The ring of f should be a base ring of R. The degree of the map is preserved.
i1 = R = ZZ/101[a..c] o1 = R o1 : PolynomialRing
i2 = f = basis(2,R) o2 = | a2 ab ac b2 bc c2 | 1 ZZ 6 o2 : Matrix R <--- (---) 101A map of R-modules can be obtained by tensoring.
i3 = f ** R o3 = | a2 ab ac b2 bc c2 | 1 6 o3 : Matrix R <--- R
Go to main index.
Go to concepts index.