
UNDERSTANDING THE DIAGONALIZATION PROBLEM

Roy Skjelnes

Abstract. These notes are additional material to the course 5B1307, given fall

2003. The style may appear a bit coarse and consequently the student is encouraged

to read these notes through a writing pencil and with a critical mind.

§1.- Linear Maps

1.1. Linear maps. A map T : Rn → Rm is a linear map if

T (aX + bY ) = aT (X) + bT (Y )

for all scalars a and b, and all vectors X and Y .

1.1.1. Note that T (0) = 0 for a linear map T .

1.2. Example. The zero map T : Rn → Rm that maps any vector X to the zero
vector 0 is linear. Any other constant map is not linear.

1.3. Example. When n = m we have the identity map T : Rn → Rn that maps
any vector X to itself. The identity map is denoted with id or idRn .

1.4. Example. The map T : R4 → R3 defined by sending an arbitrary vector
X = (x, y, z, w) to

T (X) = (2x− z, x+ y + z, 2w − 5y)

is linear.

1.5. Example. Let L be a given line in R2 that passes through the origin. The
map T : R2 → R2 that maps a vector X to its reflection through the line L is
linear (draw some pictures to get a feeling for this particular map).

1.6. Coordinate matrix. We will make the notion of linear maps more concrete,
and in fact classify the possible linear maps. To do so we introudce the following.
Let β = {F1, . . . , Fn} be a fixed basis of Rn. Any vector X ∈ Rn is then a linear
combination

X =
n∑
i=1

aiFi.

The linear combination is unique, up to order, and consequently we define the
coordinate matrix [X]β , or [X] for short, as the matrix

[X]β =


a1

a2
...
an

 .
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1.6.1. Note that a fixed vector X have different coordinate matrices for different
bases.

1.7. Matrix representation. Let T : Rn → Rm be a linear map, and let
β = {F1, . . . , Fn} be a basis of Rn, and let γ be a basis of Rm. Furthermore, we
let A be the (m× n)-matrix

A = Mat(T, β, γ) = [ [T (F1) ]γ [T (F2) ]γ · · · [T (Fn) ]γ ] .

Look now carefully and understand the notation above; You apply the linear map
T to the vector F1, and obtain a vector T (F1) in Rm. That particular vector T (F1)
is expressed in terms of the basis γ, yielding an (m× 1)-matrix [T (F1)]γ that will
constitute the first column of A. Then you repeat the procedure with F2, . . . , Fn.

We say that A = Mat(T, β, γ) is the matrix representation of T with respect to
the bases β and γ. If both β and γ are the standard bases, then we say that A is
the standard matrix representing T .

Theorem 1.8. Let T : Rn → Rm be a linear map, and β a basis for Rn, and γ a
basis for Rm. For any vector X ∈ Rn, we have the following formulae

[T (X) ]γ = Mat(T, β, γ)[X]β .

Proof. Let β = {F1, . . . , Fn} be a basis of Rn and write the vectorX =
∑n
i=1 aiFi.

As the map T is linear we have that

T (X) =
n∑
i=1

aiT (Fi).

Let now A = Mat(T, β, γ). By taking brackets the above expression reads

[T (X)]γ = A


a1

a2
...
an

 .
As the matrix [ a1 a2 · · · an ]t is the coordinate matrix [X]β we have proven
the formula.

1.7.1. Remark. Thus, when having fixed bases for Rn and Rm, the whole business
of linear maps is reduced to matrices and matrix multiplication. A linear map gives
a matrix, and aa matrix determines a linear map - which you verify. However linear
maps are not exactly the same as matrices, but linear maps with fixed bases β and
γ are.

