradients ∂zh are now square summable complex anti-analytic
functions. In other terms, in our notation B(Ω) is the complex conjugate of
the Bergman space A2(Ω) of Ω.

The single and double layer potentials are in this case strongly related to
Cauchy’s integral. For instance,

(Kf)(z) =
∫

Γ
f(ζ)Re [

dζ

2πi(ζ − z)
] =

1
2π

∫

Γ
f(ζ) d arg(ζ − z),

see [15].
The following complex antilinear singular integral operator plays the role

of the symmetry Pd − Ps in our notation. Let F = ∇Sf , f ∈ W 1/2(Γ), be
regarded as a single anti-analytic function defined on all Ω∪Ωe. Define the
Hilbert (sometimes called Beurling) transform

(TF )(z) = p.v.
1
π

∫

Ω∪Ωe

F (ζ)
(ζ − z)2

dA(ζ) (30)

Lemma 6.1. Let h ∈ H be represented as h = Df + Sg, f ∈ W 1/2(Γ), g ∈
W−1/2(Γ). Then

T∇(Df + Sg) = ∇(Df − Sg). (31)

The proof is very similar to the proof of Lemma 5.4 and we omit it. In
other terms, returning to our old notation:

T∇h = ∇(Pd − Ps)h, h ∈ H.

In particular we note the following simple but important fact.

Corollary 6.2. The antilinear transform T is an isometric isomorphism of
the space B(Ω)⊕B(Ωe) onto itself.

By repeating the definitions of the last section we set

TΩ : B(Ω) −→ B(Ω), TΩ(F )(z) = T (F, 0)(z), z ∈ Ω,
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where (F, 0) means the extension of F ∈ A2(Ω) by zero on Ωe. Thus the
operator TΩ and the one described above coincide as linear transformations
over the real field. Consequently we have proved the following result. For
convenience we state it for analytic functions, rather than their complex con-
jugates. The correspondence between one space and another is an obvious
isometry.

Theorem 6.3. Let Ω be a bounded planar domain with C2 smooth boundary
and let TΩ : A2(Ω) −→ A2(Ω) be the antilinear operator

[TΩf ](z) = p.v.
1
π

∫

Ω

f(ζ)
(ζ − z)2

dA(ζ), f ∈ A2(Ω), z ∈ Ω.

Then TΩ is compact and the eigenvalues of the antilinear eigenvalue prob-
lem

TΩfk = λkfk

coincide (multiplicities included) with the spectrum of the Neumann-Poincaré
operator, except the eigenvalue 1. The eigenfunctions (fk) are orthogonal
and complete in A2(Ω).

As a matter of fact we know more, namely the isometric identification

〈TΩ(∇u),∇u〉Ω
‖∇u‖2

Ω

=
〈K1(I −K)−1Sg, g〉2,Γ

〈(I −K)−1Sg, g〉2,Γ
,

where this time we work with antianalytic functions ∇(u), with u ∈ H. The
reader can easily transform this into an identity for the associated operator
acting on the Bergman space.

This, and the symmetrization construction yield

‖TΩ‖ = λ+
1 (32)

where λ+
1 is the largest eigenvalue of K less than 1.

Note the ambiguity of phase in the eigenvalue problem TΩf = λf . By
multiplying f by a complex number τ of modulus one, the complex antilin-
earity of TΩ implies TΩf = τ2λf. On the other hand, we have identified T
with an R-linear operator (Pd − Ps) acting on gradients of real harmonic
functions. This simple observation leads to the following characteristic sym-
metry of the Neumann-Poincaré operator specific for two variables.

Proposition 6.4. Let Γ ⊂ R2 be a C2-smooth Jordan curve. Then, ex-
cept the point 1, the spectrum of the Neumann-Poincaré operator acting
on L2(Γ) is symmetric with respect to the origin, multiplicities included:
λ ∈ σ(K), λ < 1 if and only if −λ ∈ σ(K).

