
ABB Project : Data Driven Modeling for Control
of Industrial Systems

Group Members:
Karl Jonsson Jezdimir Milošević Alexandros Nikou∗
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1 Introduction

Control systems are very important for modern day society. These systems are used
to operate various processes, ranging from microbots in medicine to large scale infras-
tructures such as power networks. By using control algorithms, these processes can be
operated more efficiently and reliably.

In modern day control theory, optimal control algorithms are mostly developed based
on a model of physical process being controlled. One approach to obtain the model
could be by using a physical laws governing behavior of the process. However, in some
cases, the process can be too complicated to use this approach. In that case, data
driven modeling can be applied. In this type of modeling, the structure of the model is
assumed, and model parameters are then tuned to match data collected from the process.
In recent years, advances in artificial intelligence provided control engineers with efficient
and robust algorithms for data based model building. For example, model can be obtained
by using neural networks or regression tree based methods.

In this report, we are interested in fitting different types of models for multiple input
multiple output thrust propulsion system of ABB company. In particular, the following
tasks were specified by the company.

1. The first task is to create a model that maps inputs of the system to the outputs.
To accomplish this task, we are given the data collected from the operation of a
propulsion system. Additionally, machine learning algorithms should be used to fit
the model that matches this data.

2. Secondly, to develop the optimal control techniques, the model that maps outputs
to inputs is of big interest. However, this task may be more troublesome, since
different inputs values can be mapped to the same outputs. Thus, non-injectivity
property should be investigated prior to fitting inverse models.

3. The final task is to investigate robustness of the models in respect to quality of the
data we use for training. In particular, we are interested to answer if corrupting
the data with noise can considerably influence quality of models returned by the
machine learning algorithms we used.

The remainder of the document explains how we tackled these tasks, and is organized
as follows. In Section 2, we introduce the process we would like to fit, and possible
modeling architectures. In Section 3 we formulate the problem, and in Section 4, we
introduce the tools for solving the problem. In Sections 5-Section 7 we tackle the tasks
one to three, respectively. Finally, in Section 8, we discuss the problems we considered,
summarize conclusions, and introduce possible directions for the future work.
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2 Propulsion System: System Description and Pos-

sible Model Architectures

2.1 Propulsion System

The process we consider has three inputs (u1, u2, u3) and four outputs (y1, y2, y3, y4).
Input u1 represents trajectory of a propeller, u2 is rotational speed, and u3 stands for
the angle that defines trajectory of a vessel. Output y1 is performance output, and y4 is
torque. Nature of outputs y3 and y4 was not revealed due to company policy.

Initially we plotted the given data to be able to have a first overview of how the
required function f(·) looks. Figures 2-9 show how the output y1-y4 are related with the
inputs u1, u2 and u3. By observing the aforementioned figures, we reach to the following
conclusions:

• The outputs y1-y4 have data concentrated in 3 bands, according to the values of u3.
Band 1: −2 ≤ u3 ≤ 2; band 2: −6.8 ≤ u3 ≤ −4; and band 3: 4 ≤ u3 ≤ 7.1.

• Outside of the range of these bands, no data were given.

• The output y1, which is a performance measure, is maximized in the band where
−2 ≤ u3 ≤ 2. It should be noted that a desired optimal performance is achieved
when y1 → 1.

• There are a few negative data of the output y1 in the band where −2 ≤ u3 ≤ 2.

Thus, in the experimental testing that will be presented hereafter, we choose to concen-
trate our analysis in the important band in which it holds that −2 ≤ u3 ≤ 2.

By examining the given data, it yields that the outputs are in the range

−14.5 ≤ y1 ≤ 0.9, −2.9× 105 ≤ y2 ≤ 1.9× 105

−3.3× 105 ≤ y3 ≤ 3.1× 105, 5× 103 ≤ y4 ≤ 1.1× 106.

2.2 Possible Model Architectures

As we mentioned, our task is to build a system model and inverse model. Here we discuss
possible model architectures that can be adopted. The discussion is about building an
original model, but the same arguments hold for the inverse model.

Architectures are shown in Figure 1. In the first architecture shown in Figure 1 (a),
we simply adopt a multiple input multiple output model. Within control theory, these
types of models are in the most cases adopted, and tools for estimating them are well
developed. However, this model architecture have more sense to adopt once we have a
coupling between outputs. Additionally, in case that one of the outputs is much larger
than the other, which is the case with our system, that output can have much larger
influence to overall error. Thus, the algorithm may focus all its efforts in trying to fit one
of the outputs, while the quality of fit for other outputs may be neglected. To avoid this
problem, in some of the experiments we performed pre-scaling as follows

ui =
ui − ū
umax

, yi =
yi − ȳ
ymax

,
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Figure 1: Possible model architectures that can be adopted.

where

χ̄ =
1

N

N∑
i=1

χi, χmax = max
i
|χi − χ̄|, χ ∈ {u, y}.

This results in inputs ui and outputs yi that are within the bounds [−1, 1].
However, since our model represents a static mapping (each output is only influenced

by the inputs), it is also reasonable to construct one model each output, as shown in
Figure 1 (b). The reasons for adopting this model are twofold. Firstly, since we are
fitting only a single output, we do not need to worry about scaling. Moreover, some of
the algorithms we considered were developed for fitting only multiple input single output
models, so this model architecture is the only solution in that case.

