THE AVERAGE VOLUME OF A RANDOM
TETRAHEDRON IN A TETRAHEDRON.

JOHAN PHILIP

ABSTRACT. We calculate the average size of the volume of a ran-
dom tetrahedron inside a mother tetrahedron. The result is not
new, but the method is different from that of previous papers.

1. INTRODUCTION

Four points are generated at random inside a tetrahedron A. Let T
be the tetrahedron spanned by the random points. We shall consider
the random variable X = volume(T)/volume(A). Tt is well known that
any affine transformation will preserve the ratio X. This follows from
the fact that the volume scaling is constant for an affine transforma-
tion. The scale equals the determinant of the homogeneous part of the
transformation. This means that our results hold for any shape of the
tetrahedron A.

Various aspects of our problem have been considered in the field of
geometric probability, see e.g. [12]. J. J. Sylvester considered the plane
problem of a random triangle 7" in an arbitrary bounded convex set K
and posed the following problem: Determine the shape of K for which
the expected value k = F(X) is maximal and minimal. A first attempt
to solve the problem was published by M. W. Crofton in 1885. Wilhelm
Blaschke [3] proved in 1917 that 437?2 <K< %, where the minimum is
attained only when K is an ellipse and the maximum only when K is
a triangle. The upper and lower bounds of & only differ by about 13%.
It has been shown, [2] that k = L for K a square.

A. Renyi and R. Sulanke, [10] and [11], consider the area ratio when
the triangle T is replaced by the convex hull of n random points. They
obtain asymptotic estimates of  for large n and for various convex K.
H. A. Alikoski, [2], has given an expression for x when n = 3 and K
a regular r-polygon. We have given the whole probability distribution
of X for n = 3 and n = 4 and K a parallelogram, [8], and for K a
triangle, [9].

R. E. Miles, [7], generalizes the asymptotic estimates for K a circle
to higher dimensions. Using the formula of Renyi and Sulanke, [11],
C. Buchta and M. Reitzner, [4], deduce a formula for x for n > 4 in a
tetrahedron A. It is this x that we compute for n = 4 by a different
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method in this paper. The same x was also obtained by D. Mannion,
[6]. Our method is most like the one by Mannion. The value for a
random tetrahedron in a mother tetrahedron is

13 2

-2 ~ 017398,
A= 700 " To015 LT3

2. NOTATION AND FORMULATION.

As A, we shall use the tetrahedron that has its vertices in (0, 0,0),
(1,0,0), (0,1,0) and (0,0,1). We use a constant probability density in
A for generating 4 random points in A. The points will be denoted P
and have coordinates (z, yx, zx) for 1 < k < 4. Let T be the tetrahe-
dron spanned by the 4 points. We shall determine the expectation x
of the random variable X = volume(T)/volume(A).

The generated T spans a tetrahedron with sides parallell to the sides
of A. We shall call this spanned tetrahedron B the ’big’ tetrahedron.
The random variable X, that we study will be written as the product
of the two random variables

U = volume(T) /volume(B) and V = volume(B) /volume(A).

Roughly speaking, U describes the shape of 7" and V its size. We
shall show that U and V' are independent so that we can combine the
expectations of U and V to get E(X) = E(U) - E(V).

3. THE FOUR GEOMETRICAL CASES FOR CALCULATING E(U).

The way B is spanned by the four points gives rise to four cases:

(1) One point in a vertex, one on the opposite side and two interior

points,

(2) Two points on ’opposite’ edges and two interior,

(3) One point on an edge, two in ’opposite’ sides and one interior,

(4) One point in each side.

These four cases are pictured in Figures 1 to 4.

In Figure 1, Case 1, we have without loss of generality (WLOG)
chosen P; to be the point that sits in a vertex of B, and this vertex
is chosen to be the one nearest to the origin The point P, sits on the
opposite side and P, and P; are interior. In the other cases, the point
numbering and their positions have, WLOG, been chosen in a similar
way.

We shall show that the four cases occur with the probabilities p; =
%, Py = 56—5, p3 = %, and py = 5?—5, respectively. Compare table 1.

3.1. Calculation of p;. This case occurs when P; sits in a vertex,
chosen to be the origin, P, sits on the opposite side, and P, and P; are
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Case 1

FiGureE 1. The ’big’ tetrahedron in Case 1. P; in a
vertex, P, on the opposite side, P, and P; interior.

interior. This is described by the inequalities

z1 < x5,y <Yy, 20 < zj for 2 < j <4 and
T+t <zst+ys+zfor1 <k<.3

Start by calculating the conditional probability fi, that P, and P
sit in the tetrahedron defined by P; and P;. The factor 36 is (1/6) 2
where 1/6 is the volume of the tetrahedron integrated over

Ta+Ya+24—Y1—21 Tat+ya+z24—T2—21 Ta+Ya+24—T2—Y2
fia =36/ da?z/ dy?/ dzy

z1 Y1 21

Tatya+z4—yY1—21 Ta+Yya+z4—T3—21 T4+Ya+24—T3—Y3
/ dxg/ dy3/ 1d23

1 Y1 21

To get the probability, denoted p7i, that the points sit as described by
the inequalities above, fi4 shall be integrated over all possible positions
of P1 and P4
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case | P, | P | P35 | Py | pj E(U;) E(Uj2)

4 3 1
1 3 010 1 55 64 200
6 7 w2 1
2 2 0 0 2 55 | 144 2310 225
36 | 11 2 1
3 2 1 0 1 55 | 216 3465 216

9 | 23 | 2r® | 1
4 1 1 1 1 55 486+ 6237 216

TABLE 1. Giving, for each of the 4 cases, the number of
faces determined by each Py, their probability to occur,
the expectation of U; and the second moment of Uj.

1 1—x1 l-z1—y1
Y =36/ dacl/ dyl/ dz;
0 0 0
1-y1—=1 l1-z4—21 1-z4—ys 1
dx d dzy = —.
/wl 4/y1 y4/21 fiadzy 660

To get the probability p; for Case 1, p7 shall be multiplied by 4! which
is the number of ways the points can be numbered, though divided by
2! because the points P, and P3 enter the calculations in exactly the
same way. It shall also be multiplied by 4, which is the number of
vertices that P, can sit in. We get

3.2. Calculation of p,. This case occurs when P; sits on an edge,
which is chosen to be the vertical one, P, sits on the opposite edge,
and P, and P; are interior. This is described by the inequalities

z1 < x5, Y1 < yj, 24 < zj for all j and
T+ Y + 2 < x4+ ys + 24 for all k.
The calculation of fi4 is essentially the same as for p;, but the lower

bound z; is replaced by z;. The integration of fi4 is done in another
order
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Case 2

FiGUuRrE 2. The ’big’ tetrahedron in Case 2. P; on the
vertical edge, P, on the opposite edge, P, and Pj interior.

1 1—z1 1—z1—11 1-—y1—24
ps =36 / dx; / dyy / dz4 / dz,
0 0 0 1

1—xz4—24 T4t+Yys+z4—T1—Y1 1
d dzy = —.
/ Ya / fiadz 330

Y1 Z4

Like in the calculation of p, the points P, and P enter the calculations
in exactly the same way. The two opposite edges on which P, and P,
sit can be chosen in 3 ways. We get

_d 16
P2= 572 330 T 55

3.3. Calculation of p;. This case occurs when P; sits on an edge,
which is chosen to be the intersection of the horisontal and the slanting
side, P, and P; sit in the faces not determined by Pj, and P; is interior.
This is described by the inequalities
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Case 3

FiGure 3. The ’big’ tetrahedron in Case 3. P; on the
edge 1 +y; = 1, P, and P, on the non-adjacent sides
and P; interior.

s < 25,92 < yj, 21 < 2 for all j and
Tk +yr + 2 < x1 4+ Y1 + 21 for all k.