Proof. Let λ ∈ σ(K)\{1} and let (u, 0) ∈ H be the associated eigenfunction
of the operator Pi(Pd −Pe)Pi, cf. Proposition 5.5. By the above correspon-
dence there exists an anti-analytic function F = ∂zu satisfying TΩF = λF .
Let G = iF and remark that the antilinearity of TΩ implies TΩG = −λG.
Remark also that G = ∂zũ, where ũ is the harmonic conjugate of u. Thus,
the eigenvector in H corresponding to the eigenvalue −λ is simply (ũ, 0). ¤
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The eigenvalue 1 does not have a companion, see Example 8.1.
Another symmetry is available from the above framework.

Proposition 6.5. Let Ω be a bounded planar domain with C2-smooth bound-
ary and let Ωe be the exterior domain. Then the Bergman space operators
TΩ and TΩe have equal spectra.

Proof. Let (F, 0) be an eigenvector of TΩ, corresponding to the eigenvalue λ.
Denote T (F, 0) = (λF,G). Since T 2 = I we get (F, 0) = λT (F, 0)+T (0, G) =
(λ2F, λG) + T (0, G). Thus T (0, G) = ((1 − λ2)F,−λG). This means −λ ∈
σ(TΩe) and by the preceding symmetry principle λ ∈ σ(TΩe). ¤

7. Qualitative analysis of the Neumann-Poincaré operator

The present section is devoted to a few aspects of spectral analysis of the
Neumann-Poincaré operator, obtained via Poincaré’s variational principles.

Our first aim is to prove the existence of a domain in R3 which carries a
negative spectrum (of the associated N-P operator), arbitrarily close to −1.
This infirms Poincaré’s guess, based on the case of a ball, that the spectrum
of spatial bodies is always non-negative. We start by constructing a couple
of cut-off functions.

Lemma 7.1. For every positive δ there exists an odd C∞-function ψ : R −→
R, such that

ψ(t) = t, t ∈ [−1, 1],
∫

|t|>1
|ψ′(t)|2dt < δ,

lim±t→∞ψ(t) = ±1.

Proof. Let Λ be a positive constant. Choose, for t > 1

ψ(t) = 1 + (t− 1)e−Λ2(t−1)2 .

Then
ψ′(t) = e−Λ2(t−1)2 [1− 2(t− 1)2Λ2],

and the conditions in the statement are met for Λ sufficiently large. ¤

Lemma 7.2. Given r > 1 there exists a function φ : R −→ [0,∞), such
that

φ(x) =

{
1 |x| ≤ 1,

0 |x| ≥ r2

and ∫ ∞

−∞
φ′(x)2dx =

C

r2 − 1
,

for a universal constant C.
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Proof. Let χ be a smooth function satisfying χ(x) = 1 for x < 0 and χ(x) =
0 for x ≥ 1. Define

φ(x) =

{
1 |x| ≤ 1,

χ(| x−1
r2−1

|), |x| ≥ 1.

Then
φ′(x) =

1
r2 − 1

χ′(
x− 1
r2 − 1

), x > 1,

and similary for x < −1. A change of variable in the integral will prove the
statement. ¤
Theorem 7.3. There exists a bounded domain with smooth boundary such
that its Neumann-Poincaré operator has negtive spectrum, arbitrarily close
to −1.

Proof. Fix a small positive ε and consider the cylinder

G = {(x, y, z); x2 + y2 < 1, |z| < ε}.
We will approximate G arbitrarily close from inside by a domain Ω with
smooth boundary. For instance Ω can be an ellipsoid of revolution. The dis-
tribution u which will produce a negative spectrum is given on the boundary
Γ of Ω by the function

u(x, y, z) = φ(x2 + y2)ψ(z/ε),

where the functions φ, ψ are those constructed in the previous lemmas, with
parameters to be determined in the course of the proof.

Note that for (x, y, z) ∈ Ω the function u(x, y, z) = z/ε is harmonic. Thus

J [u] =
∫

Ω
|∇u|2dxdydz.

Since the domain Ω was chosen close enough to the cylinder G, the energy
J [u] can be made arbitrarily close to

J [u] ≈
∫

G
|∇(u)|2dxdydz = π

∫ ε

−ε

1
ε
|ψ′(z

ε
)|2d(

z

ε
) =

2π

ε
.

