The field k is the coefficient ring of the ring of M. The degree i may be a multi-degree, represented as a list of integers.
i1 = R = ZZ/101[a..c]
o1 = R
o1 : PolynomialRing
i2 = f = basis(2,R)
o2 = | a2 ab ac b2 bc c2 |
1 ZZ 6
o2 : Matrix R <--- (---)
101
A map of R-modules can be obtained by tensoring. i3 = f ** R
o3 = | a2 ab ac b2 bc c2 |
1 6
o3 : Matrix R <--- R
i4 = basis(2, ideal(a,b,c)/ideal(a^2,b^2,c^2))
o4 = | b c 0 |
| 0 0 c |
| 0 0 0 |
o4 : Matrix
i5 = basis(R/(a^2-a*b, b^2-c^2, b*c))
o5 = | 1 a ab ac ac2 b c c2 |
R 1 ZZ 8
o5 : Matrix (--------------------) <--- (---)
2 2 2 101
a - a b,b - c ,b c
i6 = S = ZZ/101[x,y,z,Degrees=>{{1,3},{1,4},{1,-1}}]
o6 = S
o6 : PolynomialRing
i7 = basis({7,24}, S)
o7 = | x4y3 |
1 ZZ 1
o7 : Matrix S <--- (---)
101
Go to main index.
Go to concepts index.