If r is nonzero, then M and N should be equal, or differ at most by a degree (i.e., by tensoring with a graded free module of rank 1).
i1 = R = ZZ/101[x]
o1 = R
o1 : PolynomialRing
i2 = map(R^2,R^3,0)
o2 = 0
2 3
o2 : Matrix R <--- R
i3 = map(R^2,R^2,x)
o3 = | x 0 |
| 0 x |
2 2
o3 : Matrix R <--- R
i4 = q = map(R^2,R^2,x,Degree=>1)
o4 = | x 0 |
| 0 x |
2 2
o4 : Matrix R <--- R
i5 = isHomogeneous q
o5 = true
Go to main index.
Go to concepts index.