By abuse of notation we will not carry below this approximation.
To estimate the energy of the field outside the domain, although the

function u is not harmonic there, in virtue of Dirichlet’s principle

J ′[u] := Je[u] ≤
∫

Ωe

|∇(u)|2dxdydz ≈
∫

Ge

|∇(u)|2dxdydz.

It will be simpler to estimate the total energy, starting from the particular
form of the function u:

J [u] + J ′[u] ≤ 2π

∫ r

1
4ρ2φ′(ρ2)2ρdρ .

∫ ∞

−∞
|ψ(

z

ε
)|2dz+

2π

∫ r

0
φ(ρ2)2ρdρ .

∫ ∞

−∞

1
ε
|ψ′(z

ε
)|2d(

z

ε
).
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Next we denote by C > 0 a generic universal constant. According to our
lemmas,

J [u] + J ′[u] ≤ C

r2 − 1
+ πr2

{∫ ε

−ε
+

∫

|z|>ε

}
1
ε
|ψ′(z

ε
)|2d(

z

ε
) ≤

C

r2 − 1
+ πr2 2

ε
+ πr2 δ

ε
=

C

r2 − 1
+ π(r2 − 1)

2
ε

+ J [u] + πr2 δ

ε
.

We choose δ =
√

ε, r2 − 1 =
√

ε, and obtain

J [u] + J ′[u] ≤ J [u] +
C√
ε
,

and finally

J ′[u] ≤ C√
ε

= J [u]C
√

ε.

This proves that the distribution u on the boundary of Ω produces an
arbitrarily small energy ratio J ′[u]/J [u]. According to Poincaré’s principle,
the associated N-P operator has then a point in the spectrum arbitrarily
close to the value −1. ¤

The above proof has a plausible physical interpretation: If a condenser
consisting of two neighboring parallel plates is charged by placing large
charges of equal magnitude and opposite signs on the plates, most of the
energy of the resulting field is in the space between the plates.

The next result complements the previous example.

Theorem 7.4. Let Ω be a domain with smooth boundary Γ in R3. Then,
there exists a positive constant c such that, if λ is an eigenvalue of the
Neumann-Poincaré operator associated to Ω with λ < −1 + c and f a cor-
responding eigenfunction, f takes both positive and negative values on ∂Ω.
The constant c can be chosen uniformly for all domains Ω with C2 boundary
having uniformly bounded principal curvatures.

Proof. We use c1, c2, ... to denote positive numerical constants. The proof
is by contradiction. Suppose then that f is a non-negative eigenfunction
associated to eigenvalue λ < −1 + c. We’ll show that for small c this leads
to a contradiction. We may assume w.l.o.g. that∫

Γ
fdσ = 1. (33)

We first show
J [f ] ≤ c1. (34)

Indeed, we have λf(x) =
∫
Γ K(x, y)f(y)dσ(y), where K denotes the Neu-

mann - Poincaré kernel. By iteration we get

λ3f(x) =
∫

Γ
K3(x, y)f(y)dσ(y) (35)
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where K3 is the third iterate of K. It is known that |K3(x, y)| ≤ c2 on Γ×Γ
(see [15] ). Hence, in view of (35), and since |λ| cannot be small due to our
assumption,

f(x) ≤ c3, x ∈ Γ. (36)
This immediately implies (34) .

To proceed with the proof, note that we may (and do) assume Ω is con-
tained in the ball B1/2 (where BR denotes the ball of radius R centered at
0). Let F be the function on ∂B1 such that the measure Fdσ is the balayage
of fdσ . Then, P (x, y) denoting Poisson’s kernel for the unit ball (where x
is in B1 and y in ∂B1 ),

F (y) =
∫

Γ
P (x, y)f(x)dσ(x).