1.8. Example. Consider the the line L = {(x, y) | 2x − y = 0}, and the linear
operator T : R2 → R2 given by reflection through L. We will represent that
operator with a matrix. We chose the standard basis β = γ = {E1, E2}, where
E1 = (1, 0), and E2 = (0, 2). Now, in order to find the standard matrix of T , we
need to find the reflections of E1 and E2. By drawing accurate pictures you see
that T (5, 0) = (−3, 4) such that, by linearity,

T (E1) =
1
5

(−3, 4).
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Similarily you find that T (E2) = 1
5 (4, 3). We consequently get that

A = [ [T (E1)]γ [T (E2)]γ ] =
[ −3

5
4
5

4
5

3
5

]
.

Hence, for any vector X = (x, y) = x · E1 + y · E2 we have that

[T (X)]γ =
[ −3

5
4
5

4
5

3
5

] [
x
y

]
β

=
[ −3x+4y

5
4x+3y

5

]
γ

.

1.9. Composition. Let T : Rn → Rm be a linear map and S : Rm → Rk be
another. The composition of T and S is denoted by S ◦T : Rn → Rk and is defined
by taking a vector X ∈ Rn to

S ◦ T (X) := S(T (X)).

Note that unless k = n, then we have not defined the composition of T ◦ S.

1.9.1. Remark. The composition S ◦T is to be read from the right to the left! First
you apply T , thereafter S.

Theorem 1.10. Let β, β′ and β′′ be bases of Rn,Rm and Rk, respectively. Let
T : Rn → Rm be a linear map, and let A = Mat(T, β, β′) be the matrix representing
T . Let S : Rm → Rk be another linear map, represented by B = Mat(S, β′, β′′).
Then we have that the matrix representing the composition S ◦T with respect to the
bases β and β′′ is

Mat(S ◦ T, β, β′′) = BA.

Proof. Left as an exercise for the reader.

1.10.1. Pay attention to which order the two matrices A and B are to be multiplied.

§2.- The diagonalization problem

2.1. Change of basis. We now rally into a complicated part of linear algebra,
the subject of basis. But why care of other bases than the standard basis as the
others seem so complicated. For motivation we redo the Example 1.8.

2.2. Example. As in Example 1.8, we let L be the line cut out by the equation
2x − y = 0, and we let T : R2 → R2 be given as the reflection through that line.
We will represent the linear map T with respect to another basis than the standard
basis. Let F1 be any point on the line L, and different from (0, 0), say F1 = (1, 2).
And let F2 = (−4, 2). If you draw the picture you will see that F2 lies on a line
N that passes through origin, and which is perpendicular to L. Instead of our
particular F2, we could have chosen any point on N , different from (0, 0).

You convince yourself that F1 and F2 are linearly independent (they do not lie
on the same line), and consequently β = {F1, F2} is a basis. We shall now find the
matrix A = Mat(T, β, β) representing T . To do so we need to find the reflections
of F1 and F2, and thereafter express the reflections T (F1) and T (F2) as linear
combination of F1 and F2. However, this is not at all hard as

T (F1) = F1 and T (F2) = −F2,
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and consequently we have that the matrix we are looking for is

D = [ [T (F1)β ][T (F2)]β ] =
[

1 0
0 −1

]
.

2.2.1. The bottom line. The point with the two examples 1.8 and 2.2 is that they
show different representations of the same problem. The matrix B of Example 2.2
is much more easy to work with than the matrix A of Example 1.8.

2.3. Change of basis matrix. Let β and γ be two bases for Rn. The matrix
representation P = P (id, β, γ) of the identity map id : Rn → Rn with respect to
the bases β and γ is the change of basis matrix from β to γ.

2.4. Example. The two vectors F1 = (1, 2) and F2 = (1, 0) form a basis β for
the plane R2. The formulae for the change of basis matrix from β to the standard
basis γ = {E1 = (1, 0), E2 = (0, 1)} is

P = [ [id(F1)]γ [id(F2)]γ ] .

As we have id(F1) = F1 = 1 · E1 + 2 · E2 and id(F )2) = F2 = 1 · E1 we get

P =
[

1 1
2 0

]
.