The integration is not split into two parts as above

1 1—x4 1—z4—y> l1—ya—21 l—z1—21
p; :362/ d.’E4/ dyg/ dzl/ d.’El/ dyl
0 0 0 T4 Y2
T1+Y1—y2 T1+Y1+21—Z2—Y2 T1+Y1—T4
/ dzs / dzy / dyy
T4 21 Y

2
T1+Y1+21—Ta—Y4 T1+Yy1—Y2
/ dzy / dxs
21 T4

/z1+y1—Z3 T1+Y1+21—Z3—Y3 1
dyg/ dZ3 = —.
vs 7 220
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Case 4

FIGURE 4. The ’big’ tetrahedron in Case 4. One point
on each side.

In this calculation, each point is treated in a particular way. The
edge on which P; sits can be chosen in 6 ways. We get

1 36

=246 — =2,
P2 220 ~ 55

3.4. Calculation of p,. This case occurs when there is one point on
each face. This is described by the inequalities

z1 < x5,Y2 < Y, 23 < 2z for all j and
T+ Yk + 2k < x4+ ys + 24 for all k.
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(1)

1 1—z1 1-xz1—y2 1—ya—=23 1—x4—23
pi = 367 / dz; / dys / dzs / dzxy / dy,
0 0 0 T Y2

1-%4—y4 Ta+ya+za—T1—23 Ta+tyat+za—T1—Y1
/ dzy / dy, / dz
23 Y2 23

Tat+Ya+z4—Y2—23 Ta+Ya+24—T2—Y2
/ dzxy / dz

X1 Z23
/m4+y4+24—y2—23 Ta+Ys+24—T3—23 3
d.Tg/ 1 dyg = —.
o v 440
In this calculation, each point is treated in a particular way. We get
3 9
=24 — = —.
Pa 440 ~ 55

4. THE EXPECTATION OF U IN EACH OF THE FOUR CASES.

When calculating the expectation of U, we enlarge the 'big’ tetra-
hedron B so that its vertices become (0,0,0), (1,0,0), (0,1,0), and
(0,0,1). This doesn’t affect the ratio U. We will continue to call the
points P, even though the problem has been translated and rescaled.
The transformed tetrahedron 7" is spanned by the three vectors

PQ—Pl,Pg—Pl, andP4—P1.

The side spanned by P, — P; and P; — P; has the normal n = (P, —
P;) x (P; — P;). The volume fraction U is the absolute value of the
scalar product

2) D=n-(P,—P).

The complexity of the calculation stems from this absolute value.
We have to identify the sets where D is positive and negative. Let B,
and B_ be these subsets of the enlarged B. We have B = B, + B_. To
get the expectation of U, we are going to integrate D over the whole
of B and subtract twice its integral over B_.

4.1. Calculation of E(U;). In this case P; is the origin, P, Ps are
interior in B and P, will sit on the side defined by x4 + ys + 24 = 1.
Substituting z4 = 1 — 24 — y, in (2), we get

D = (n1 — n3)xs + (ng — n3)ys + n3.

In Case 1, we have all components of P, — P, and P; — P; positive,
implying that the n; cannot all have the same sign. To determine
where D is positive, we assume, WLOG, that

ny > ng > 0.
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y4

y40

D>0
D< O

x4
x40 1

FiGurE 5. The areas to integrate over in x,y4-space in
Case 1.

This implies that n3 < 0. With these inequalities, we single out one of
twelve cases which all have the same probability of occurring and all
have the same expectation of E(U).

For fixed P, and Pj, Figure 5 shows the areas in z,y,-space where
D > 0 and D < 0. The line separating these areas intersects the axes
in the points

—MN3 —Ng

and yy9 =
ny —ng Ng — N3

, where 0 < 249 < yao < 1.

Tao =

For fixed P, and P35, we get the average over P, as

(3)
1 1-ya Y40 z40(1—Yya/y40)
€P4(P2,P3) :/ dy4/ Dd.’174—2/ dy4/ Dd.’L‘4
0 0 0 0

Next, ep,(Ps, P3) shall be averaged over P, and P;. We start with
x9 and gy, and keep zo and P; fixed. The area to integrate over is
determined by the inequalities n; > no > 0 and is shown in Figure 6.
We get
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y2

1-z2

nl >n2

n2>0 1-22

F1GURE 6. The area to integrate over in xsys-space in
Case 1.

y2x3/23 1—z2—22
(4) €P4,z2,y2 (ZQ, P3) = / d:EQ/ 6P4 (PQ’ P3) dyQ
0 z

2(z3+ys)/z3—xz2

The area in Figure 6 becomes zero when zy > 23/(x3 + y3 + 23), S0
the next integration is

23/(z3+y3+23)
(5) eppy(Py) = / e brinngn (22, Py) d2a.
0

At last, we shall integrate P; over the whole tetrahedron, giving

1 l—z3 1—-x3—y3 1
(6)  epy,p,ps Z/O dﬂ%/ﬂ d?/:-s/O ep,,p,(P3) dz3 = 18433"

To get the expectation of U, this number shall be multiplied by
2, which is the inverse of the area integrated over in P,—space, twice
by 6, which is the inverse of the volume integrated over in P,— and
P;—space, and by 12, which is number of cases that are equivalent to
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the one chosen by assuming n; > ny > 0. We get

9 1 3
Bt =2-6"12 o = 61

We are indebted to Maple for helping us do the integrations. We
have deliberately omitted writing out the results of the integrations in
equations (3) - (5) because the expressions are very long. The Maple
integration in (5) gives 2216 terms before the boundaries are inserted.
Our computer, dedicated to numerical computations, uses 70 seconds
to compute E(U;). This first case is the simplest one of the four.
Mannion, [6], finds the average in this case without integration by using
an average for triangles. We have chosen to describe the integration to
fascilitate the understanding of the coming cases. The Maple worksheet
for the calculation is given in Appendix A.

4.2. Calculation of E(U,). In this case P; sits on the vertical axis,
P, on the opposite edge, and P, and Pj are interior. Cf. Figure 7. In
this case, we define

n=(Py—P)x (P - P)

and
D:n'(PQ—Pl):n1'$2+n2'y2+n3'(22—21).

The plane separating positive and negative D goes though P;, P;, and
P,. Figure 7 shows this plane in P,—space. When drawing this Figure
and in the calculations, we have, WLOG, singled out one of four cases
which all have the same probability of occurring and all have the same
expectation of E(Us) by assuming n; > ne and ng > 0.

The separating plane intersects the zo—axis in the point x5y =
nsz1/ni. It intersects the edge yo + 22 = 1 in the point Yoo = n3(1 —
z1)/(ns—mns2), 220 = 1—1ysg . One can show that the inequalities n; > ng
and ng > 0 imply 0 < x40 < 1 and 0 < y40 < 1. D is positive above
this plane. As before, we are going to integrate D over the whole tetra-
hedron and subtract twice its integral over the volume below the two
shaded surfaces in Figure 7. We are not going to carry out the integra-
tion over the whole tetrahedron. In fact, this integral is zero as can be
expected from the symmetric character of of the point distributions.