Since P (x, y) ≥ c4 for |x| ≤ 1/2 (and hence for x in ∂Ω) this implies

F (y) ≥ c4, y ∈ ∂B1. (37)

Let h denote the function identically equal to 1 on ∂B1. It is important to
stress that h is a multiple of the equilibrium potential and J(h) > 0. Since
F ≥ c4h, we have J [F ] ≥ (c4)2I[h] ( the energy functional is monotonic for
positive charges) , and so

J [F ] ≥ c5. (38)
Now, from (38) follows that, for the electrostatic field in R3 engendered

by F , the part in the exterior of B1 has energy greater than (1/2)c5 (this is
a consequence of the theory of Poincaré’s variational problem for the ball,
as presented in Section 8.2). Since F arises from f via balayage, this is
identical (outside B1) with the field due to f , and so, a fortiori , the energy
Je[f ] of the field due to f outside Ω is not less than (1/2)c5 =: c6. Recall
now from (34) that J [f ] ≤ c1. Since

λ =
Je[f ]− Ji[f ]
Je[f ] + Ji[f ]

= 2
Je[f ]
J [f ]

− 1 ≥ 2(c6/c1)− 1 = c7 − 1,

whereas we assumed λ < −1 + c. This is a contradiction for c = c7, and the
proof is concluded. ¤

Remark. By a similar argument one can show e.g. if f, g are eigen-
functions each associated to some eigenvalue in the range (−1,−1+ c), then
every nontrivial linear combination of f and g changes sign, and the same
is true for more eigenfunctions.

Our next goal is by applying some standard approximation theory to the
N-P operator, to ”glue” two domains into a one, without distorting too much
finitely many points of the union of the two spectra. The precise statement
follows.

Theorem 7.5. Let Ω1, Ω2 ⊂ Rd be two bounded domains with smooth
boundary. Let Fi ⊂ σ(Ki) \ {0}, i = 1, 2, be two disjoint finite sets in the
spectra of the corresponding N-P operators.
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For a given ε > 0, there exists a bounded domain Ω with smooth boundary
and associated N-P operator K such that for every λ ∈ F1 ∪ F2,

dist(λ, σ(K)) < ε.

If the point λ has multiplicity m, then the ball B(λ, ε) contains exactly m
points of σ(K), counting multiplicities.

Proof. We will base our reasoning on the following known fact: If T ∈
L(H) is a linear bounded operator, acting on a Hilbert space, and λ is an
isolated point of its spectrum of finite multiplicity m, then for every small
ε > 0 there exists a positive δ such that, whenever an operator S ∈ L(H)
satisfies ‖S−T‖ < δ, the spectrum of S contains exactly m points (counting
multiplicities) in the disk centered at λ and having radius ε. A possible proof
can be derived from counting the poles of the resolvent (z − S)−1 along the
fixed contour |z − λ| < ε, see for instance [12].

We start with the two domains Ω1,2 and the given finite sets of spectral
points F1,2. We know that a translation of the domain will not change the
spectrum of the N-P operator. Let Ω2 + Ra be such a translation, with
unit vector a fixed and large parameter R. We join the boundary of Ω1 to
that of Ω2 + Ra by a smooth curve γ and consider a tubular neighborhood
U of γ whose width η will be chosen sufficiently small. The result of these
operations, plus a local smoothing of the intersection of the boundaries of
the these sets, is the domain

Ω ≈ Ω1 ∪ U ∪ (Ω2 + Ra).

We work first on the Lebesgue space L2(∂Ω), and consider there the
N-P operator K associated to Ω. Let Γ1(η) = ∂Ω1 \ U be the part of the
boundary of Ω1 which does not intersect the (smooth) joint with the tubular
neighborhood U . The multiplication by the characteristic function of the
set Γ1(η) defines a self-adjoint projector, denoted P1(η), acting on L2(∂Ω).

On the other hand, the boundary ∂Ω1 carries a Lebesgue space, the N-P
operator K1 and the same cut-off projector by the characteristic function of
Γ1(η), still denoted P1(η). Moreover, the isometric identification

‖P1(η)f‖∂Ω = ‖P1(η)f‖∂Ω1 ,

holds. Note that the projectors P1(η) converge strongly to the identity of
L2(∂Ω1) when η converges to zero. Since the operator K1 is compact, the
following norm convergence

lim
η→0

‖K1 − P1(η)K1P1(η)‖ = 0,

is true.
As a conclusion of these computations, and the general approximation

principle stated at the beginning of the proof, we find that for η sufficiently
small the spectrum of P1(η)K1P1(η) approaches within distance ε the given
finite part F1 of the spectrum of K1. Similarly, the projection P2(η) does
the same service on the boundary of Ω2 + Ra.
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Thus, the two ”corners” P1(η)KP1(η) and P2(η)KP2(η) of the N-P oper-
ator of Ω have spectra in an ε neighborhood of the given set F1 ∪ F2.

