The method just used can be modified so that angular sectors of the form $0 < \arg z < \alpha$, where α is not constrained to be $\pi/2$, can be mapped onto the interior of the unit circle (see Exercise 33 of this section).

8,4

EXERCISES

- **1.** a) Derive Eq. (8.4–4) from Eq. (8.4–1).
 - **b)** Verify that Eq. (8.4–7) is equivalent to Eq. (8.4–1).
- 2. Suppose that the bilinear transformation (see Eq. 8.4–1) has real coefficients a, b, c, d. Show that a curve that is symmetric about the x-axis has an image under this transformation that is symmetric about the u-axis.
- 3. Derive Eq. (8.4–24) (the invariance of the cross ratio) by following the steps suggested in the text.
- **4.** If a transformation w = f(z) maps z_1 into w_1 , where z_1 and w_1 have the same numerical value, we say that z_1 is a *fixed point* of the transformation.
 - a) For the bilinear transformation (Eq. (8.4-1) show that a fixed point must satisfy

$$cz^2 - (a-d)z - b = 0.$$

- b) Show that unless $a = d \neq 0$ and b = c = 0 are simultaneously satisfied, there are at most two fixed points for this bilinear transformation.
- c) Why are all points fixed points if $a = d \neq 0$ and b = c = 0 are simultaneously satisfied? Refer to Eq. (8.4–1).

Using the result of Exercise 4(a), find the most general form of the bilinear transformation w(z) that has the following fixed points.

5.
$$z = -1$$
 and $z = 1$ **6.** $z = 1$ and $z = i$

For the transformation w = 1/z, what are the images of the following curves? Give the result as an equation in w or in the variables u and v, where w = u + iv.

7.
$$y = 1$$
 8. $x - y = 1$ 9. $|z - 1 + i| = 1$ 10. $|z + 1 + i| = \sqrt{2}$

11.
$$y = x$$
 12. $|z - 3 - 3i| = \sqrt{2}$ **13.** $|z - \sqrt{3} - i| = 1$

For the transformation w = (z + 1)/(z - 1) what are the images of the following curves? Give the result as an equation in w or in the variables u and v.

14.
$$|z| = 1$$
 15. $|z| = 2$ **16.** $|z + 1| = 2$

Onto what domain in the w-plane do the following transformations map the domain |z-1|<1?

17.
$$w = \frac{z}{z-1}$$
 18. $w = \frac{z-1}{z}$ 19. $w = \frac{z-1}{(1+i)z}$

Onto what domain 1 < Re z < 2?

20.
$$w = \frac{z}{z-1}$$

Find the bilinear tra image points w_1 , w_2

- **23.** a) $z_1 = 0, z_2$.
 - b) What is the
- **24.** a) $z_1 = i$, $z_2 = i$
- **b)** What is the **25. a)** $z_1 = \infty, z_2$
- **b)** What is the
- **26.** a) $z_1 = i$, $z_2 =$ b) What is the
- 27. The complex impersions generator of radia $Z(\omega)$ progresses line Re Z=R, It $1/Z(\omega)$. Use the print the complex pla
- **28.** a) A circle of radi into another cir show that this n

and $Y(\infty)$.

- b) Is the image of identical to the
- c) Does the genera circle in the *z*-pl
- d) Consider the spe ρ is mapped by t $|a|\rho$. Thus in this images of each ϵ

form 0 < arg : interior of the unit

pefficients a, b, c, d. under this transfor-

g the steps suggested

e the same numerical

int must satisfy

satisfied, there are at simultaneously satis-

near transformation

rves? Give the result

 $=\sqrt{2}$

lowing curves? Give

is map the domain

Onto what domain in the w-plane do the following transformations map the domain **21.** $w = \frac{z}{2z - 3}$ **22.** $w = \frac{z - 1}{z - 2}$ 1 < Re z < 2?

$$\frac{1}{20}, w = \frac{z}{z - 1}$$

21.
$$w = \frac{z}{2z - 3}$$

22.
$$w = \frac{z-1}{z-2}$$

Find the bilinear transformation that will map the points z_1 , z_2 , and z_3 into the corresponding image points w_1 , w_2 , and w_3 as described below:

- 23. a) $z_1 = 0$, $z_2 = i$, $z_3 = -i$; $w_1 = 1$, $w_2 = i$, $w_3 = 2 i$.
 - b) What is the image of |z| < 1 under this transformation?
- **24.** a) $z_1 = i$, $z_2 = -1$, $z_3 = -i$; $w_1 = 1 + i$, $w_2 = \infty$, $w_3 = 1 i$.
 - b) What is the image of |z| > 1 under this transformation?
- **25.** a) $z_1 = \infty$, $z_2 = 1$, $z_3 = -i$; $w_1 = 1$, $w_2 = i$, $w_3 = -i$. b) What is the image of the domain Re(z-1) > Im z under this transformation?
- **26. a)** $z_1 = i$, $z_2 = -i$, $z_3 = 1$; $w_1 = 1$, $w_2 = -i$, $w_3 = -1$.
 - b) What is the image of |z| < 1 under this transformation?
- 27. The complex impedance at the input of the circuit in Fig. 8.4-9 when driven by a sinusoidal generator of radian frequency ω is $Z(\omega) = R + i\omega L$. When ω increases from 0 to ∞ , $Z(\omega)$ progresses in the complex plane from (R,0) to infinity along the semiinfinite line Re Z = R, Im $Z \ge 0$. The complex admittance of the circuit is defined by $Y(\omega) =$ $1/Z(\omega)$. Use the properties of the bilinear transformation to determine the locus of $Y(\omega)$ in the complex plane as ω goes from 0 to ∞ . Sketch the locus and indicate Y(0), Y(R/L)
 - 28. a) A circle of radius $\rho > 0$ and center $(x_0, 0)$ is transformed by the inversion w = 1/zinto another circle. Locate the intercepts of the image circle on the real w-axis and show that this new circle has center $x_0/(x_0^2 - \rho^2)$ and radius $\rho/|x_0^2 - \rho^2|$.
 - b) Is the image of the center of the original circle under the transformation w=1/zidentical to the center of the image circle? Explain.
 - c) Does the general bilinear transformation (see (Eq. 8.4-1)) always map the center of a circle in the z-plane into the center of the image of that circle in the w-plane? Explain.
 - d) Consider the special case of Eq. (8.4–1), w = az + b. Show that the circle $|z z_0| =$ ρ is mapped by this transformation into a circle centered at $w_0 = az_0 + b$ with radius $|a|\rho$. Thus in this special case the original circle and its image have centers that are images of each other under the given transformation.

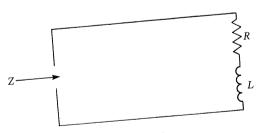


Figure 8.4-9