2.5. Example. We use the notation from Example 2.4. We will describe the
change of basis matrix from the standard basis to the basis β = {F1, F2}. We have

E1 = 1 · F2 and E2 =
1
2
· F1 −

1
2
· F2,

and consequently we obtain that the change of basis matrix is

Q = [ [id(E1)]β [id(E2)]β ] =
[

0 1
2

1 − 1
2

]
.

2.5.1. Note that the matrix Q of Example 2.5 equals the inverse of P ; the matrix
of Example 2.4.

Proposition 2.6. If P is the change of basis matrix from a basis β to γ, then P−1

is the change of basis matrix from γ to β.

Proof. The result is a consequence of the composition Theorem 1.10.

2.7. The equation A = P−1DP . Let T : Rn → Rn be a linear map and let
id : Rn → Rn denote the identity map. We clearly have that the two compositions
id ◦T = T ◦ id, or equivalently that the diagram

Rn
T

−−−−→ Rn

id

y yid

Rn
T

−−−−→ Rn
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is commutative. We fix now a basis β for Rn and let A = Mat(T, β, β) denote
the matrix representing T with respect to β. If γ is another basis, then we let
D = Mat(T, γ, γ) represent T with respect to γ and we let P = Mat(id, β, γ)
denote the base change matrix from β to γ.

In our diagram above we think of having fixed the basis β on the top row, and
γ on the bottom row. Theorem 1.10 combined with the identity id ◦T = T ◦ id now
yield the identity of matrices PA = DP . Or equivalently that

A = P−1DP and PAP−1 = D. (2.7.1)

2.7.1. Remark. There is no point to remember the expression 2.7.1, but you should
remember the set up and the diagram above.

2.8. The diagonalization problem. The problem of diagonalization is the fol-
lowing. Given a (n×n)-matrix A, does there exist an invertible matrix P such that
PAP−1 is a diagonal matrix. The way to understand the problem is to think of
the matrix A as one representation of a linear map T with respect to some basis.
Can we find another basis such that the matrix representation becomes a diagonal
matrix?

2.9. Example. Consider the matrix A of Example 1.8. The matrix

A =
[
− 3

5
4
5

4
5

3
5

]
we know from Example 2.2 is diagonalizable. Because the matrix A was the repre-
sentation of a linear map T that we saw in Example 2.2. had a representation by a
diagonal matrix. Thus if P is the base change matrix from the standard basis (that
gave the matrix A) to the basis β in Example 2.2, then we obtain that D = PAP−1.

Let us in this example verify the statement above. Thus we need to find the
matrix P = Mat(id, β′, β), where β′ is the standard basis. One way to find P is
actually to first find P−1; the base change matrix from β to β. It is easy to read off
the coordinate matrices for the vectors F1 and F2 in the standard basis. We have
F1 = (1, 2) and F2 = (−4, 2) such that

P−1 = Mat(id, β, β) =
[

1 −4
2 2

]
,

hence

P = (P−1)−1 =
[

2
10

4
10

− 2
10

1
10

]
.

Finally one checks that

PAP−1 =
[

2
10

4
10

− 2
10

1
10

] [
− 3

5
4
5

4
5

3
5

] [
1 −4
2 2

]
=
[

1 0
0 −1

]
= D.
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2.10. Iterations. One reason for the search for diagonal matrices D is the fact
that it is easy to compute iterations Dr; you simply get a diagonal matrix where the
diagonal elements are the diagonal elements of D raised to the power r. Imagine
that you are given a matrix A and want to compute Ar, for some given postive
integer r. Assume furthermore that you have solved the diagonalization problem
and found a matrix P such that PAP−1 = D is diagonal. As we have that A =
P−1DP we get that

Ar = (P−1DP )r = P−1DrP. (2.10.1)

To compute Ar we nee to compute the product of the three matrices P−1, Dr and
P .

2.11. Example. Returning to the matrix A of Example 2.8. Say we want to
compute, for some reason, A205. From the Example 2.8 we have solved the diago-
nalization problem such that A = P−1DP , and such that

A205 = P−1D205P = P−1DP = A.

