The ring of f should be a base ring of R. The degree of the map is preserved.
i1 = R = ZZ/101[a..c]
o1 = R
o1 : PolynomialRing
i2 = f = basis(2,R)
o2 = | a2 ab ac b2 bc c2 |
1 ZZ 6
o2 : Matrix R <--- (---)
101
A map of R-modules can be obtained by tensoring. i3 = f ** R
o3 = | a2 ab ac b2 bc c2 |
1 6
o3 : Matrix R <--- R
Go to main index.
Go to concepts index.