2.2.1 Measuring Quality of Models

Finally, we disscuss how we measure quality of the models. Assume we have obtained an
approximation ŷ of an output y. Quality of ŷ can be measured in several ways. The first
one is to simply calculate the estimation error

e = y − ŷ

which is the difference between the exact value y and the approximation ŷ. However,
once we need to compare the quality of estimation for several outputs of different orders
of magnitude, it makes more sense to use relative error

erel :=
y − ŷ
|y|

which is estimation error scaled by magnitude of y. The proble with the relative error is
that it tend to be sensitive if the values of |y| are close to zero. This was the case with
our dataset, so to overcome this issue, the following measure is used instead of relative
error

erob :=
y − ŷ

max{|y|, |ŷ|}
(1)

Since we had a large number of measurements, we adopted the mean value and the
variance of erob, and used it to measure the quality of our models.
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Figure 2: Plot of y1 with respect to u3
(right axis) and u2 (left axis)

-3

60

-2

50

-1

10

10
5

0

40 5

performance characteristic 2: color is trajectory

revolutions per minute

1

angle defines traj of ship

30 0

2

20 -5

10 -10
2

3

4

5

6

7

8
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Figure 4: Plot of y3 with respect to u3
(right axis) and u2 (left axis)
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Figure 5: Plot of y4 with respect to u3
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6



-15

60

-10

50 8

-5

740

performance characteristic 1: color is angle

revolutions per minute

6

trajectory of propeller

30

0

5
420

3
10 2

-6

-4

-2

0

2

4

6

Figure 6: Plot of y1 with respect to u1
(right axis) and u2 (left axis)
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Figure 8: Plot of y3 with respect to u1
(right axis) and u2 (left axis)

Figure 9: Plot of y4 with respect to u1
(right axis) and u2 (left axis)
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3 Problem Formulation

We are given the input u = (ui)i=1,2,3 ∈ R3 and corresponding output data y =
(yi)i=1,...,4 ∈ R4 of a propulsion system for Npoints. The current data-set has three
inputs and four outputs.

During the workshop the data-set which is considered (un,yn) for n = 1, . . . , N was
generated by an analytically derived model y = fanalytic(u) of the propulsion system.
The analytical model is based on first principles. In the present the analytical model is
imperfect in the sense that it contains some modeling error stemming from the fact that
all physical factors influencing the system has not been considered. For instance, effects
of turbulence and the interaction of the propulsion system and the hull of the boat is not
captured by the analytical model.

The problem formulation was to use the generated data and derive a data driven
model based on this system. The long term goal of the project for ABB is for the data
to come from actual measurements of the real propulsion system and in this fashion
circumvent the dependence on the imperfect analytical model.

3.1 Regression Problem

The regression problem deals with the question of learning from data in which there is
some pattern. In the present case we are dealing with a problem in the class of supervised
learning problems. This means that given a set of inputs u ∈ X = Rd to which we are
given the corresponding desired outputs y ∈ Y = R` of the model. One way to view the
problem is that we are looking for a function freg : X → Y such that yn ≈ freg(un) for
all n = 1, . . . , N . The space of functions in which we are looking for freg is denoted by
H and referred to as the hypothesis space.

This type of problem stands in contrast to an unsupervised learning problem where
only inputs u are given (without any labels y); an example of such a problem is the k-
means clustering problem where we want to split the data set {un}n=1,...,N in to k clusters
C1, . . . , Ck such the sum of the variances of each cluster is minimized.

Depending on the characteristics of the given data (un,yn) together with the intended
usage of the regression model freg the optimal choice of the hypothesis space H to search
for the approximation freg in may vary. For instance, certain sets of data and certain
spaces H together with some training criteria guarantees a one-step training process.
For instance suppose that our model is freg : R3 → R and assumed to be linear, i.e.
freg(u) = a1u1 + a2u2 + a3u3 for some choice of a = (a1, a2, a3)

t. We say that freg
is parameterized by the vector a and write freg = freg(·; a) in order to highlight the
parameter dependence. Given N data points we have the desired equalities

u11 u12 u13
u21 u22 u23
...

...
...

uN1 uN2 uN3


a1a2
a3

 =


y1
y2
...
yN

⇔ Ua = y

then the choice of a which minimizes ‖Ua−y‖2 can be expressed using the pseudo-inverse
of U , denoted by U †, according to

a = U †y where U † := (U tU)−1U t.
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The general structure of the supervised learning problem is that we are given a set of
data points (un,yn) ∈ X × Y to which we wish to find some function freg : X → Y
which maps inputs to outputs, where freg is taken to be in the space H . In the example
above the measure of the fit was quantified by finding the parameter vector a such that
‖Ua− y‖2 (the so called error measure) was as small as possible. The process of finding
the optimal choice of parameters a will be referred to as the learning algorithm (which in
the example above, a = U †y, could be characterized by an analytical). Certain learning
algorithms can be achieved in a one-step fashion, others are of an iterative kind where
one usually refer to one step in the training process as one epoch.