Next we use Poincaré’s theorem, asserting that the spectrum of K can
equally be computed via the energy form 〈SK∗f, f〉 = 〈KSf, f〉, and the
freedom to choose the translation parameter R large. Indeed,

lim
R→∞

〈SP1(η)f, P2(η)〉 = 0

for every pair of functions f, g ∈ L2(∂Ω). Likewise, using the energy norm
interpretation of the boundary scalar product 〈Sf, f〉 we infer

lim
η→0

〈S(P1(η) + P2(η))f, f〉 = ‖f‖2.

Since the operator K is compact, we deduce that the differences

KS − (P1(η)KSP1(η)⊕ P2(η)KSP2(η))

and
[K − (P1(η)KP1(η)⊕ P2(η)KP2(η))]S

tend to zero uniformly, as soon as R becomes large and η small.
Thus, the spectrum of K can be approximated in the specified sense by

the spectrum of P1(η)KP1(η) ⊕ P2(η)KP2(η) and this completes the proof
of the theorem. ¤

Knowing that there are domains with negative spectrum as close to −1 as
we desire, and the example of the unit ball (see Section 8.2), the preceding
theorem shows that there are domains in Rd with at least as many finite
negative and finite positive eigenvalues as one desires.

8. Examples

8.1. The equilibrium distribution. The notations are those adapted in
the preliminaries. Let (1, h) ∈ H be a single layer potential of the equilibrium
distribution ρ ∈ W−1/2(Γ). Then by taking boundary values along Γ we find:

Si
ρ = Se

ρ = 1, 0 = 2∂nSi
ρ = ρ−K∗ρ.

Therefore
K1 = KSρ = SK∗ρ = Sρ = 1.

If another function f ∈ W 1/2(Γ) satisfies Kf = f , then there exists
ξ ∈ W−1/2(Γ) such that Sξ = f and by reversing the above identities we
find K∗ξ = ξ, that is Sξ produces zero energy inside Ω, hence it is a constant
function. But this will imply that ξ is a scalar multiple of the equilibrium
distribution.

Thus, for any closed smooth surface Γ, dim ker(K − I) = 1. On the other
hand, always ker(K + I) = 0.

Indeed, assume that Kξ + ξ = 0. That means K∗Sξ + Sξ = 0, that is
∂nSe

ξ = 0, which means that the field ∇Sξ has zero energy on Ωe. Thus
Se

ξ = 0 which implies ξ = 0.
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8.2. The ball in Rd. The complete solution of Poincaré’s variational prob-
lem for the unit ball in R3 was given by Poincaré [34] . As this example
is very important for our purposes let us briefly present it. We confine our
attention to dimension d = 3, the cases d > 3 being analogous (there are
however some anomalous aspects for d = 2).

In this section B denotes the unit ball in R3 and Γ its boundary. Let
k be a non-negative integer, and denote by Hk the set of of homogeneous
polynomials of degree n which satisfy the Laplace equation (augmented by 0,
to make it a vector space). The dimension of Hk is 2k +1, cf. [15]. For each
F in Hk we can write F (x) = rkf(y) where r = |x| := [

∑
(xi)2]1/2, y := x/r

is a point of Γ, and f is a function on Γ, a so-called spherical harmonic of
order k. Since F (x)/rk+1 is harmonic in Be (the exterior of Γ), the pair
ui := rkf(y) and ue := r−k−1f(y) fit together continuously across Γ to form
the (single layer) potential of a charge g on Γ. If n = ny denotes the outer
normal to Γ at y, we have

∂ui

∂n
= kf(y),

∂ue

∂n
= −(k + 1)f(y), along Γ.