The integral of D over the part marked a in Figure 7 is

() €a,p,(P3, 21, 24)

T4 11—z 1—z2—y2
= / dﬂ?z / dyZ / D dZQ.
0 y20+(1—w4—y20)z2/z4 0

The integral of D over the part marked b in Figure 7 is
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72

Pl (y20,z20)

20 P4

Case 2
x2

FIGURE 7. The volume to integrate over in FP»-space in
Case 2.

(8) ebp2 P3, Zl,£E4

y20+(1—24—y20)x2 /4 z1—(ni1z2+n2y2)/n3
/ dxz/ dyz/ Ddz,

1—x4 220+ (za—x20)y2/(1—24) z1—(ni1z2+nay2)/ns3
+/ dyg/ d@/ D dz.
0 T 0

4
The lower limit of the second z,—integral may be bigger than the
upper limit so that this part gives a negative contribution. The sum of
(7) and (8) shall be integrated over all positions of P3 complying with
ny > ng and ng > 0. First, n; > ny is equivalent to z3 < 21(1 — x5 —y3)
and we have

9) €Py,z3 (w3,Y3, 21, T4)

z1(1—z3—ys3)
= / (€a,p,(Ps, 21, 24) + €b,p, (P3, 21, 74)) dzs.
0
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Then, n3z > 0 is equivalent to ysz4 < 23(1 — z4), giving

(10) €P,,P3 (Zla 334)

T4 z3(1—z4)/x4
= / dx?) / €Ps,z3 ('/'E?n Y3, 21, ',L'4) dy?)
0 0

1 1—x3
+/ dﬂ?s/ ep,, 2 (%3, Y3, 21, T4) dys.
T4 0

At last,

7 n 72
41472 665280

1 1
(11) ep, p, PP =/ le/ ep,,py(21,%4) dzy =
0 0

Remembering that the integral of D over the whole tetrahedron is
zero, we get the expectation of Uy, by multiplying this number by —2,
because we shall subtract twice the integral over negative D , twice by
6, which is the the inverse of the volume integrated over in P,— and
P;—space, and by 4, which is number of cases that are equivalent to
the one chosen by assuming n; > ne and nz > 0. We get

7 w2

E(U;) =—2-6-4-¢p,p,pp, = 41~ 310"

4.3. Calculation of F(Us3). In this case, we put P; on the edge x1 +
y1 =1, 21 =0, P, in the side yo = 0, P, in the side x4, = 0, and let Pj
be interior. Cf. Figure 3. We define

n=(P4—P1)><(P2—P1)
and have
D=n-(Ps—P)=n;-(x3—2x1) +n2-(ys— 1+ 1) +n3 - 23.

The plane separating positive and negative D goes though Py, P, and
P,. Figure 8 shows this plane in P;—space. When drawing this Figure
and in the calculations, we have, WLOG, singled out one of two cases
which both have the same probability of occurring and both have the
same expectation of E(Us) by assuming n; > ny. This, in its turn,
implies n3 > 0 and n3 > no.

The separating plane intersects the x3—axis in the point 30 = 21 +
na(1 — z1)/ny. It intersects the edge yz + 23 = 1 in the point y3g =
(n3 —nixy —ng(l —z1))/(n3 — ng), 230 = 1 — Y30 . One can show that
the inequalitiy n; > ny implies 0 < z3p < 1 and 0 < y39 < 1. Like
in Case 2, the integral over the whole tetrahedron is zero. We shall
integrate over the volume below the separating plane where D < 0.

The integral of D over the part marked a in Figure 8 is
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z3
P4 (y30,z30)
2 b .
y3
x30 Pl
Case 3

x3

FIGURE 8. The volume to integrate over in FPs-space in
Case 3.

(12) ea,Pg(P2,P4a$1)

z1 1-z3 1-z3-ys
= / d.’173 / dy3 / D ng .
0 y30+(1—I1—y30)z‘3/1}1 0

The integral of D over the part marked b in Figure 8 is

(13) eb,P3(P2aP4ax1)

z1 y30+(1—z1—y30)x3 /1 (n1(z1—z3)+n2(l—z1—y3))/n3
= / dﬂ?g / dyg / D dZ3
0 0 0

1—x1 z30-+(21—230)y3/(1—x1) (n1(z1—z3)+n2(1—21-y3))/n3
+/ dyg/ dl‘g/ Dng
0

T1 0

The lower limit of the second x3—integral may be bigger than the

upper limit so that this part gives a negative contribution. The sum
of (12) and (13) shall be integrated over all positions of P, complying
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with ny > no. First, ny > ny is equivalent to z4(1 — z3) > 22(1 — y4)
and we have

(14) €P3,24 (Z/4, P2> xl)

(1-ya)
:/ (€q,p, (P2, Py, 1) + €y p, (P, Py, 1)) d2s.
22(1—ya)/(1—z2)
Then,
1 1 1—x9o
(15) €P,,P,,P3,Py :/ dxl/ d$2/ dzo
0 0 0
! 11 72
z aPa dyy, = — -
/0 ers,za (Y, Py 01) dys = —5omae + 33560

Remembering that the integral of D over the whole tetrahedron is
zero, we get the expectation of Us, by multiplying this number by —2,
because we shall subtract twice the integral over negative D , once by
6, which is the inverse of the volume integrated over in P3-space, twice
by 2, which is the the inverse of the area integrated over in P,— and
P,—space, and by 2, which is number of cases that are equivalent to
the one chosen by assuming n; > ny. We get

11 2

216 3465

The calculation of E(Us) takes 160 secs. and requires 225 MB of
RAM-memory. When integrating, Maple expands expressions into
many terms. The dy,-integral in (15) has over 22000 terms. The Maple
worksheet for the calculation is in Appendix C.

E(Ug) =-2:6- 22 -2 €p1,p2,P3,P4 =

4.4. Calculation of E(U,). In this case, there is one point P in each
face of the tetrahedron. Cf. Figure 4.
We define
TL:(Pl—Pg)X(PQ—Pg)
and have
D=mn-(Py—P)=mny-(v4—23) + 02 (ys —y3) + 13- (1 — 24 — ya)-
We have D > 0 when

(n1 — n3)za + (N2 — N3)Ya > N123 + NoYs — N3

WLOG, we assume n; > ng and ny > ng. If nyz3+nsys —n3 > 0, we
have the same Figure in x4y,—space as in Case 1, i.e. Figure 5. Here
the expressions for x4 and y, are

n1T3 + N2yYs — N3
Tao = and y40 =
ny —ns Ng — N3

n1T3 + NalYz — N3
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Writing out the expressions, one can show that |z4] < 1 and |ys| <
1.

The area where D < 0 exists only when the numerator nizs+noys —
ng > 0, so we shall only integrate over the area where this the case.
This inequality reduces to

—+£<1Where T30 = and y3p = YL .
T30 Y30 1—2 1—2z

Unlike Cases 2 and 3, the integral over the whole tetrahedron is not

Zero.