Suppose that we fix a regression function f ∈ H . The in sample error Ein is the
error that f gives on the data which was provided to the learning algorithm, i.e. data
that has been ”seen” during the training process. One commonly used error-measure is
the mean squared error. For a given regression model f we define the mean squared in
sample error to be

Ein,mse(f) =
1

N

N∑
n=1

‖freg(xn)− yn‖22. (2)

The out of sample error Eout is the error which the function f will yield when en-
countering new data drawn from X ×Y . It is clear that one will always only have direct
access to the in-sample error Ein but we are profoundly interested in finding a regression
function fwhich yields a small out-of sample error Eout

1. The out of sample error can be
written as

Eout,mse(f) = E[(f(X)− Y )2]

where the expectation is taken with respect to the probability distribution from which
we draw training examples.

The concept of generalization deals with the question whether a small in-sample error
Ein in a specific circumstance can be used to draw the desired conclusion that the out-of
sample error Eout also will be small.

Another problem which arises in the field of learning is the case of overfitting. This
problem arises primarily when the training data contains noise. Given a hypothesis-
set which is ”big enough” and that we have a learning algorithm which tries to train the
model by minimizing the in-sample error, it might be the case that we will learn the noise
in the given training data. This will result in a worsened out-of-sample performance for
the proposed model freg. One way to circumvent this problem is that we partition the
given data in to training, validation and testing data. The general idea is to train the
model on the training data and using the validation data to break the training if the error
on this set starts to grow. The testing data is used to assess the models out-of-sample
performance.

We summarize these initial remarks with the following list of attributes one needs to
consider in the training process.

• Choice of structural form of freg, i.e. choosing the hypothesis set H .

• Choice of error measure in order to quantify the goodness of fit.

1It is intuitively clear that for the in-sample-error of a regression model to be an indicator (used
in creating an upper bound) of the out-of-sample performance the distribution by which the training
examples where generated must be close to the distribution that is used for out-of-sample evaluation.
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• Choice of learning algorithm.

• Choice of over-fitting stopping criteria.

4 Tools for Solving

4.1 Feed Forward Artificial Neural Networks and Back-propagation

One class of regression models are the so called Feed Forward Artificial Neural Networks
(FFANN). Consider the learning problem with X = Rd and Y = R`. An FFANN is
characterized by its hyper-parameters hi ∈ N for i = 1, . . . , L where L is the number of
hidden layers of the model. We define h0 = d and hL+1 = ` (corresponding to the input
and output layer respectively). To each i = 0, . . . , L we let

Wi ∈ Rhi×hi+1

be a weight matrix. We also introduce the functions σi : R → R and vectors bi ∈ Rhi .
Given x ∈ Rd in the input space we define

xi+1 = σi(Wixi + bi) for i = 1, . . . , L with x0 = x.

The mapping
x 7→ xL+1

is our FFANN
freg(x) = freg(x;h,W ) := xL+1.

A graphical illustration of a NN is shown in Figure 10. Each xi is called a layer, the
FFANN operates on a given layer xi yielding the layer xi+1 by multiplying xi with the
corresponding weight matrix adding the bias and applying the activation function σi to
each component of the vector Wixi + bi. There are many possible choices of activation
functions but one standard choice is

σi(s) = tanh(s) =
es − e−s

es + e−s
=
e2s − 1

e2s + 1
= 1− 2

e2s + 1
(3)

for all i = 1, . . . , L (which all are smooth function tending to 1 as s → ∞ and to −1 as
s→∞) and furthermore to take σL+1 = Id to be the identity map.

Using the mean squared error as the quantification of the error we train our model
by choosing hyper-parameters hi and L and then solving the minimization problem

min
W,b

Ein(W, b). (4)

where

Ein(W,h) =
1

N

N∑
n=1

‖freg(xn)− yn‖22. (5)

where W here denotes all the components of the weight matrices and b denotes all bias-
values and (x,y) the given training data. This is in general a non-convex optimiza-
tion problem. One standard method of finding a local minimum of Ein(W,h) is to use
gradient descent where (Wn+1, bn+1) = (Wn, bn) − η∇(W,h)Ein(Wn, hn). The parameter
η > 0 is called the learning rate. There is an efficient process by which the gradient
∇(W,h)Ein(Wn, hn) can be computed which is called back propagation.

11



Figure 10: Graphical illustration of a Feed Forward Artificial Neural Network. The figure
shows that one node in the network is influenced directly by all nodes in the previous
layer according x`i+1 = σi(

∑hi

j=1[Wi]
`
jx

j
i + b`)

.

4.2 Regression Trees

A regression tree is a binary tree T . Suppose that the output is one dimensional so that
we have (xn, yn). The leaves of the tree will contain some of the data points. Each branch
leading up to one of the leaves will be associated with a condition of the type: if xi < v∗,
(for some value v∗ to be learned and index i) go left; otherwise go right, see Figure 11 for
a visualization. The component xi is said to be a predictor for the given node.

We let

mc =
1

Nc

∑
i∈c

yi

which is the prediction if the decision tree T puts us in leaf c. We then define the sum of
squared errors for a tree T to be

S =
∑

c∈leaves(T )

∑
i∈c

(yi −mc)
2.

