i1 = R = ZZ/101[a..d]
o1 = R
o1 : PolynomialRing
i2 = I = monomialCurve(R,{1,3,4})
o2 = ideal | bc-ad c3-bd2 ac2-b2d b3-a2c |
o2 : Ideal
i3 = A = R/I
o3 = A
o3 : QuotientRing
i4 = jacobian A
o4 = | 0 c2 -d -2ac |
| -d2 -2bd c 3b2 |
| 3c2 2ac b -a2 |
| -2bd -b2 -a 0 |
4 4
o4 : Matrix A <--- A
For a one row matrix, the derivatives w.r.t. all the variables
is given i5 = R = ZZ/101[a..c]
o5 = R
o5 : PolynomialRing
i6 = p = symmetricPower(2,vars R)
o6 = | a2 ab ac b2 bc c2 |
1 6
o6 : Matrix R <--- R
i7 = jacobian p
o7 = | 2a b c 0 0 0 |
| 0 a 0 2b c 0 |
| 0 0 a 0 b 2c |
3 6
o7 : Matrix R <--- R
Caveat: if a matrix or ideal over a quotient polynomial ring S/J
is given, then only the derivatives of the given elements are
computed and NOT the derivatives of elements of J.
Go to main index.
Go to concepts index.