Thus g(y) = (2k+1)f(y). For the field due to g, the part in B has energy
equal to the integral of (∂nui)g over Γ, that is k(2k + 1)

∫
Γ f2dσ, while the

part in Be has energy (k+1)(2k+1)
∫
Γ f2dσ. Each of the pairs (ui, ue) so ob-

tained is an extremal for the Poincaré problem insofar as the normal deriva-
tives are proportional on Γ. The associated Neumann - Poincaré eigenvalue
equals the ratio (with notations as earlier) (J ′ − J)/(J ′ + J) = 1/(2k + 1).
To summarize:

The eigenvalues are the set {1, 1/3, 1/5, ...} , and to the eigenvalue
1/(2k+1) belongs an eigenspace of dimension 2k+1 consisting of all spherical
harmonics of order k.

Since these eigenfunctions already span L2(Γ) there can be no other eigen-
values. In particular the spectral point 0 of the Neumann - Poincaré opera-
tor is not an eigenvalue , i.e. the Neumann - Poincaré’ integral operator is
injective in this case. Also, this can be seen at once since K = 1

2S, see [7].
Observe also the remarkable consequence that for any charge of finite

energy on Γ, the ratio of the energy of its field outside Γ to that of its field
inside Γ exceeds 1/2 , and the value 1/2 here is the largest possible.

The identity K = 1
2S also shows that the operator K does not satisfy

the strongest S-symmetrization condition, namely that of possessing a con-
tinuous kernel (i.e. K = LS with L compact), in the terminology of Krein
[20].

The explicit spectral picture above implies that the N-P operator of the
ball in Rd, d ≥ 3, is not trace-class. It would be interesting to decide
whether there are domains with trace-class N-P operator.

For the disk in R2 a degeneracy occurs: For each k > 0, the space of
”spherical harmonics” of order k is 2 - dimensional, spanned by sin(kt) and
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cos(kt) , where t is an angle variable along the unit circle, and for each f in
the codimension one span of these, the field it engenders has equal energies
inside and outside the unit circle. Here the Neumann - Poincaré operator
has rank one. It is known [39] that the disk is the only planar domain for
which the N - P operator has finite rank. It is not known whether there are
such domains in higher dimensions.

Another characteristic property of the ball is discussed below.

Theorem 8.1. The following is true: for a ball in Rd the N - P kernel is
symmetric, and balls are the only domains with this property.

Proof. For the proof let us confine attention to (smoothly bounded) domains
in R3. The argument is nearly identical in all dimensions. Apart from a
constant of normalization the kernel in question is

K(x, y) =
(x− y) · n(y)
‖x− y‖3

, x, y ∈ Γ,

where C denotes the boundary of the domain Ω under consideration, and
n(y) denotes the unit outer normal to Γ at y. The symmetry of K means

(x− y) · n(y) = (y − x) · n(x), for all x, y ∈ Γ,

i.e.
(*)For any two distinct points x, y of Γ the vector sum of the unit outer

normals to Γ at x and y is perpendicular to the chord joining x and y.
It is easy to check that spheres enjoy this property, so let us turn to the

converse. Assume Γ has property (*). We shall show it is a sphere. First
note the following two immediate consequences of (*):

(i) If the normal to Γ at some point has other intersections with Γ, it
coincides with the normal at each of those points.

(ii) If the normals to Γ at two distinct points x, y intersect at a point z,
the distances of z from x and y are equal. (Indeed , it follows from (*) that
the triangle formed by x, y, z is isosceles, having equal angles at x and y.)

We now conclude the proof that Γ is a sphere. Let x be any point inside
Γ, and y a point of Γ at minimal distance from x. The line L joining y to
x is orthogonal to Γ at y, and meets Γ in another point z distinct from y ,
where again it is orthogonal to Γ, by (i). Let now w denote the midpoint of
the chord joining y and z. We claim Γ is a sphere centered at w, with radius
r equal to half the length of the chord joining y and z. Indeed, suppose
there is a point of Γ at distance from w unequal to r, say greater than r.
Then a point u exists on Γ at maximal distance s from w, where s > r. A
moment’s thought implies that u cannot be collinear with w and z, and the
line joining w to u meets Γ orthogonally. Hence (ii) applies, and yields that
w is equidistant from z and u, which is a contradiction. This concludes the
proof. ¤

Remarks. It may be of some interest to try to characterize those do-
mains whose N - P kernel satisfies various weaker symmetry assumptions,
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such as:

a) K is symmetric ”modulo rank 1” , i.e. it is a symmetric kernel plus a
”perturbation” of the form a(x)b(y).

b) The iterated (or, m times iterated) kernel associated to K is symmetric.