The regression-tree-growing algorithm works as follwos: put all training data in one node
of the tree and calculate mc and S. In the growth step we search over all binary splits of
the data which will reduce S as much as possible. This split is computed with respect to
one of the components of the input vector x, say xi, which yields a rule in the tree in, as
explained above. The choice of which of the input variables to do the split over (i.e. choice
of index i) can be random; or one chooses in the algorithm which of the input variables
gives the largest reduction in S. In the case that the component xi that we consider is
an ordered component and our data set has n-distinct values of this component we only
consider the n−1 different splittings which gives us two nodes where the ordering is kept
and a corresponding rule: go to left child if x1 < v∗ and go to right child if x1 ≥ v∗.

When such a partition is found, repeat the growing process for each leaf of the current
tree.
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    -2.9606    -3.0488     0.35021    0.26549     -1.1719    -0.89511   -0.86929    0.21548    0.14561    0.15407   0.060654   0.023715    0.52287    0.41115    0.45694    0.16926    0.47189    0.33606    0.37289    0.27867    0.11103   0.059195    0.11361   0.033793     0.1317     0.0509     -1.623    -0.79526   -0.77423    -0.7942    -0.7762   -0.65065   -0.69167    -0.48964   -0.44986     -0.3458   -0.32158   -0.30387   -0.28937   -0.26524   -0.25449   -0.23673   -0.22145   -0.21399   -0.19655   -0.15098   -0.14082   -0.14192   -0.12693    -0.2071   -0.17833  -0.073637  -0.055992   -0.05126  -0.038244   0.037117   0.044842   0.078596    0.32607    0.24171    0.10611   0.030596    0.097724  -0.032784  0.0055593    0.036779  0.0069722   -0.026978  -0.010961  -0.070207    -0.43833   -0.41398   -0.54056   -0.57215    -0.3661   -0.40034   -0.34543   -0.36435   -0.31556   -0.33468   -0.27208   -0.24866    -0.13315   -0.15843   -0.18046   -0.16197

    -1.4335    -1.3388    0.089117     0.0445    0.69021    0.57272    0.47874    0.32592    0.29168    0.24423    0.24971     -1.6922    -1.7282     0.11584    0.15052    0.20808    0.20762   0.060644   0.078665    0.13645     0.1118   0.079485   0.066827   0.012779   0.044514  -0.025838   0.012399    0.22824   0.075864    0.11853    0.02373    0.01105   0.039673    0.02595   0.059106   0.049625  -0.023796 -0.0037735  0.0042655   0.023708   -0.039072  -0.056433    -0.11744   -0.13024   -0.11198   -0.10036

    0.57424    0.40922     0.25814    0.18658    0.15087   0.093217     0.20611     0.1814    0.16609   0.095225   0.081143   0.059759   0.046616    0.15191    0.10777    0.14303    0.12137     0.1107   0.084168    0.11273   0.085039   0.070954     0.17405    0.13945   0.089883   0.037243   0.078692   0.088861   0.015099   0.095264    0.07926   0.077367   0.061712   0.011054   0.031116    0.03389   0.023157   0.019571  0.0058956

    0.63417    0.60497    0.39245    0.36672     0.20791    0.18336    0.14544     0.27784    0.25155     0.18913    0.16588    0.11631   0.095544   0.057772    0.055106   0.055237   0.037592    0.057311   0.044297   0.044093   0.034478

    0.12843    0.10891     0.15397    0.13823     0.18883    0.14771    0.13364    0.10572   0.040401   0.070633

x2 < 12.3129   

x3 < -0.513158   x2 < 22.6059   

x2 < 10.8621   x3 < 0.560345   x3 < -0.513158   x3 < -0.643678   

x3 < -0.816697   x3 < -1.93103   x3 < -0.261343   x2 < 10.8621   x2 < 17.6149   x3 < 0.712644   x2 < 33.5273   x3 < 0.795977   

x1 < 2.10345   x1 < 3.51724   x2 < 11.9037   x3 < -0.413793   x3 < 0.413793   x3 < 1.10345   x3 < 0.689655   x2 < 14.6695   x2 < 19.4828   x3 < -0.295826   x2 < 16.5733   x2 < 26.954   x2 < 43.046   x3 < -0.295826   x2 < 34.569   

x1 < 2.41379   x3 < -0.689655   x3 < 0.304598   x3 < 0.643678   x1 < 3   x1 < 2.64224   x3 < -1.93103   x2 < 15.9028   x3 < -0.712644   x3 < -0.747731   x2 < 16.5733   x3 < 0.494898   x2 < 14.6695   x3 < 1.01724   x2 < 25.0503   x2 < 29.8276   x2 < 37.3348   x2 < 50.5172   x2 < 34.569   x3 < 0.618037   x2 < 26.092   x2 < 44.9497   

x3 < -1.01724   x3 < -1.37931   x3 < -0.134264   x2 < 10.8621   x3 < 0.973684   x3 < 1.24138   x3 < 0.933908   x1 < 3.70259   x3 < -0.689655   x3 < -0.712644   x3 < -1.77874   x3 < -1.8114   x3 < -0.413793   x3 < -0.413793   x3 < -0.0871143   x2 < 13.8075   x3 < 0.827586   x3 < 1.01724   x2 < 19.4828   x2 < 19.4828   x3 < -0.864943   x3 < -0.864943   x3 < -0.965517   x3 < -0.948276   x3 < -0.864943   x3 < -0.948276   x3 < -0.92196   x3 < -0.973684   x3 < -0.513158   x3 < -0.451906   x1 < 3.0557   x2 < 32.6652   x3 < 1.24138   x3 < 1.09619   x3 < 1.24138   x3 < 1.09619   