1 1—2z1 1 1—
0 0 0 0
1 1—x3 1 (1—z4) 1
/ d.Tg/ dyg/ d$4/ Ddy4 = —.
0 0 0 0 27

The integration over negative D reads

1—2z1
(17) ep,,py,Psp, = / dz / dy / dzy / / dz;

y30(1—x3/z30) yao(l—z4a/x40)
d d Dd .
/0 v3 / = / Ya= 46656 299376

When calculating the expectation of Uy, we shall multiply ep, p, p,,p,
by —2, because we shall subtract twice the integral over negative D ,
four times by 2, which is the the inverse of the area integrated over in
each space, and by 3, which is number of ways to choose the n; that is
smaller than the other two. We get

1 23 272
E(U,) = i 2-2' -3 ep . ppyr = 186 + 53

The computation of E(Us) takes 180 secs. The increasing compu-
tation time from case to case reflects the increasing complexity of the
calculations. To coach the the calculation of E(U,) through Maple, we
had e.g. to split up the integration of z5 into eleven terms and give
each term a special consideration. See Appendix D.

4.5. The expectation of U. Having calculated the probabilities for
all four cases and the expectation of U; in each case as they are given
in table 1, we can combine them to get the expectation of U.

1 3 7 g2
32 16
(18 Zp? 5% 6 T8~ B

11 w2 23 RV 1183 w2

216 3465) + (486 + 6237)) 23760 5445

+ 36 (
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5. THE VOLUME V OF THE ’BIG’ TETRAHEDRON B.

We shall start by showing that the ’shape’ variable U is independent
of the ’size’ variable V. The argument is that the position of a point
Py is determined by three independent orthogonal coordinates. The
coordinates can be chosen so that one or more are orthogonal to the
face(s) of B that they determine while the other(s) are in the face. This
is easiest to see in Case 4. Here, x; is orthogonal to the face z; = 0
and y; and z; are coordinates in this face. In the same way, y, and
z3 are orthogonal to faces while x5, 25, 3, and y3 are coordinates in
faces. For P,, we make a coordinate transformation by replacing x4
by ¢t = x4 + ys + 24. Then, t is orthogonal to the slanting face and
Y4 and z4 are variables in the face. The functional determinant of this
transformation is 1. In this way, the twelve coordinates of the four
points are split up into four independent ones that determine V' and
eight independent ones that determine U. It is easy to see how this
split can be done in the other cases. Since U and V are independent,
V' has the same distribution in all four cases. We shall calculate E (V)
for Case 4. Then, the side of the 'big’ tetrahedron B is

S=X4+Ys+ 24— 21— Yo —23=1—T1 — Yo — 23.

The volume ratio V = s®. We get the expectation of V' by doing the
integration in (1) though with 1 replaced by s* and dividing the result
by the result in (1). We get

33

(19) B(V)= .

Note that the first eight (U-) integrations are the same in (1) as
it stands and with 1 replaced by s®. They will result in As® and As'!,
respectively, where A is the product of the volumes integrated over. The

remaining four (V-) integrations will bring forth the factors and
1
12131415

1
9-10-11-12
respectively. The ratio between these numbers is 33/91.

6. THE EXPECTATION OF X.

Having calculated the expectations of the independent variables U
and V', we get the expectation of the ratio X =volume(7’)/volume(A),
where A is a given tetrahedron and 7' is a random tetrahedron inside
A as

(20) k=EX)=EUV)=E({U)-E(V)
1183 w2 33 13 w2
(21) (23760 5445) 91 720 15015
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7. WHERE DOES THE 72—TERM COME FROM?

V. Klee studied the value of £ in the 1960:th and was convinced that
it should be a rational number, [5]. First, he conjectured the value 4.
Monte Carlo tests gave that the true value is closer to % The belief
in rational numbers rests on the fact that the corresponding « in two
dimensions is rational for several convex polygonal mother sets A, e.g.
for a triangle and a square, see [3], [2]. Another argument for rational
numbers is that the volume is (the absolute value of) a polynomial of
the coordinates of the random points and integration of polynomials
results in integer factors in the denominator. The distribution functions
of X for a triangle, [9], and a square, [8] have 72—terms. However, these
terms disappear when the moments are calculated. So where do the
72 —terms come from and why are they still present in the first moment
in three dimensions?

Because of the absolute value, the integration of the volume poly-
nomial goes to boundaries containing rational functions of the coordi-
nates, like x3p and x40 in (17). When these are integrated in the next
step, the log-function appears. Subsequent integrations will result in
functions of the following form

1 . -
(22)  v(z) = / lfg_(tl) dt + log(z) log|l — z| = / mds.

1 S

One can deduce the following series expansion
2 =k
(23) y(:c):F—;ﬁ,mgL

See also [1], page 1004, and [8] about the v—function. It follows
from the definition in (22) that the v—function is well defined on the
whole real axis. By the definition in (22), it takes the values v(1) = 0.
The value v(0) = 72/6 is obtained by summing the series in (23) for
z = 1. The 7% term will enter the expression for E(U;) when the
lower boundary value 0 is inserted in the integrals. For instance, the
y1—integration in (17) will have a term of the form

1
Y1+ 21"

p(y1, z1) v(1 —

where p(y1, z1) is a polynomial in y; and z;. Here, p(y1, z1) is not zero
for y; = 1 — 2; and we get the 7m%-term. The following z; —integration
will produce terms of the form p(z1) v(z1) and p(z1) v(1 — z1) resulting
in additional 72-terms.

The appearance of terms of the form (22) is hard to predict. First,
the variable to be integrated shall appear once in the denominator to
produce a logarithm and then appear once more in the denominator
and there must be no canceling polynomial in front of it. The increased
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number of succesive integrations in three dimensions compared to two
dimensions is an explanation for the 7?—terms in the three-dimensional
moments.

The integration of z™v(z), where m > 0 is an integer, brings forth
a term of the form z(™*Yy(z) plus logarithmic terms. This explains
why the 72—terms, which are present in the distribution function in
two dimensions, disappear when the moments are calculated.

The integration of z™v(z), where m < 0 is an integer, brings forth
so called polylog functions. Such functions are bound to appear in the
distribution functions of the U; of this paper.

8. THE SECOND MOMENT.

The second and other even moments of X are easy to calculate, since
the trouble with the absolute value sign isn’t present. It has been given
earlier by, among others, [4] and [6]. Here, we just change |U;| to U;?
in the Maple programs and integrate over the whole tetrahedron to get
the second moments given in the last column of Table 1. Combining
the second moments in Table 1 with their weights, we get

(24)

4
1, 4 6 36 9 51
E(U?) = EU?) = —(—4+—F+—+—) = ——.
R jz:;pj (U5 55(225 * 200 * 216 * 216) 11000
The second moment of V' can be calculated by the argument at the

. . 1 1 . .
end of section 5 as the ratio between zz7=75 and 575775 » giving

11
E(V?) = .
(V%) = &5
Since U and V are independent, we have
51 11 3

We get

ox =/ E(X?) — E(X)? ~ .0211495.
9. THE DENSITY FUNCTION FOR X.

