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In part (a) we could have integrated on y instead of on x by a similar maneuver.
Note that in Exercise 1 of this section the integral f xy ds along the same contour is
evaluated. °

EXERCISES 4. |
1. Using the contour of Example 1, show that

1,0 1 1
f xyds:f x(1 — x2) 1+4x2dx=f yy5/4 = ydy.
0 0 0

,1

Hint: Recall from elementary calculus that ds=(£)V1+ (dy/dx)? dx
()14 (dx/ dy)? dy, and that ds > 0. Evaluate the contour integral by integrating

either on x or y. One is slightly easier.

Let C be that portion of the curve y = x? lying between (0, 0) and (1, 1). Let F(x,y) =
x +y + 1. Evaluate these integrals along C.

1,1 1,1
2. f F(x,y)dx 3. f F(x,y)dy
0,0 0,0

Let C be that portion of the curve x2 + y% = 1 lying in the first gquadrant. Let F(x, y) =%
Evaluate these integrals along C.

1,0 1,0 1,0
4. f F(x,y)dx 5. f F(x,y)dy 6. f F(x,y)ds
0,1 0,1 0,1

7. Show that foo’_ll ydx = —n/2. The integration is along that portion of the circl
y? = 1 lying in the half plane x > 0. Be sure to consider signs in taking square I

8. Evaluate f;)éwl x dy along the portion of the ellipse x2 +9y* =9 lying in t
second, and third quadrants.

4.2 CoMPLEX LINE INTEGRATION

We now study the kind of integral encountered most often with complex 1
the complex line integral. We will find that it is closely related to the real linein
just discussed.

We begin, as before, with a smooth arc that connects the points A and
plane. We now regard the xy-plane as being the complex z-plane. The arc
into n smaller arcs and, as shown in Fig. 4.2-1, successive endpoints of t
have coordinates (Xo, Y0), (X1, ), .. Xns Y,). Alternatively, we cou
the endpoints of these smaller arcs are at zo = Xo + Y0, 21 = Xy 4+ iY1,€
of vector chords are then constructed between these points. As in our di
real line integrals, the vectors progress from A to B when we are integrat
to B along the contour. Let Az be the complex number corresponding




170 Chapter 4 Integration in the Complex Plane

The length L of the path of integration is simply the circumference of the given
quarter circle, namely, /2. Thus, applying the ML inequality, , a)

0+il .
f eMtdz fe%. b) ;

140 ; c) i
i

EXERCISES 0.4 The £

. X 14 circul
1. In Example 1 we determined the approximate value of J;) +i0 (z + 1)dz taken along the ‘ unit ci

contour y = %2, Find the exact value of the integral and compare it with the approximate
result.

2. Consider foljizl 7 dz performed along the contour y = 2x(2 — X)- Find the approximat
value by means of the two-term series f(z1)Az1 + f(z2)Az2. Take z1, 22, 21, Azo 2
shown in Fig. 4.2-6. Now find the exact value of the integral and compare it with th

approximate result.

. 142 . . .
3. Consider +21 17 along the contour of Exercise 2. Evaluate this by using & two-term
0-+i0 g y

series approximation as is done in that problem. Explain why this result agrees perfect
with the exact value of the integral.

Evaluate fil 7 dz along the contour C, where Cis

4. the straight line segment lying along x +y = 1;

5. the parabola y = 1- x)%

6. the portion of the circle 2 +y? = 1 in the first quadrant. Compare the answers
Exercises 4, 5, and 6.

Contour y = 2x(2 — x)

Figure 4.2-6
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et dz
_ 0toz=1along the liney =0;
=1toz= 1 + i along the line x = 1;
1 z‘ _ 1+ itoz = Oalongthe line y = x. Verify that the sum of your three answers
0. This is a specific example of a general result given in the next section.

ful tion z(1) = oit = cost -+ isint can provide a useful parametric representation of

arcs (see Fig.3.1-1). If ¢ ranges from O to 27 we have 2 representation of the whole

cle, while if £ goes from o to f we generate an arc extending from &% o ¢t on the unit
Use this parametric technique to perform the following integrations.

19 -
! dz along |z| = 1, upper half plane
z

=1
l dz along |z| = 1, lower half plane
Z

i
f 7% dz along |z| = 1, first quadrant
Vi

how that x = 2¢ost, Y = sin t, where ¢ ranges from 0 to 2m, yields a parametric repre-
; entation of the ellipse x% /4 + y* =1.Use this representation to evaluate f; 7 dz along
the portion of the ellipse in the first quadrant.

. In Example 3 we evaluated flz:u 7% dz along the parabola y = x* by means of the

parametric representation x = /1,y = t.Show that the representation x = £,y = £ can
4lso be used, and perform the integration using this parametrization.

. a) Finda parametric representation of the shorter of the two arcs lying along (x— l)2 +
(y— 1)? = 1 that connects z = 1withz =1.
Hint: See discussion preceding Exercises 810 above, where parametrization of a
circle is discussed.

b) Find fli 7 dz along the arc of (a), using the parametrization you have found.

4, Consider [ = 02:1.2) o2 dz taken along the line x = 2y. Without actually doing the inte-
gration, show that |I| < J5e3.
15. Consider I = fli(l /z*)dz taken along the line x +y = 1. Without actually doing the
integration, show that || < 4:/2.
16. Consider [ = fil ¢i1ogZ 7 taken along the parabolay =1 — x2. Without doing the inte-
gration, show that || = 1.479¢™2.
17. a) Let g(t) be a complex function of the real variable f.

Express fﬂb g(t)dt as the limit of a sum. Using an argument similar to the one used in
deriving Eq. (4.2-14), show that for b > a we have

b b
\f g(r)dt 5f lg(h)ldt. (4.2-18)
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b) Use Eq. (4.2-18) to prove that

1 : 2
\f Jreétdi £ <.
0 3

18. Write a MATLAB program that will enable you to verify the entries in the table in
Example 1; i€, write a program that will yield approximations to folfz; (z + 1)dz along
the contour y = %2 as shown in Fig. 4.2-2. Show also that if youused a 50-term approx-

imation to the integral the result would be 1.00010 4 i1.99990.

4.3 CONTOUR INTEGRATION AND GREEN’S THEOREM

In the preceding section, we discussed piecewise smooth curves, called contours
that connect two points A and B. If these two points happen to coincide, the resulting
curve is called a closed contour. '

DEFINITION (Simple Closed Contour) A simple closed contour is a contou
that creates two domains, a bounded one and an unbounded one; each domain ha
the contour for its boundary. The bounded domain is said to be the interior of thi
contour.

Examples of two different closed contours, One of which is simple, are sho
in Fig. 4.3-1.

A simple closed contour is also known as a Jordan contour, named after
French mathematician Camille Jordan (1838—1922). That a piecewise smooth
forming a simple 10op, as in Fig. 4.3-1(2), always creates a bounded domain @
the loop) and an unbounded domain (outside the loop) seems self-evident bu
not obvious to a pure mathematician. The proof is difficult and was first present
1905 by an American, Oswald Veblen. The resulting theorem 18 pamed after J
who proposed the hypothesis. ‘ f

We will often be concerned with line integrals taken around a simple ¢
contour.

The integration is said to be performed in the positive sense around the €

i the interior of the contour is on our left as we move along the conto

direction of integration. :
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