x3 < -1.65517   x1 < 4.27586   x1 < 3.54847   x3 < 0.164966   x3 < 0.701754   x1 < 6.45833   x3 < 1.23851   x3 < -0.727011   x3 < -1.47731   x3 < -1.6954   x3 < -1.93103   x3 < -1.62644   x2 < 20.7639   x2 < 20.7639   x2 < 19.4828   x2 < 18.477   x1 < 3.17157   x2 < 16.8381   x3 < 0.573503   x1 < 3.01724   x1 < 4.67816   x2 < 18.477   x3 < 0.92196   x3 < 1.24138   x3 < 1.47414   x3 < -1.77874   x3 < -1.77874   x3 < -1.77874   x3 < -0.712644   x2 < 32.318   x3 < -0.712644   x2 < 35.431   x3 < -0.712644   x2 < 40.1724   x2 < 40.1724   x2 < 46.8534   x2 < 46.8534   x2 < 56.1925   x3 < -0.747731   x2 < 26.092   x2 < 26.092   x2 < 41.8966   x1 < 3.375   x2 < 33.5768   x2 < 33.5991   x1 < 3.03448   x1 < 3.18391   x3 < 1.10345   x2 < 24.1882   x3 < 0.948276   x2 < 29.8276   x3 < 1.10057   x2 < 38.3764   x2 < 51.523   x2 < 51.523   

x1 < 2.72414   x1 < 5.41379   x1 < 6.65306   x3 < 0.0344828   x3 < 0.241379   x3 < 1.7931   x1 < 4.90517   x3 < -1.62644   x1 < 3.03448   x3 < -1.8477   x1 < 2.10345   x3 < -0.948276   x3 < -1.93103   x3 < -0.948276   x3 < -0.92196   x2 < 15.0934   x3 < -0.164966   x3 < 0.304598   x1 < 3.436   x2 < 15.2083   x2 < 18.477   x2 < 13.8075   x1 < 2.43534   x2 < 15.364   x2 < 21.2428   x2 < 18.477   x2 < 17.6149   x2 < 21.2428   x2 < 21.2428   x3 < -1.01724   x3 < -1.93103   x3 < -1.01724   x2 < 27.9957   x3 < -0.864943   x3 < -1.93103   x3 < -1.93103   x2 < 32.6652   x3 < -1.08333   x3 < -1.01724   x3 < -1.93103   x3 < -1.93103   x3 < -0.864943   x3 < -0.795977   x2 < 44.9497   x3 < -1.24138   x3 < -0.795977   x3 < -0.795977   x2 < 52.3851   x3 < -1.10057   x2 < 53.4267   x3 < -0.413793   x3 < -0.513158   x2 < 48.41   x2 < 36.7241   x2 < 45.8118   x3 < 0.38294   x3 < 0.451906   x3 < -0.0344828   x1 < 4.31711   x2 < 26.092   x1 < 2.4569   x2 < 45.3448   x3 < 1.58621   x1 < 4.71983   x1 < 4.96983   x2 < 29.8276   x3 < 1.3908   x3 < 1.40835   x2 < 38.4722   x2 < 38.3764   x3 < 1.32184   x2 < 42.0043   x1 < 3.13793   x1 < 3.80603   x3 < 1.3908   x3 < 1.62644   

x1 < 3.79167   x3 < -0.186782   x1 < 4.875   x1 < 4.63265   x1 < 2.07692   x2 < 13.8075   x3 < -0.990926   x3 < -1.5431   x3 < -1.3908   x3 < -1.51724   x3 < -1.47414   x3 < -0.206012   x1 < 5.38362   x1 < 3.44656   x1 < 4.61601   x3 < 0.413793   x3 < 0.33908   x3 < 0.304598   x1 < 5.375   x3 < 0.965517   x2 < 15.9028   x3 < 1.24138   x3 < 1.10345   x1 < 3.86207   x3 < 1.10057   x3 < 1.3908   x1 < 4.26293   x1 < 3.01724   x3 < -1.62644   x2 < 26.092   x1 < 4.06897   x3 < -1.6954   x2 < 28.8578   x3 < -1.10057   x2 < 32.6652   x3 < -0.795977   x3 < -1.77874   x3 < -1.93103   x3 < -1.10057   x3 < -1.10057   x3 < -1.10057   x3 < -1.10057   x2 < 48.41   x1 < 2.41379   x3 < -1.24138   x3 < -1.16954   x2 < 59.1379   x1 < 3.12069   x2 < 29.8276   x1 < 3.66667   x2 < 37.3348   x3 < -0.560345   x1 < 2.78879   x1 < 2.3319   x1 < 5.41667   x3 < -0.116115   x1 < 2.44829   x3 < -0.134264   x1 < 2.43767   x1 < 4.92461   x3 < 0.451906   x3 < 0.38294   x3 < 0.451906   x3 < 0.712644   x3 < 0.701754   x2 < 34.3894   x3 < 0.747731   x3 < 0.701754   x1 < 2.375   x3 < 1.51724   x2 < 26.954   x1 < 2.91379   x2 < 27.9957   x3 < 1.24138   x2 < 31.5278   x3 < 0.973684   x3 < 0.948276   x1 < 3.78448   x2 < 36.4727   x3 < 1.5431   x1 < 3.80603   x3 < 0.973684   x1 < 2.56034   x3 < 0.973684   x1 < 3.24569   x2 < 46.8534   x3 < 1.24138   x2 < 55.3305   