To give idea of the distribution we are working with, we present its
density obtained from Monte Carlo tests in Figure 9.
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F1GURE 9. Density function for X from Monte Carlo
tests. We have E(X) ~ .017398 and ox =~ .021149.
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APPENDIX A. MAPLE SHEET FOR CALCULATION OF E(U;).
Calculation of the average of the fraction U in case I for terahedron
in terahedron

> restart;

assumption: 0 < n2 < nl
> nl:=y2%xz3-z2%y3;
> n2:=z2*%x3-x2%z3;
> n3:=x2%y3-y2*x3;

The volume is |U|. Integrate over positive and negative parts sepa-

> U:=n3+x4*(n1-n3)+y4*(n2-n3) ;
> tl:=int(U,x4=0..1-y4);
>  t2:=int(t1,y4=0..1);
> t3:=int(U,x4) ;
> t3u:=simplify(subs(x4=-(n3+(n2-n3)*y4)/(n1-n3),t3));
> t31l:=subs(x4=0,t3);
> t4:=int(t3u-t31,y4);
> tdu:=subs(y4=-n3/(n2-n3),t4);
>  t41:=subs(y4=0,t4);

Ep4 is volume integrated over P,

> Ep4:=simplify(t2-2*(t4u-t41l));
Start integrating over P

> sl:=int(Ep4,y2);

> s11:=1limit(s1,y2=z2%(x3+y3)/z3-x2);
> slu:=limit(sl,y2=1-z2-x2);
slul is integral over y2

> 8lul :=slu-sll;

> 82:=int(slul,x2);

> 821:=1imit(s2,x2=0);

> s2u:=1limit(s2,x2=22%x3/z3) ;
s2ul is integral ove x2 and y2

> s2ul:=simplify(s2u-s21);

> 83:=int(s2ul,z2);

> 83l:=simplify(subs(z2=0,s3));
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> s3u:=limit(s3,z2=23/(x3+y3+z3));
s3ul is integral over x4,y4,x2,y2, and z2

> s3ul:=simplify(subs(1n(-x3)=1n(x3),s3u-s31),size);
> ul:=int(s3ul,y3);

> ull:=subs(y3=0,ul);

> ulu:=subs(y3=1-x3-z3,ul);
ulul is integral over y3

> ulul:=simplify(ulu-ull,size);

> u2:=int(ulul,x3);

> u2l:=1imit (u2,x3=0);

> u2u:=subs(x3=1-z3,u2);

u2ul is integral over x3 and y3

> u2ul:=simplify(u2u-u2l,size);
u3:=map(int,u2ul,z3);
u3a:=subs (1n(-1+z3)=1n(1-z3) ,u3);
u3l:=1imit(u3a,z3=0);

udu:=limit (u3a,z3=1);
Eul:=12%2*%6"2% (u3u-u3l) ;

vV V V V V

APPENDIX B. MAPLE SHEET FOR CALCULATION OF E(Us).

Calculation of Eu2. Here x4 is denoted x and z1 is denoted z.
> restart;

> with (LinearAlgebra):

> v2:=<x, 1-x, -z>;

> v1:=<x3, y3, z3-z>;

> n:=vl &x v2;

> simplify(n[1]-n[2]);
Assume n3>0 and n1 > n2 .

> k:=n[3]*z;

> x20:=k/n[1];

> etal:=k/n[2];

> 2z30:=s0lve(x20=1,z3);

> pl:=n[1]*xi+n[2]*eta+n[3]*zeta;

> ss:=simplify(solve(pl=k,xi+eta+zeta=1,xi,zeta));
This is xil and y20

> tt:=simplify(subs(eta=0,ss),size);

> xil:=-(z-1)*((x3+y3) *x-x3) / ((y3+x3+23-2) *x-y3*z-2z3-x3+2) ;
> ss:=simplify(solve(pl=k,xi+eta+zeta=1,eta,zeta));
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> tt:=simplify(subs(xi=0,ss),size);

> y20:=-((x3+y3)*x-x3) *(z-1) / ((y3+x3+z3-z) *¥x+x3*(z-1) ) ;
> U:=n[1]*x2+n[2] *y2+n[3]*(z2-2) ;

Start integrating U over whole tetrahedron

> sl:=simplify(int(U,z2=0..1-x2-y2),size);

> s2:=simplify(int(s1,y2=0..1-x2));

s3 is integral over whole P2-space

> 83:=simplify(int(s2,x2=0..1));
s4:=simplify(int(s3,z3=0..z*(1-x3-y3)),size);
sb6:=simplify(int(s4,x3=x/(1-x)*y3..1-y3) ,size);
s6:=simplify(int(s5,y3=0..1-x),size);
s7:=int(s6,z=0..1);

> 88:=int(s7,x=0..1);

Integrate y2 and x2 in case a

> al:=simplify(int(s1,y2=y20+(1-x-y20)*x2/x..1-x2));
> a2:=simplify(int(al,x2=0..x%));

> b0:=simplify(int(U,z2=0..(k-n[1]*x2-n[2]*y2)/n[3]1));
Integrate y2 in case b

> bl:=simplify(int(b0,y2));

> bll:=subs(y2=0,bl);

> blu:=simplify(subs (y2=y20+(1-x-y20)*x2/x,b1));

> blul:=blu-bill;

Integrate x2 in case b

> b2:=simplify(int(blul,x2=0..x));

Integrate x2 and y2 for extra part of domain in case b

> bbl:=simplify(int(b0,x2=x20+(x-x20)*y2/(1-x)..x));
> bb2:=simplify(int(bbl,y2=0..1-x));

Sum all parts and integrate with respect to P3

> a3:=simplify(int(a2+b2-bb2,z3));
a3l:=subs(z3=0,a3);

a3u:=subs(z3=z*(1-x3-y3) ,a3);
a3ul:=simplify(a3u-a3l);

a4:=int(a3ul,y3);

a4l:=subs(y3=0,a4);

a4l1:=simplify(a4l);

adu:=limit(ad,y3=x3*(1-x)/x);

ab:=int (adu,x3);

abl:=1imit(a5,x3=0);

abu:=1limit(a5,x3=x);

vV V V V

vV V. V V V V V V V V
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>
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abul:=abu-abl;
bdu:=1imit (a4,y3=1-x3);
b5:=int (b4du,x3) ;
b5u:=1imit (b5,x3=1);
b51:=1imit (b5,x3=x) ;
c5:=int (a411,x3);
c51:=1imit(c5,x3=0);
cbu:=1limit (c5,x3=1);

Combine P3-integrals

>
>

temp:=simplify(abul+bbu-b51-c5u+c51);

templ:=simplify(subs(1ln(-z*x)=1n(z)+1n(x),
In(-(z-1)*(-1+x))=1n(1-z)+1n(1-x), temp),size);

Integrate with respect to z from 0 to 1

>

>
>
>
>

a6:=simplify(int(templ,z),size);

a6l:=1imit(a6,z=0);

abu:=1limit(a6,z=1);

abul:=simplify(a6u-abl) ;

abull:=simplify(subs(dilog((-1+x)/x)

=-dilog(x/(-1+x))-(1n(x)-1n(1-x)-I*Pi)~2/2,a6ul));

abul3:=simplify (subs(1n((-1+x)/x)=1n(1-x)-1n(x),
In(x/(-1+x))=1n(x)-1n(1-x), 1n(x"2)=2*%1n(x),
In(-x"2)=2*%1n(x),1n(-(x-1)"2)=2%1n(1-x),
In(—x*(x-1))=1n(x)+1n(1-x) ,1n(x-1)=1n(1-x),
In((-1+x)"2)=2%1n(1-x) ,1n(x*(-1+x))=1n(x)+1n(1-x),
abull),size);

Integrate with respect to x from 0 to 1

>

>
>
>
>
>

a7:=int(abul3,x);

a71:=simplify(subs (1n(-x)=1n(x),1n(-1+x)=1n(1-x),a7));
a7l:=subs(x=0,a71);

a7u:=limit(a71,x=1);

a7ul:=simplify(a7u-a7l);

Eu2:=-8%6"2%a7ul;

AppPENDIX C. MAPLE SHEET FOR CALCULATION OF E(Uj).