Yet another aspect of symmetrization of the kernel (in two dimensions)
based on change of independent variable, was discussed in an interesting
paper [10] by D. Gaier.

8.3. The ellipse. An analysis of the single and double layer potential op-
erators on an ellipse goes back to Neumann [31]. The computations, also
reproduced in the book by Plemelj [33], start with the elliptical coordinates:

x(t) = E cosh ρ cos t, y(t) = E sinh ρ sin t,

where ρ and E are positive parameters. The half axes of the ellipse are

a = E cosh ρ, b = E sinh ρ.

Let

q = e−2ρ =
a− b

a + b
< 1

be the eccentricity of the ellipse. For two points z(t) = (x(t), y(t)), z(s) =
(x(s), y(s)) on the ellipse one computes by elementary means

arg(z(t)− z(s)) = arctan
y(t)− y(s)
x(t)− x(s)

=
s + t + π

2
+

∞∑

k=1

qk

k
sin k(s + t),

and

log |z(t)− z(s)| = log |(a + b) sin
s− t

2
| −

∞∑

k=1

qk

k
sin k(s + t).

By differentiation one identifies the kernel K(s, t) of the Neumann-Poincaré
operator:

K(s, t) = 1 + 2
∞∑

k=1

qk cos k(s + t).

From here, the spectrum can be identified by standard Fourier methods.

Proposition 8.2. The spectrum of the Neumann-Poincaré operator on an
ellipse of eccentricity q < 1 is {±qk; k ≥ 1} ∪ {0, 1}.

The same conclusion was reached by Bergman and Schiffer [3] via the
operator TΩ, the associated L-kernel, and a conformal mapping on the com-
plement of the ellipse.



ON POINCARÉ’S VARIATIONAL PROBLEM IN POTENTIAL THEORY 39

8.4. Lemniscates. Let P denote a polynomial in one complex variable with
complex coefficients (of degree at least 1) and M a sufficiently large positive
number that the curve Γ = {z; |z| = M} encloses all the roots of P . We’ll
prove:

Theorem 8.3. The Neumann - Poincaré operator for the domain enclosed
by Γ has an infinite dimensional kernel.

Proof. It is no loss of generality to suppose M = 1. Write P = u+iv where u
and v are real harmonic polynomials. Then, on Γ we have u+iv = 1/(u−iv).
Therefore the pair of harmonic functions

u on Ω, u/(u2 + v2) on Ωe,

where Ω, Ωe denote respectively the interior and exterior domains deter-
mined by Γ, have matching boundary values on Γ. Together they constitute
the potential of a charge supported on Γ and having finite energy. As we
have seen, this charge is in the kernel of the N - P operator if and only if
the normal derivatives of these functions on Γ (w.r.t. say the outer normal
n) are everywhere negatives of each other, that is

∂nu + (u2 + v2)∂nu− u(2u∂nu + 2v∂nv) = 0 on Γ, (39)

or, simplifying
(1− u2)∂nu− uv∂nv = 0 on Γ.

Substituting 1− u2 = v2 and cancelling v, this becomes

v∂nu = u∂nv on Γ.

By virtue of the Cauchy - Riemann equations, ∂nu = ∂τv and ∂τu =
−∂nv, where τ denotes the unit tangent vector to Γ. Thus, the last equation
is equivalent to u∂τu+v∂τv = 0 along Γ. But, this is true, it is just the result
of differentiating u2 + v2 = 1 along Γ in the tangential direction. Since all
the steps are reversible, (39) is proved and the charge defined by the above
potential is indeed in the kernel. Applying the identical procedure, but
starting in turn with the polynomials P 2, P 3, P 4, ... we get infinitely many
elements in the kernel. These are linearly independent, since their potentials
all have different rates of decay at ∞. The theorem is proved. ¤

Remark. The multiplication trick at the end to get the infinite dimen-
sionality seems to have no counterpart in more than 2 dimensions. Although
the first part of the proof also was heavily dependent on two dimensional
features (harmonic conjugates and Cauchy - Riemann) it does not seem be-
yond credibility that an analogous example could be found in 3 or more
dimensions, i.e. an example where the kernel is nontrivial.