x3 < -1.77874   x1 < 5.55932   x1 < 2.61538   x3 < -1.51724   x1 < 3.68103   x1 < 3.01724   x1 < 4.94828   x1 < 2.27499   x2 < 14.6695   x3 < -0.186782   x2 < 16.0273   x1 < 3.5991   x2 < 15.0934   x2 < 18.5476   x1 < 2.99093   x1 < 5.6164   x3 < 0.413793   x1 < 4.17241   x3 < 1.23412   x1 < 3.75862   x3 < 1.10057   x1 < 6.73276   x1 < 6.44828   x2 < 24.1882   x1 < 6.24138   x3 < -1.10057   x3 < -1.62644   x3 < -1.72414   x3 < -1.08333   x2 < 34.569   x2 < 36.4727   x2 < 38.4722   x2 < 42.0043   x3 < -1.8477   x3 < -1.8477   x3 < -1.8477   x3 < -1.8477   x3 < -1.93103   x3 < -1.32184   x3 < -0.795977   x1 < 3.86207   x2 < 30.7615   x1 < 4.7931   x3 < -0.513158   x1 < 2.43416   x1 < 2.3319   x1 < 2.68927   x1 < 2.38706   x2 < 42.7058   x3 < 0.557692   x2 < 43.1921   x3 < -0.134264   x3 < -0.186782   x1 < 4.74788   x1 < 5.07328   x3 < -0.0344828   x1 < 3.67374   x3 < -0.0344828   x1 < 5.70551   x2 < 29.8276   x1 < 7.21121   x1 < 5.73707   x3 < 1.32184   x1 < 3.12069   x1 < 6.60776   x1 < 3.65517   x1 < 3.99569   x2 < 33.5273   x1 < 3.30603   x2 < 33.5273   x1 < 5.09483   x1 < 6.96552   x3 < 1.47414   x3 < 1.5431   x1 < 3.82759   x1 < 2.78879   x2 < 48.7572   x3 < 1.24138   x2 < 48.41   x1 < 4.37931   x3 < 1.62644   x2 < 59.1379   x1 < 2.625   x2 < 52.3851   x2 < 57.2342   

x1 < 4.875   x2 < 10.9339   x3 < -0.795977   x3 < -1.16954   x2 < 18.5688   x1 < 4.23729   x1 < 3.67797   x2 < 14.6697   x2 < 14.4654   x1 < 5.18578   x1 < 7.7741   x3 < 0.269231   x1 < 2.71888   x1 < 2.35593   x3 < 1.11022e-16   x3 < -0.0344828   x1 < 5.38362   x3 < 1.10345   x2 < 22.2845   x1 < 4.68966   x3 < -1.65517   x2 < 31.5278   x3 < -1.10345   x1 < 3.22414   x3 < -1.24138   x3 < -1.32184   x3 < -1.31034   x3 < -1.40835   x1 < 2.72414   x2 < 31.6236   x2 < 53.7739   x2 < 55.3305   x3 < -0.241379   x3 < -0.185897   x2 < 26.954   x2 < 27.9955   x2 < 37.3524   x3 < -0.241379   x1 < 2.41029   x1 < 2.47567   x2 < 39.4857   x1 < 3.53194   x3 < -0.135965   x2 < 25.4117   x2 < 25.3454   x1 < 3.45694   x3 < -0.185897   x2 < 47.8431   x3 < -0.206012   x1 < 5.98305   x2 < 44.375   x2 < 35.431   x2 < 26.954   x1 < 5.07328   x1 < 4.46983   x1 < 4.17241   x1 < 4.28448   x2 < 40.1724   x1 < 3.53879   x2 < 48.7572   x2 < 56.1925   

x3 < -0.948276   x1 < 5.4898   x3 < 0.116115   x1 < 2.75196   x2 < 13.6472   x1 < 6.61485   x2 < 19.6766   x2 < 19.7631   x1 < 6.86207   x3 < -0.185897   x3 < 0.0871143   x2 < 28.8578   x3 < -0.240495   x2 < 37.0408   x3 < 0.310345   x1 < 2.93131   x2 < 52.7382   x2 < 49.6193   x1 < 2.16467   x3 < -0.185897   x3 < -0.206012   x1 < 3.74459   x3 < 0.324561   x1 < 6.20663   x1 < 6.75431   x1 < 3.59682   x1 < 3.68473   x1 < 3.79544   x1 < 3.84144   x2 < 48.7931   x1 < 5.34463   x3 < 0.304598   x1 < 7.49576   x1 < 4.26437   x1 < 5.73707   x2 < 59.1379   