Calculation of Eu3

>
>
>
>
>

restart;

with (LinearAlgebra):
vl:=<-x1, y4-1+x1, z4>;
v2:=<x2-x1, x1-1, z2>;

n:=vl &x v2;
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> simplify(n[1]-n[2]);

. Assume nl > n2 .which implies z4*(1-x2) > 2z2*(1-y4)
The plane is pl=k
k:=simplify(x1*n[1]+(1-x1)*n[2]);
pl:=simplify(n[1]*xi+n[2]*eta+n[3]*zeta);

v V V

ss:=subs (eta=0,zeta=0,pl-k);

> x30:=simplify(solve(ss=0,xi));

Find y30

> tt:=simplify(subs(xi=0,pl=k),size);
> solve(tt,etatzeta=1,eta,zeta);

> y30 := —(x2%y4+z4*x2+x2%x1-y4*x1-x2+x1%22%y4-x1%24%x2) /
(-x2%y4-z4%x2-x2%x1+y4*x1+z4*x1+3x2-x1%22) ;

> U:=simplify(n[1]*(x3-x1)+n[2]*(y3-1+x1)+n[3]*z3);
Start integrating U over whole tetrahedron

> sl:=simplify(int(U,z3=0..1-x3-y3),size);

> s2:=simplify(int(s1,y3=0..1-x3));

s3 is integral over whole P3-space

> s83:=simplify(int(s2,x3=0..1));
s4:=simplify(int(s3,z4= z2x(1-y4)/(1-x2)..1-y4) ,size);
sb6:=simplify(int(s4,y4=0..1),size);
s6:=simplify(int(s5,z2=0..1-x2));
s7:=simplify(int(s6,x2=0..1));

> 88:=int(s7,x1=0..1);

Integrate y3 and x3 in case a

> al:=simplify(int(s1,y3=y30+(1-x1-y30)*x3/x1..1-x3));
> a2:=simplify(int(al,x3=0..x1));

vV V. V V

Integrate in z3, y3, and x3 case b

> zz3:=(k-n[1]*x3-n[2]*y3)/n[3];
b0:=simplify(int(U,z3=0..22z3));
bl:=simplify(int(b0,y3=0..y30+(1-x1-y30)*x3/x1));
b2:=simplify(int(b1,x3=0..x1));
cl:=simplify(int(b0,x3=x1..x30+(x1-x30)/(1-x1)*y3));
c2:=simplify(int(c1l,y3=0..1-x1));

abc2:=a2+b2+c2;

a3:=simplify(int(abc2,z4));
a3l:=subs(z4=22/(1-x2)*(1-y4) ,a3);
a3u:=subs(z4=1-y4,a3);
a3ul:=simplify(a3u-a3l,1ln,size);

vV V V V V V V V V V
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a3ull:=simplify(subs(1ln((z2-1+x2)* (—x1*x2+y4*x1+x2-y4*x2) /
(-1+x2) )=1n(1-x2-z2) +1n(-x1*x2+y4*x1+x2-y4*x2) -1n(1-x2) ,
In(-x1*%(z2-1+x2) )=1n(x1)+1n(1-x2-22) ,
1n((y4*x2-y4*x1-x2+x1%x2) * (z2-1+x2) / (-1+x2))
=1n(1-x2-2z2) +1n(y4*x2-y4*x1-x2+x1%x2) -1n(1-x2) ,
1n(z2* (y4*x2-y4*x1-x2+x1%x2) / (-1+x2))
=1n(z2)+1n(y4*x2-y4*x1-x2+x1*x2)-1n(1-x2) ,a3ul) ,size) ;

a4:=int (a3ull,y4);
a4l :=subs(y4=0,a4);
a4l1:=simplify(subs (1n(x2* (-x1+x1*x2+1-x2+x1%2z2-22)
/(-1+x2)) =1n(x2)-1n(1-x2)+1n(1-x1)+1n(1-x2-22) ,a4l));
a412:=simplify(subs (1n(-x2* (-1+x2+z2) *(x1-1)/(-1+x2))
=In(x2)+1In(1-x2-z2)+In(1-x1)-1n(1-x2) ,a411) ,size);
adu:=subs(y4=1,a4);
a4ul:=simplify(subs (ln(-x1*(-1+x2+z2))=1n(x1)+1n(1-x2-2z2),
In(-(x1-2*x1*x2+x1%x2"2+x1%22*x2-x2*22) / (-1+x2))
=1n(x1-2*x1*x2+x1*x2"2+x1*x2%22-x2*2z2) -1n (1-x2) ,
adu-adl2));
a4ull:=simplify(subs(ln(-x1*(-1+x2+z2))=1n(x1)+1n(1-x2-2z2),
In(-(x1-2*x1*x2+x1%x2"2+x1%22%x2-x2%22) / (-1+x2))
=1n(x1-2%x1*x2+x1*x2" 2+x1*x2%Zz2-x2%z2) -1n(1-x2) ,
In(—z2%x2% (x1-1)/ (-1+x2))=1n(z2) +1n(x2)+1n(1-x1)
-In(1-x2), In(-x1*(-1+x2))=1n(x1)+1n(1-x2),
In(-x2*(x1-1))=1n(x2)+1n(1-x1) ,1n(-x1*z2)
=1ln(x1)+1n(z2), 1n(-(z2-1)*(x1-1))=1n(1-z2)+1n(1-x1),
adul));
ab:=simplify(int(adull,z2),size);
abl:=collect(ab5,1ln(z2));
nops (ab1);
abl1l:=op(1,ab1);
ab12:=o0p(2,a51);
ab111:=1imit(ab11,z2=0);
ab121:=simplify(subs(z2=0,a512));
abl:=abl111+ab121;
abu:=simplify(subs(z2=1-x2,a5));

abul:=abu-abl;

abull:=simplify(subs(1ln(-(-1+x2)*(-x2+x1))
=1n(1-x2)+1n(x1-x2), 1n(x1*(-1+x2)"2)
=1ln(x1)+2*1n(1-x2) ,1n(-x2*(x1-1))=1n(x2) +1n(1-x1),
In(-(-1+x2)*x1)=1In(1-x2)+1n(x1) ,1In(x1-1)=1n(1-x1),
In((—x2+x1) /x1)=1n(x2-x1)-1n(x1),
In((-x2+x1)/(x1-1))=1In(x2-x1)-1n(1-x1),
In(-x2+x1)=1n(x2-x1) ,abul));

abult:=collect(abull,1ln(1-x2));
nops (abult) ;
abultl:=op(1,abult);
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abult2:=op(2,abult);

a6l:=int (abultl,x2);

abult3:=collect(abult2,1ln(x2));

nops (abult3) ;

abult4:=op(1,abult3);

a62:=int (abult4,x2);

abultb5:=op(2,abult3);

a63:=int (abultb,x2);

a61l:=simplify(subs(x2=0,a61));

a621:=1imit(a62,x2=0);

a631:=simplify(subs(x2=0,a63));

a6lu:=limit (a61,x2=1);

a62u:=simplify(subs(x2=1,a62));

a63u:=simplify(subs(x2=1,a63));

abul:=simplify(a6lu+a62u+a63u-a611-a621-a631) ;

abull:=simplify(subs(1ln(-x1)=1n(x1),1n(-x1"2)=2%1n(x1),
In(-(x1-1)"2)=2%1n(1-x1) ,1n(-x1*(x1-1))
=In(x1)+In(1-x1), In(x1-1)=1n(1-x1),
In((x1-1)/x1)=1n(1-x1)-1n(x1),
In(x1/(x1-1))=1n(x1)-1n(1-x1) ,a6ul));