As surprisingly simple solution! But what have we actually done - we have done
205 reflections through a given fixed line L in R2. Two, and any even number
of reflections acts as the identity, i.e. nothing happens. Thus any odd number of
reflections, as 205, equals one reflection.

§3.- Eigenvectors and the Cayley-Hamilton Theorem

3.1. Eigen -values and -vectors. We have so far stated the diagonalization
problem, but not yet attacked it. We observe the following simple, but important
fact. If T : Rn → Rn is a linear map, and β is a basis such that the matrix
representation of T is a diagonal matrix then we have for any vector F of the basis
β that T (F ) = λF , for some scalar λ. We are thus lead to the following definition.

3.2. Definition. Let T : Rn → Rn be a linear map. If there exists a non-
zero vector X such that T (X) = λX for some scalar λ then we say that X is an
eigenvector and that λ is the corresponding eigenvalue.

3.3. Note that the identity T (X) = λX is equivalent with (λ · id−T )(X) = 0. We
are thus looking for the kernel of the linear map S = λ · id−T . If we fix a basis β for
Rn and denote by A the matrix representing T , then the matrix λ1n−A represents
the linear map S = (λ·id−T ) -where 1n is the identity matrix. Furthermore we have
that λ is an eigenvalue if there is a non-trivial solution to (λ · 1n − A)[X]β = 0. A
matrix has non-trivial solution or a non-trivial kernel if and only if its determinant
is zero. Consequently the eigenvalues of T are precisely those values λ such that

det(λ1n −A) = 0.

3.4. Definition. Let A be an (n× n)-matrix. The characteristic polynomial of A
is a polynomial in λ defined as

cA(λ) = det(λ · 1n −A).

3.4.1. Remark. Note that if A is a matrix representing a linear map T , then the
zeros of the characteristic polynomial cA(λ) are precisely the eigenvalues of T .

3.4.2. Remark. Note that the degree of the characteristic polynomial cA(λ) equals
n; the number of rows and columns of A.



UNDERSTANDING THE DIAGONALIZATION PROBLEM 7

3.5. Example. Consider the matrix

A =
[
− 3

5
4
5

4
5

3
5

]
.

The characteristic polynomial cA(λ) is

cA(λ) = det
[
λ+ 3

5 − 4
5

− 4
5λ − 3

5

]
= λ2 − 1.

Consequently the eigenvalues are λ = 1 and λ = −1.

Lemma 3.6. Let T : Rn → Rn be a linear map. The characteristic polynomial
cA(λ) is independent of the matrix A representing T .

Proof. Let β be a basis and A = Mat(T, β, β), and γ another basis with D =
Mat(T, γ, γ). We need to show that their characteristic polynomials cA(λ) = cD(λ)
are equal. Let P be the base change matrix from the base β to γ. As explained in
(2.7.1) we then obtain the equality D = PAP−1. Consequently we have that

cD(λ) = det(λ1n −D) = det(λ1n − PAP−1)

= det(P (λ1n −A)P−1) = det(P )cA(λ) det(P−1) = cA(λ).

And we have proven our claim.

Because of the above lemma we talk about the characteristic polynomial cT (λ)
of a linear map T : Rn → Rn without specifying a matrix A that represents the
map T .

3.7. Example. We have that the diagonal matrix

D =
[

1 0
0 −1

]
has characteristic polynomial cD(λ) = λ2−1. Equal to the characteristic polynomial
cA(λ) of the matrix A of Example 3.4. Indeed, both matrices represent the same
linear operator T described in Example 1.8 and Example 2.2.

Theorem 3.8. [The Cayley-Hamilton Theorem] Let A be a (n × n)-matrix and
cA(λ) its characteristic polynomial. Then we have that the matrix cA(A) is the
zero-matrix, that is cA(A) = 0.

