i1 = R = ZZ/101[a..f]
o1 = R
o1 : PolynomialRing
i2 = monomialCurve(R,{3,5})
o2 = ideal | b5-a2c3 |
o2 : Ideal
And a genus 2 curve with one singular point: i3 = monomialCurve(R,{3,4,5})
o3 = ideal | c2-bd b2c-ad2 b3-acd |
o3 : Ideal
Two singular points, genus = 7: i4 = monomialCurve(R,{6,7,8,9,11})
o4 = ideal | de-bf e2-cf cd-be d2-ce c2-bd bce-af2 b2d-aef b2c-adf b3-acf |
o4 : Ideal
Finally, the smooth rational quartic in P^3 i5 = monomialCurve(R,{1,3,4})
o5 = ideal | bc-ad c3-bd2 ac2-b2d b3-a2c |
o5 : Ideal
Go to main index.
Go to concepts index.