More precisely, calculations analogous to those above lead to the con-
clusion that a sufficient condition for existence of a domain in R3 with
non-injective N - P operator is the affirmative resolution of the following
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Hypothesis. There are three real polynomials p, q, r of 3 variables sat-
isfying the following conditions:

a) p is harmonic;
b) p, q, r have no common zero on R3;
c) s := p2 + q2 + r2 tends to ∞ at ∞;
d) p/s is harmonic;
e) Denoting by Ω a nonempty component of the set {s < 1} we have along

the surface ∂Ω the identity

∂np

p
=

∂nq

q
=

∂nr

r
.

One could presumably write a computer program to search for such a
triple among low degree polynomials.

Note that already for the disk the closure of the single layer potentials
which belong to kerK in the energy norm coincides with W 1/2 modulo con-
stants, i.e. with the subspace in W 1/2 consisting of all functions on the
circle with the mean value zero. This explains the painstaking caution one
must obey in the statement of Theorem 4.2: unlike for eigenfunctions corre-
sponding to nonzero eigenvalues one cannot really expect much additional
regularity, e.g. membership in W 1/2, for mass distributions χ for which
Sχ ∈ kerK.

Furthermore, for general lemniscates we still do not know whether the
closure of <Pn,=Pn, n = 1, 2, ... (cf. the notation in the proof of Theorem
8.3) covers all of kerK, i.e. whether the preimages of these functions with
respect to the operator S are dense in the space of all distributions χ ∈
W−1/2 such that Sχ ∈ kerK ( cf. Theorem 4.2).

Even less is known in higher dimensions. As we saw ( Section 8.1) in
the ball kerK = 0. We do not know any particular example of a bounded
domain in Rd with a nontrivial kerK, yet we strongly suspect that there are
such domains. For unbounded domains the situation is completely different,
e.g., for the half-space K is simply a trivial zero operator, so it is kernel is
all of L2.

Notations:
Ω is a bounded domain of Rd;

Ωi = Ω, Ωe = Rd \ Ω;

Γ = ∂Ω the boundary of Ω, assumed to be smooth of class at least C2;

dσ(s) the d− 1 volume measure on Γ;

n or ns = n(s) the outer (unit) normal to a point s ∈ Γ; ∂n = ∂
∂n

;

E(x) the fundamental solution to the Laplace operator ∆: −∆E = δ;
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(Sf)(x) =
∫
Γ

E(x− y)f(y)dσ(y) the single layer potential operator on L2(Γ);

Sρ(x) = ρy(E(x, y)), x ∈ Rd \ Γ, the single layer potential of a distribution ρ ∈ D′(Γ);

(Kf)(x) = −2
∫
Γ

∂n(y)E(x−y)f(y)dσ(y) the double layer potential operator on L2(Γ);

(Df )(x) = ρy(∂ny E(x, y)), x ∈ Rd \ Γ, the double layer potential of a distribution
ρ ∈ D′(Γ);

W s
F (U) = W s,2

F (U) the Sobolev space of order (s, 2), on the open set U , with supports
in F ;

H the Hilbert space of pairs h = (hi, he)of harmonic functions in Ωi, Ωe with norm
‖(hi, he)‖2H =

∫
Ωi
|∇hi|2dx +

∫
Ωe
|∇he|2dx;

J [h] = Ji[h] =
∫
Ωi
|∇hi|2dx, J ′[h] = Je[h] =

∫
Ωe
|∇he|2dx, the inner, respectively

outer, energies of the potential h;

S ⊕ D = H the orthogonal decomposition into the subspaces of single (respectively

double) layer potentials .
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