Proof. Recall that if M is any (n×n)-matrix and C(M) its conjugate, then we have
the formulae det(M)1n = MC(M). Thus with M = λ1n − A we get the following
equation

cA(λ)1n = (λ1n −A)C(M) (3.8.1.)

By taking out the variable λ we can write the conjugate matrix of λ1n −A as

C(M) = C0 + λC1 + · · ·+ λn−1Cn−1.

In the above expression the matrices C0, . . . , Cn−1 contain no positive powers of λ,
simply scalars. Multiplying the above expansion of the conjugate with M = λ1n−A
yields the following expression of matrices

λC0 −AC0 + λ2C1 − λAC1 + · · ·+ λnCn−1 − λn−1ACn−1. (3.8.2)

In the expression (3.8.2) we substitute λ with A and obtain zero. As (3.8.2) is the
right hand side of (3.8.1) we get that cA(A)1n is zero. Thus cA(A) is zero, and we
have proven the statement.
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§4.- Eigenspaces

We continue with our attack on the diagonalization problem.

Lemma 4.1. Let T : Rn → Rn be a linear map, and let X1, . . . , Xk be eigenvectors
corresponding to distinct eigenvalues λ1, . . . , λk. Then the vectors X1, . . . , Xk are
linearly independent.

Proof. We prove the statement by induction on the number k of eigenvectors. If
k = 1 there is nothing to prove as one non-zero vector is linearly independent.
Assume the statement is valid for k number of eigenvectors, we shall prove the
statement for k + 1 number of eigenvectors. Given a linear combination

t1X1 + · · ·+ tk+1Xk+1 = 0. (4.1.1)

In order to show that the vectors X1, . . . , Xk+1 are linearly independent we need to
show that t1 = · · · = tk+1 = 0. We apply the operator T to the expression (4.1.1).
On one hand we get that T (0) = 0 since T is linear. On the other hand we get,
since the Xi’s are eigenvectors that

0 = T (t1X1 + · · ·+ tk+1Xk+1) = t1λ1X1 + · · ·+ tk+1λk+1Xk+1. (4.1.2)

We manipulate furthermore the expression (4.1.1) above by multiplication with the
number λk+1 and obtain that

0 = t1λk+1X1 + · · ·+ tk+1λk+1Xk+1. (4.1.3)

We then subtract the expression (4.1.1) from the expression (4.1.3), zero minus
zero, and get after collecting the terms that

0 = t1(λ1 − λk+1)X1 + + · · · tk(λk − λk+1)Xk.

However, in the latter expression we only have k number of eigenvectors (corre-
sponding to distinct eigenvalues). By the induction hypothesis these are linarly
independent, and consequently the coefficients ti(λi − λk+1) = 0, for i = 1, . . . , k.
As the eigenvalues are supposed to be distinct it follows that t1 = · · · = tk = 0.
And finally by (4.1.1) we then also have that tk+1 = 0, and the vectors are linearly
independent.

Theorem 4.2. Let T : Rn → Rn be a linear map. Assume that T has n-distinct
eigen values. Then there exists a basis β of Rn consisting entirely of eigenvectors.
Furthermore, the matrix representation of T with respect to β is then a diagonal
matrix.

Proof. Let β = {X1, . . . , Xn} be eigenvectors corresponding to the n-distinct eigen-
values that we assume T posesses. By Lemma (4.1) the vectors β are linearly in-
dependent, and since there are n of them they form a basis. This proves the first
claim of the theorem, and the second follows from the definition of eigenvectors.

4.2.1. Note that when in the situation as of the theorem, then the entries of the
diagonal matrix are precisely the eigenvalues of T .

The above Theorem does not solve the diagonalization problem entirely, but par-
tially. It is possible to diagonalize even though if the number of distinct eigenvalues
does not equal the dimension of the vector space. An example of that is the identity
operator. What we have is the following
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Theorem 4.3. The following two statements are equivalent for a linear map T :
Rn → Rn.

(1) Rn has a basis of eigen vectors.
(2) T is representable by a diagonal matrix.

