i1 = R = ZZ/101[a,b];
i2 = m = symmetricPower(3, vars R)
o2 = | a3 a2b ab2 b3 |
1 4
o2 : Matrix R <--- R
i3 = rank source m
o3 = 4
i4 = S = ZZ/101[s_1 .. s_oo]
o4 = S
o4 : PolynomialRing
i5 = f = map(R,S,m)
o5 = map(R,S,| a3 a2b ab2 b3 |)
o5 : RingMap R <--- S
i6 = f s_2
2
o6 = a b
o6 : R
i7 = f vars S
o7 = | a3 a2b ab2 b3 |
1 4
o7 : Matrix R <--- R
i8 = kernel f
o8 = ideal | s_3^2-s_2s_4 s_2s_3-s_1s_4 s_2^2-s_1s_3 |
o8 : Ideal
i9 = generators oo
o9 = | s_3^2-s_2s_4 s_2s_3-s_1s_4 s_2^2-s_1s_3 |
1 3
o9 : Matrix S <--- S
i10 = f oo
o10 = 0
1 3
o10 : Matrix R <--- R
i11 = U = ZZ/101[t,u,v]
o11 = U
o11 : PolynomialRing
i12 = g = map(S,U,{s_1+s_2, s_2 + s_3, s_3+s_4})
o12 = map(S,U,| s_1+s_2 s_2+s_3 s_3+s_4 |)
o12 : RingMap S <--- U
i13 = f g
o13 = map(R,U,| a3+a2b a2b+ab2 ab2+b3 |)
o13 : RingMap R <--- U
i14 = kernel oo
o14 = ideal | u2-tv |
o14 : Ideal
i15 = f g generators oo
o15 = 0
1 1
o15 : Matrix R <--- R
The class of all ring maps is RingMap.
Go to main index.
Go to concepts index.