The polynomial has a term (-1)^i T_0^(d_0) ... T_(n-1)^(d_(n-1)) in it for each basis element of C_i with multi-degree {d_0,...,d_(n-1)}. When the multi-degree has a single component, the term is (-1)^i T^(d_0).
The variable T is defined in a hidden local scope, so will print out as $T and not be directly accessible.
i1 = R = ZZ/101[x_0 .. x_3,y_0 .. y_3]
o1 = R
o1 : PolynomialRing
i2 = m = matrix table (2, 2, (i,j) -> x_(i+2*j))
o2 = | x_0 x_2 |
| x_1 x_3 |
2 2
o2 : Matrix R <--- R
i3 = n = matrix table (2, 2, (i,j) -> y_(i+2*j))
o3 = | y_0 y_2 |
| y_1 y_3 |
2 2
o3 : Matrix R <--- R
i4 = f = flatten (m*n - n*m)
o4 = | x_2y_1-x_1y_2 x_1y_0-x_0y_1+x_3y_1-x_1y_3 -x_2y_0+x_0y_2-x_3y_2+x_2y_3 -x_2y_1+x_1y_2 |
1 4
o4 : Matrix R <--- R
i5 = poincare cokernel f
3 2
o5 = 2 $T - 3 $T + 1
o5 : ZZ[ZZ^1]
(cokernel f).poincare = p -- inform the system that the Poincare polynomial of the cokernel of f is p. This can speed the computation of a Groebner basis of f.
i6 = R = ZZ/101[t_0 .. t_17]
o6 = R
o6 : PolynomialRing
i7 = T = (degreesRing R)_0
o7 = $T
o7 : ZZ[ZZ^1]
i8 = f = genericMatrix(R,t_0,3,6)
o8 = | t_0 t_3 t_6 t_9 t_12 t_15 |
| t_1 t_4 t_7 t_10 t_13 t_16 |
| t_2 t_5 t_8 t_11 t_14 t_17 |
3 6
o8 : Matrix R <--- R
i9 = (cokernel f).poincare = 3-6*T+15*T^2-20*T^3+15*T^4-6*T^5+T^6
6 5 4 3 2
o9 = $T - 6 $T + 15 $T - 20 $T + 15 $T - 6 $T + 3
o9 : ZZ[ZZ^1]
i10 = gb f
o10 = gb | t_0 t_3 t_6 t_9 t_12 t_15 |
| t_1 t_4 t_7 t_10 t_13 t_16 |
| t_2 t_5 t_8 t_11 t_14 t_17 |
o10 : GroebnerBasis
Keys used:
Go to main index.
Go to concepts index.