Proof. Clear, isn’t it.

4.4. Example - Multiplicity. Let T : R3 → R3 be a linear map, whose matrix
representation with respect to some basis is

A =

 0 0 −2
1 2 1
1 0 3

 .
You may check that the characteristic polyomial cA(λ) = (λ − 1)(λ − 2)2. Hence
there are only two distinct eigen values, namely λ = 1 and λ = 2, whereas the
dimension of the vector space is n = 3. We note that the root λ = 2 appears twice
in the factorization of cA(λ) and we say that λ = 2 has multiplicity two. The other
root λ = 1 has multiplicity 1.

4.5. Eigenspaces. Let λ be an eigen value of T . The kernel

ESλ := Null(λ id−T )

is the eigenspace corresponding to λ.

4.5.1. A geometric approach. If X ∈ Rn is a non-zero vector then L(X) = Span(X)
is the line through X and origin. Note that if X is an eigenvector of T , then any
point on L(X) is also an eigenvector. Thus, one way to visualize teh eigenspaces are
to look for lines that are invarian under the action of T ; If there is a line (through
origo) that is mapped to itself by T , not necessarily pointvise, then points on the
line are eigenvectors.

4.6. Example. Let L ⊂ R2 be a line through the origin, and let T : R2 → R2

denote the reflection through that particular line. What are the eigenvalues and
eigenvectors of T? We look geometrically at the linear map T and realize that the
line L itself is invariant under the action of T . Actually, for any X ∈ L we have
that T (X) = X = 1 ·X, thus points on L are eigenvectors with eigenvalue λ = 1.

Furthermore, we realize that the line N that passes through origin and is per-
pendicular to L is invariant. Because for any X ∈ N we have

T (X) = −X,

that is an eigenvector with eigenvalue λ = −1. No other lines are invariant under
T .

Lemma 4.7. Let λ = e be an eigenvalue of multiplicity m. Then dimESλ ≤ m.

Proof. Let d = dimESλ=e, and let {X1, . . . , Xd} be a basis of ESλ=e ⊆ Rn. We
extend that basis to a basis β = {X1, . . . , Xd, Y1, . . . , Yn−d} of Rn. The matrix
representation of T with respect to β then is of the block form

M = Mat(T, β, β) =
[
e1d B

0n−d A

]
,
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where 1d is the (d× d) identity matrix, 0n−d is the zero matrix of sice (n− d× d).
The matrices B and A we do know very little about, and we do not care for the
moment. Because of the zero block 0n−d we get that the characteristic polynomial
cM (λ) = (λ− e)dcA(λ). But then we have that the multiplicity of the root λ = e in
the characteristic polynomial cM (λ) of T has multiplicity at least d, and we have
proven our claim.

4.8. Example. We continue the Example 4.4. We have found the eigenvalues
and will here describe the eigenspaces. Everything will be with respect to the basis
β = {F1, F2, F3} that we have assumed fixed. The eigen space corresponding to
λ = 1 is given by the matrix equation

(1−A)[X]β =

 1 0 2
−1 −1 −1
−1 0 −2

x1

x2

x3

 = 0.

The solutions to this equation is of the form

X =

x1

x2

x3

 = t

−2
1
1

 ,
where t is an arbitrary scalar. Thus a basis for the eigenspace ES1 is the vector
X1 = −2F1 + F2 + F3.

The eigenspace corresponding to λ = 2 is given by the matrix equation

(2−A)[X]β =

 2 0 2
−1 0 −1
−1 0 −1

 [X]β = 0.

The solutions are of the form

X =

x1

x2

x3

 =

−st
s

 ,
where s and t are arbitrary scalars. A basis for ES2 is then given by the two vectors
X2 = −F1 + F3 and Y2 = F2.

4.8.1. Remark. In this example we have that the dimension of the eigen spaces
equals the multiplicities of the corresponding eigenvalues.

