It is assumed that f and g both have the same target. For example,
i1 = R = ZZ/101[a..f]
o1 = R
o1 : PolynomialRing
i2 = f = matrix {{a^2, b*c, c*d}, {a-b, c-d, e-f}}
o2 = | a2 bc cd |
| a-b c-d e-f |
2 3
o2 : Matrix R <--- R
i3 = g = genericMatrix(R, a, 2, 3)
o3 = | a c e |
| b d f |
2 3
o3 : Matrix R <--- R
i4 = f | g
o4 = | a2 bc cd a c e |
| a-b c-d e-f b d f |
2 6
o4 : Matrix R <--- R
If one of the arguments is ring element or an integer, then it
will be multiplied by a suitable identity matrix. i5 = f | 1
o5 = | a2 bc cd 1 0 |
| a-b c-d e-f 0 1 |
2 5
o5 : Matrix R <--- R
See also ||.
Go to main index.
Go to concepts index.