x3 < 0.184197   x1 < 6.51315   x1 < 3.5903   x2 < 18.2483   x1 < 7.49576   x3 < 0.310345   x2 < 31.9144   x1 < 2.11207   x1 < 2.75196   x3 < -0.0181488   x3 < -0.0344828   x1 < 2.10169   x1 < 2.31174   x1 < 2.73093   x3 < 0.206012   x1 < 4.37931   x1 < 4.38776   x1 < 6.564   x1 < 5.24038   x3 < 0.295826   x2 < 42.0573   x3 < 0.295826   x3 < -0.0871143   x2 < 42.7058   x2 < 44.1905   x3 < 0.304598   

x1 < 2.82497   x2 < 12.5532   x1 < 4.67816   x1 < 6.13793   x2 < 30.3736   x2 < 39.661   x3 < 0.304598   x3 < 0.377193   x1 < 3.67374   x2 < 30.6207   x2 < 28.5587   x1 < 5.37027   x1 < 4.7575   

x2 < 20.7168   x1 < 2.61647   x2 < 26.4966   x2 < 30.0906   x3 < 0.0344828   

  x2 >= 12.3129

  x3 >= -0.513158   x2 >= 22.6059

  x2 >= 10.8621   x3 >= 0.560345   x3 >= -0.513158   x3 >= -0.643678

  x3 >= -0.816697  x3 >= -1.93103  x3 >= -0.261343  x2 >= 10.8621   x2 >= 17.6149   x3 >= 0.712644   x2 >= 33.5273   x3 >= 0.795977

  x1 >= 2.10345  x1 >= 3.51724  x2 >= 11.9037  x3 >= -0.413793  x3 >= 0.413793  x3 >= 1.10345  x3 >= 0.689655  x2 >= 14.6695   x2 >= 19.4828   x3 >= -0.295826   x2 >= 16.5733   x2 >= 26.954   x2 >= 43.046   x3 >= -0.295826   x2 >= 34.569

  x1 >= 2.41379  x3 >= -0.689655  x3 >= 0.304598  x3 >= 0.643678  x1 >= 3  x1 >= 2.64224  x3 >= -1.93103  x2 >= 15.9028  x3 >= -0.712644  x3 >= -0.747731  x2 >= 16.5733   x3 >= 0.494898   x2 >= 14.6695  x3 >= 1.01724   x2 >= 25.0503  x2 >= 29.8276   x2 >= 37.3348   x2 >= 50.5172   x2 >= 34.569   x3 >= 0.618037   x2 >= 26.092   x2 >= 44.9497

  x3 >= -1.01724  x3 >= -1.37931  x3 >= -0.134264  x2 >= 10.8621  x3 >= 0.973684  x3 >= 1.24138  x3 >= 0.933908  x1 >= 3.70259  x3 >= -0.689655  x3 >= -0.712644  x3 >= -1.77874  x3 >= -1.8114  x3 >= -0.413793  x3 >= -0.413793  x3 >= -0.0871143   x2 >= 13.8075  x3 >= 0.827586  x3 >= 1.01724  x2 >= 19.4828  x2 >= 19.4828  x3 >= -0.864943  x3 >= -0.864943  x3 >= -0.965517  x3 >= -0.948276  x3 >= -0.864943  x3 >= -0.948276  x3 >= -0.92196  x3 >= -0.973684  x3 >= -0.513158  x3 >= -0.451906   x1 >= 3.0557   x2 >= 32.6652  x3 >= 1.24138  x3 >= 1.09619   x3 >= 1.24138   x3 >= 1.09619

  x3 >= -1.65517  x1 >= 4.27586  x1 >= 3.54847  x3 >= 0.164966  x3 >= 0.701754  x1 >= 6.45833  x3 >= 1.23851  x3 >= -0.727011  x3 >= -1.47731  x3 >= -1.6954  x3 >= -1.93103  x3 >= -1.62644  x2 >= 20.7639  x2 >= 20.7639  x2 >= 19.4828  x2 >= 18.477  x1 >= 3.17157   x2 >= 16.8381   x3 >= 0.573503  x1 >= 3.01724  x1 >= 4.67816  x2 >= 18.477  x3 >= 0.92196  x3 >= 1.24138  x3 >= 1.47414  x3 >= -1.77874  x3 >= -1.77874  x3 >= -1.77874  x3 >= -0.712644  x2 >= 32.318  x3 >= -0.712644  x2 >= 35.431  x3 >= -0.712644  x2 >= 40.1724  x2 >= 40.1724  x2 >= 46.8534  x2 >= 46.8534  x2 >= 56.1925  x3 >= -0.747731  x2 >= 26.092  x2 >= 26.092  x2 >= 41.8966  x1 >= 3.375   x2 >= 33.5768   x2 >= 33.5991   x1 >= 3.03448  x1 >= 3.18391  x3 >= 1.10345  x2 >= 24.1882  x3 >= 0.948276  x2 >= 29.8276  x3 >= 1.10057  x2 >= 38.3764  x2 >= 51.523  x2 >= 51.523