4.8.2. Remark. Note that in the Example 4.6 the space R3 has a basis of eigen
vectors, for instance {X1, X2, Y2} and consequently the operator T is diagonalizable.

4.9. Orthogonal diagonalization. In the last section we will give a complete
answer to those operators that are not only diagonalizable, but orthogonally diag-
onalizable. One problem with diagonalization is the need of computing the inverse
P−1 of a change of basis matrix P . The computation of the inverse is in general
hard or at least time consuming, but some matrices have a nice formula for the
inverse. We say that a matrix P is orthogonal if P is invertible and its inverse is
its transpose, P−1 = P t.
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Theorem 4.10. Let P be an (n× n)-matrix. The following statements are equiv-
alent.

(1) P is invertible with inverse P−1 = P t.
(2) The columns of P are orthonormal.
(3) The rows of P are orthonormal.

Proof. We show that (1) is equivalent with (2), the proof of the equivalence of (1)
and (3) is similar. Assume that the inverse of P is its transpose P t. We then have
that P tP = 1n. But that means that the i’th row of P t dotted with the j’th column
of P equals the Kronecker δi,j which is zero if i 6= j, and 1 if i = j. As the i’th
row of P t is precisely the i’th coloumn of P , we have that the coloumns of P are
orthonormal. Conversely, assume that the coloumns of P are orthonormal. Take
the transpose of P and consider the product P tP . As the coloumns are orthonormal
the product P tP is the identity matrix, hence P is invertible with inverse P−1 = P t.

Theorem 4.11. [Real Spectral Theorem] Let A be an (n× n)-matrix representing
a linear map T : Rn → Rn. The following are equivalent

(1) A is orthogonally diagonalizable.
(2) Rn has an orthonormal basis of eigen vectors.
(3) A is symmetric.

Proof. Assume that 1) holds and let P be an orthogonal matrix that diagonalizes
A. We then have that PAP t = D is a diagonal matrix and that A = P tDP . We
then get that At = P tDP = A, and the matrix A is symmetric. Thus 1 implies 3).

We next show by induction on the size n of the matrix A that 3) implies 1).
When n = 1 the case is clear, and we assume that 3) implies 1) for size (n × n)
matrices. As the matrix A is symmetric it has at least on real eigenvalue λ1 ([??]),
and we let X1 be a corresponding eigenvector of length |X1| = 1. We extend X1 to
a basis {X1, Y2, . . . , Yn} of Rn, a basis we can assume is orthonormal. The matrix
P with coloumns X1, Y2, . . . , Yn is then orthogonal, and we have the following block
form

P tAP = P−1AP =
[
λ1 B
0 A1

]
.

Since A is symmetric we have that P tAP is symmetric, and it follows that B = 0.
The lower block A1 is symmetric of size (n×n) and can consequently by the induc-
tion hypothesis be orthogonally diagonalized. Consequently there exists an orthog-

onal matrix Q such that QtA1Q = D1 is diagonal. The matrix P ′ =
[

1 0
0 Q

]
is

clearly orthogonal and since the product of orthogonal matrices remains orthogonal
we also have PP ′ is orthogonal. We finally note that

(PP ′)tA(PP ′) = P ′tP tAPP ′

=
[

1 0
0 Qt

] [
λ1 0
0 A1

] [
1 0
0 Q

]
=
[
λ1 0
0 D1

]
is a diagonal matrix, hence orthogonally diagonalizable.
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We have left to prove the equality of 1) and 2). Let P be an orthogonal matrix
that diagonalizes A, and let X1, . . . , Xn denote its coloumns. It follows by Theorem
4.8 that the set {X1, . . . , Xn} is an orthonormal basis of Rn if and only if P is an
orthogonal matrix. Furthermore, we may think of P as the base change matrix
from {X1, . . . , Xn} to the standard matrix, and the set {X1, . . . , Xn} is a basis of
eigenvectors if and only if D = PAP−1 is diagonal. The two stated equalities show
that 1) is equivalent with 2).