> abul2:=simplify(subs(dilog((x1-1)/x1)

=-dilog(x1/(x1-1))-(In(x1)-1n(1-x1)-I*Pi)~2/2,a6ull));

> a7:=int(abul2,x1);

> a7l:=simplify(subs(1ln(x1-1)=1n(1-x1),1n(1/(x1-1))
=-1n(1-x1), 1In(x1/(x1-1))=1In(x1)-1n(1-x1),
In((x1-1)/x1)=1n(1-x1)-1n(x1) ,a7));

> a72:=simplify(subs(1ln(x1/(x1-1))=1n(x1)-1n(1-x1),

In(-1/x1)=-1n(x1) ,1n((x1-1)/x1)=1n(1-x1)-1n(x1) ,a71));

a7l:=1imit(a72,x1=0);

a7u:=limit(a72,x1=1);

a7ul:=simplify(a7u-a7l) ;

Eu3:=-8%6%2x*(a7ul) ;

vV V. V V V vV V V V V V V V V V V

vV V V V

APPENDIX D. MAPLE SHEET FOR CALCULATION OF E(Uy).

Calculation of Eu4

> restart;

> with (LinearAlgebra):
> ql:=<-x3, yl-y3, zi1>;
> q2:=<x2-x3, -y3, z2>;
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n:=ql &x q2;

Notice one positive and one negative solution above

>

U:=simplify(n[1]*(x4-x3)+n[2]*(y4-y3)+n[3]*(1-x4-y4));

Assume nl1 > n3 and n2 > n3 which implies N1 > 0 and N2 > 0 .
240 =T/N1 and y40 =T /N2

vV V. V V

>

Ni:=simplify(n[1]-n[3]);

N2:=simplify(n[2]-n[3]);

x40:=simplify ((n[1]*x3+n[2]*y3-n[3])/(n[1]1-n[3]1));
y40:=simplify ((n[1]*x3+n[2]*y3-n[3])/(n[2]-n[3]));
T:=collect(op(2,x40),{x3,y3});

simplify (subs (x4=x40%*(1-y4/y40),0));

N1 when 240 < 1. 240 > 0 when 7" > 0
simplify(T-N1,size);

N2 when y40 < 1. y40 > 0 when 7" > 0
simplify(T-N2,size);

simplify(n[1]-n[3],size);
simplify(n[2]-n[3],size);

y30:=y1/(1-z1);

x30:=x2/(1-22) ;

Integrate over whole tetrahedron

>

vV V V V

>

sl:=simplify(int(U,x4=0..1-y4) ,size);
s2:=simplify(int(s1,y4=0..1),size);
s3:=int(s2,y3=0..1-x3) ;
s4:=int(s3,x3=0..1);

sb:=int (s4,z2=0..1-x2);

s6:=int (s5,x2=0..1);

This is average over whole 8-dimensional space without nl > n3 and
n2 >n3

>

Uaverage :=s6x*8;

Start with integral over part where U < 0 and n; > ng and ny > ng

>

vV V. V V

al:=simplify(int (U,x4=0..x40%(1-y4/y40)) ,size);
a2:=simplify(int(al,y4=0..y40),size);
a3:=simplify(int(a2,y3),size);

a3u:=simplify (subs (y3=y30*(1-x3/x30),a3),1n,size);

a3ul:=simplify(subs(ln(-y1*(x2+z2-1)* (-z1*x2+z1%x3-x3%2z2)
/(-1+z1) /x2)=1n(y1) +1n(1-x2-2z2) +1n(-z1*x2+z1*x3-x3%22)
-1n(1-z1)-1n(x2) ,1n((y1+z1-1) *(-z1*x2+z1*x3-x3%22)
/(-1+z1))=1n(1-y1-z1) +In(-z1*x2+z1*x3-x3*%22)
-1n(1-z1) ,a3u),size);
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a3l:=simplify(subs(y3=0,a3),size);
a3ul:=a3ul-a3l;

a4:=int(a3ul,x3);
a4l:=simplify(subs(x3=0,a4),size);

a4l1:=simplify(subs(ln(-z1*x2)=1n(z1)+1n(x2),
1n(-z1*x2-y1*x2)=1n(x2)+1n(yl+z1),
In(z2*yl+y1#x2)=1n(y1)+1n(x2+z2), a4l),size);

adu:=simplify(subs(x3=x30,a4),1ln,size);

adul:=simplify(subs (1n(-x2*z2*(yl+z1-1)/(z2-1))=
1n(x2)+1n(z2)+1n(1-y1-z1)-1n(1-22),
In(-x2*z2% (-1+z1) /(z2-1) )=1n(x2)+1n(z2) +1n(1-z1)
-1n(1-z2), 1n(yl*z2x*(x2+z2-1)/(z2-1))
=1n(y1)+1n(z2)+1n(1-x2-22)-1n(1-z2) ,a4u) ,size) ;

a4ul:=simplify(subs(ln(-(z1-1+y1)*z1*x2/(-1+z1))
=1n(1-y1-z1)+1n(z1)+1n(x2)-1n(1-z1),
1In(-z2*y1*(z1-1+x2)/(22-1))=1n(z2)
+1n(y1)+1n(1-x2-2z2)-1n(1-z2) ,1n(-y1*(z2-1+x2) *z1
/(-1+z1))=1n(y1)+1n(1-x2-2z2)+1n(z1)-1n(1-z1),
1In(-z2xy1*x(z2-1+x2)/(z2-1))=1n(z2)+1n(y1)
+1n(1-x2-z2)-1n(1-z2) ,1n(-z2*y1l-y1*x2)=1n(y1)
+1n(x2+z2) ,adul-a4ll) ,size);

adull:=collect(adul,1n(z2));
nops (adull);

tl:=o0p(1,adull);
rest:=op(2,a4ull);
restl:=collect(rest,1n(1-x2-z2));
nops (resti);

t2:=op(1,restl);
rest:=op(2,restl);
restl:=collect(rest,ln(x2+z2));
nops (resti);

t3:=op(1l,restl);
rest:=op(2,restl);
resti:=collect(rest,1n(1-z2));
nops (restl);

t4:=op(1,restl);
t5:=0p(2,restl);
itl:=simplify(int(t1,x2),size);
it2:=simplify(int(t2,x2) ,size);
it3:=simplify(int(t3,x2) ,size);
it4:=simplify(int(t4,x2) ,size);
it5:=simplify(int (t5,x2),size);
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it1l:=subs(x2=0,it1);

it21:=subs(x2=0,it2);

it31l:=subs(x2=0,it3);

it41:=subs(x2=0,1it4);

it51:=subs(x2=0,it5);

abl:=it11+it21+it31+it41+itbl;

itlu:=simplify(subs(x2=1-z2,it1),1n,size);

it2u:=limit (it2,x2=1-22);

it3u:=simplify(subs(x2=1-z2,it3),1n,size);

it4u:=simplify(subs(x2=1-z2,it4) ,size);

itbu:=simplify(subs(x2=1-z2,it5) ,size);

abu:=itlu+it2u+it3ut+tit4u+itbu;

abul:=subs(In(-1+z1)=1In(1-z1) ,1n(-(-z1+z2) /z1)
=1n(z1-z2)-1n(z1) ,1n((- yi1-z1+z2)/(-z1-y1))

