Matrix ** Ring

f ** R -- form the tensor product of a module map f with a ring R

The ring of f should be a base ring of R. The degree of the map is preserved.

     i1 = R = ZZ/101[a..c]
     
     o1 = R
     
     o1 : PolynomialRing
     
     i2 = f = basis(2,R)
     
     o2 = | a2 ab ac b2 bc c2 |
     
                  1        ZZ 6
     o2 : Matrix R  <--- (---)
                          101
     
A map of R-modules can be obtained by tensoring.
     i3 = f ** R
     
     o3 = | a2 ab ac b2 bc c2 |
     
                  1       6
     o3 : Matrix R  <--- R
     

Go to main index.

Go to concepts index.