1n(yl+z1-2z2)-1n(y1+z1) ,1n((yl+z1-22) /(z1-1+y1))

1n(y1+z1-z2)-1n(1-y1-z1) ,1n((z1-z2) /(-1+z1))
=1n(z1-z2)-1n(1-z1) ,abu-abl);

temp:=simplify(abul);

nops (temp) ;
templ:=collect(temp,dilog);

nops (templ) ;

vi:=op(1l,templ);
ivl:=int(vl,z2);
ivil:=1limit(iv1l,z2=0);
iviu:=simplify(subs(z2=1,iv1));
iviul:=simplify(iviu-iv1l,size);
v2:=0p(2,templ);

iv2:=int (v2,2z2);
iv21:=simplify(subs(z2=0,iv2),size);
iv2u:=limit (iv2,z2=1);
iv2ul:=simplify(iv2u-iv21,size);
v3:=op(3,templ);

iv3:=int (v3,z2);
iv31l:=simplify(subs(z2=0,iv3));
iv3u:=simplify(subs(z2=1,iv3));
iv3ul:=iv3u-iv3l;
v4:=op(4,templ);

ivd:=int (v4,z2);
iv4l:=simplify(subs(z2=0,iv4));
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iv4u:=simplify(subs(z2=1,iv4));

iv4ul:=simplify(subs(1n((-1+z1)/z1)=1n(1-z1)-1n(z1),

ivdu-iv4l) ,size);
v5:=op(5,templ);
iv6:=int (v5,z2);
ivbl:=simplify(subs(z2=0,1iv5));
ivbu:=simplify(subs(z2=1,iv5));

ivbul:=simplify(subs(1n((z1-1+y1)/(y1+z1))
=1n(1-y1-z1)-1n(yl+z1) ,ivbu-ivbl) ,size);

v6:=op(6,templ);

iv6:=int (v6,22);
iv6l:=simplify(subs(z2=0,iv6));
iv6u:=simplify(subs(z2=1,iv6));
iv6ul:=simplify(iv6u-iv6l,size);

v7t:=simplify(subs(1ln(-y1-z1+z2)=1n(yl+z1-2z2),
1n(-z1+z2)=1n(z1-z2) ,0p(7,templ)) ,size);

v7tl:=collect (v7t,1n(z2));

nops (v7t1) ;

v71:=op(1,v7tl);
v7la:=collect(v71,1n(z1-z2));

nops (v71a);

v711:=op(1,v71a);
iv711:=int(v711,22);
iv711u:=simplify(subs(z2=1,iv711));

iv7111:=1imit (iv711,2z2=0);
iv711ul:=simplify(subs(1ln(-z1)=1n(z1),
In(-1+z1)=1n(1-z1) ,iv711u-iv7111) ,size);

v712:=0p(2,v71a);

iv712:=int (v712,22);

iv7121:=1imit (iv712,z2=0);
iv712u:=simplify(subs(z2=1,iv712));

iv712ul:=simplify(subs(1n(z1-1+y1)=1n(1-y1-z1),
1n(-z1-y1)=1n(yl+z1), 1iv712u-iv7121));

v72:=0p(2,v7tl);
v72a:=collect(v72,1n(1-z2));

nops (v72a) ;

v721:=op(1,v72a);
v721la:=collect(v721,1n(z1-z2+y1));
nops (v721a);

v7211:=op(1,v721a);
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iv7211:=int (v7211,22);

iv72111:=simplify (subs(z2=0,iv7211));

iv7211u:=1imit (iv7211,z2=1);

iv7211ul:=simplify(iv7211u-iv72111);

v7212:=0p(2,v721a);

iv7212:=int (v7212,22);

iv72121:=simplify (subs(z2=0,iv7212));

iv7212u:=1imit (iv7212,z2=1);

iv7212ul:=simplify(iv7212u-iv72121);

v722:=0p(2,v72a);

iv722:=int (v722,22) ;

iv7221:=simplify(subs(z2=0,iv722));

iv722u:=simplify(subs(z2=1,iv722));

iv722ul :=simplify (iv722u-iv7221);

abul:=simplify(subs(1n((yl+z1)/(z1-1+y1))=1n(yl+z1)
-1n(1-y1-z1) ,1n(z1/(-1+z1))=1n(z1)-1n(1-z1),
In((y1+z1-1)/(y1+z1))=1n(1-y1-z1)-1n(yl+z1),
1n(z1-1)=1n(1-z1),1n(y1+z1-1)=1n(1-y1-z1),

iviul+iv2ul+iv3ul+iv4ul+ivbul+iv6ul+iv71iul
+iv712ul+iv7211ul+iv7212ul+iv722ul) ,size);

abull:=collect(abul,dilog) ;

nops (a6ull);
pl:=simplify(op(1,abull),size);;
ipl:=int(pl,y1);
p2:=o0p(2,abull);
ip2:=simplify(int(p2,yl),size);
p3:=o0p(3,abull);

ip3:=int (p3,y1l);
p4:=op(4,abull);
ip4:=int(p4,yl);

p5:=simplify(subs (In(-y1-z1)=1n(yl+z1),
1n(-z1)=1In(z1), abull-pl-p2-p3-p4));
ip5:=int(p5,y1);
a7:=simplify(subs(ln(zi-1+y1)=1n(1-yi1-z1),
1n(-1/(y1+z1))=-1n(y1+z1) ,1n(1/(z1-1+y1))
=-1n(1-y1-z1),1n(1-1/(y1+z1))=1n(1-y1-z1)
-1n(y1l+z1), 1n(1+1/(z1-1+y1))=1In(yl+z1)
-In(1-y1-z1) ,ipl+ip2+ip3+ip4+ipb) ,size);
a7l:=simplify(subs(y1=0,a7));
a7u:=limit(a7,yl=1-z1);
a7ul:=simplify(subs(1n(z1/(-1+z1))=1n(z1)-1n(1-z1),
a7u-a7l) ,size);
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> a8:=map(int,expand(a7ul),zl);
> aBl:=simplify(subs(1n(1/(-1+z1))=-1n(1-z1),
In(-1/z1)=-1n(z1) ,1n((-1+z1) /z1)=1n(1-z1)-1n(z1),
In(z1/(-1+21))=1n(z1)-1n(1-z1) ,a8));
> aB2:=simplify(subs(1n((-1+z1)/z1)=1n(1-z1)-1n(z1),
In(z1/(-1+z1))=1n(z1)-1n(1-z1),a81));
> a83:=simplify(subs(dilog((-1+z1)/z1)=Pi"2/6
-dilog(1/z1)+(1n(1-z1)-1n(z1))*1n(z1)+I*Pi*1n(z1),
dilog(z1/(-1+z1))=Pi~2/6-dilog(1/(1-z1))
+(1n(z1)-1n(1-z1))*1n(1-z1)+I*1n(1-z1) ,a82));
> a84:=simplify(subs(dilog(-1/(-1+z1))=-dilog(1-z1)
-(1n(1-z1))"~2/2,dilog(1/z1)=-dilog(z1)
-(1n(z1))"2/2,1n(-1+z1)=1n(1-z1) ,a83));
a8l:=1imit(a84,z1=0) ;
a8u:=1imit(a84,z1=1);
a8ul:=a8u-a8l;

Eu4:=Uaverage-96*a8ul;
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