  x1 >= 2.72414  x1 >= 5.41379  x1 >= 6.65306  x3 >= 0.0344828  x3 >= 0.241379  x3 >= 1.7931  x1 >= 4.90517  x3 >= -1.62644  x1 >= 3.03448  x3 >= -1.8477  x1 >= 2.10345  x3 >= -0.948276  x3 >= -1.93103  x3 >= -0.948276  x3 >= -0.92196  x2 >= 15.0934  x3 >= -0.164966  x3 >= 0.304598  x1 >= 3.436  x2 >= 15.2083  x2 >= 18.477  x2 >= 13.8075  x1 >= 2.43534  x2 >= 15.364  x2 >= 21.2428  x2 >= 18.477  x2 >= 17.6149  x2 >= 21.2428  x2 >= 21.2428  x3 >= -1.01724  x3 >= -1.93103  x3 >= -1.01724  x2 >= 27.9957  x3 >= -0.864943  x3 >= -1.93103  x3 >= -1.93103  x2 >= 32.6652  x3 >= -1.08333  x3 >= -1.01724  x3 >= -1.93103  x3 >= -1.93103  x3 >= -0.864943  x3 >= -0.795977  x2 >= 44.9497  x3 >= -1.24138  x3 >= -0.795977  x3 >= -0.795977  x2 >= 52.3851  x3 >= -1.10057  x2 >= 53.4267  x3 >= -0.413793  x3 >= -0.513158  x2 >= 48.41  x2 >= 36.7241  x2 >= 45.8118  x3 >= 0.38294   x3 >= 0.451906   x3 >= -0.0344828   x1 >= 4.31711  x2 >= 26.092  x1 >= 2.4569  x2 >= 45.3448  x3 >= 1.58621  x1 >= 4.71983  x1 >= 4.96983  x2 >= 29.8276  x3 >= 1.3908  x3 >= 1.40835  x2 >= 38.4722  x2 >= 38.3764  x3 >= 1.32184  x2 >= 42.0043  x1 >= 3.13793  x1 >= 3.80603  x3 >= 1.3908  x3 >= 1.62644

  x1 >= 3.79167  x3 >= -0.186782  x1 >= 4.875  x1 >= 4.63265  x1 >= 2.07692   x2 >= 13.8075  x3 >= -0.990926  x3 >= -1.5431  x3 >= -1.3908  x3 >= -1.51724  x3 >= -1.47414  x3 >= -0.206012  x1 >= 5.38362  x1 >= 3.44656  x1 >= 4.61601  x3 >= 0.413793  x3 >= 0.33908  x3 >= 0.304598  x1 >= 5.375  x3 >= 0.965517  x2 >= 15.9028  x3 >= 1.24138  x3 >= 1.10345  x1 >= 3.86207  x3 >= 1.10057  x3 >= 1.3908  x1 >= 4.26293  x1 >= 3.01724  x3 >= -1.62644  x2 >= 26.092  x1 >= 4.06897  x3 >= -1.6954  x2 >= 28.8578  x3 >= -1.10057  x2 >= 32.6652  x3 >= -0.795977  x3 >= -1.77874  x3 >= -1.93103  x3 >= -1.10057  x3 >= -1.10057  x3 >= -1.10057  x3 >= -1.10057  x2 >= 48.41  x1 >= 2.41379  x3 >= -1.24138  x3 >= -1.16954  x2 >= 59.1379  x1 >= 3.12069  x2 >= 29.8276  x1 >= 3.66667  x2 >= 37.3348  x3 >= -0.560345  x1 >= 2.78879  x1 >= 2.3319  x1 >= 5.41667  x3 >= -0.116115  x1 >= 2.44829  x3 >= -0.134264  x1 >= 2.43767  x1 >= 4.92461  x3 >= 0.451906  x3 >= 0.38294  x3 >= 0.451906  x3 >= 0.712644  x3 >= 0.701754  x2 >= 34.3894  x3 >= 0.747731  x3 >= 0.701754  x1 >= 2.375  x3 >= 1.51724  x2 >= 26.954  x1 >= 2.91379  x2 >= 27.9957  x3 >= 1.24138  x2 >= 31.5278  x3 >= 0.973684  x3 >= 0.948276  x1 >= 3.78448  x2 >= 36.4727  x3 >= 1.5431  x1 >= 3.80603  x3 >= 0.973684  x1 >= 2.56034  x3 >= 0.973684  x1 >= 3.24569  x2 >= 46.8534  x3 >= 1.24138  x2 >= 55.3305

  x3 >= -1.77874  x1 >= 5.55932  x1 >= 2.61538   x3 >= -1.51724  x1 >= 3.68103  x1 >= 3.01724  x1 >= 4.94828  x1 >= 2.27499  x2 >= 14.6695  x3 >= -0.186782  x2 >= 16.0273  x1 >= 3.5991  x2 >= 15.0934  x2 >= 18.5476  x1 >= 2.99093  x1 >= 5.6164  x3 >= 0.413793  x1 >= 4.17241  x3 >= 1.23412  x1 >= 3.75862  x3 >= 1.10057  x1 >= 6.73276  x1 >= 6.44828  x2 >= 24.1882  x1 >= 6.24138  x3 >= -1.10057  x3 >= -1.62644  x3 >= -1.72414  x3 >= -1.08333  x2 >= 34.569  x2 >= 36.4727  x2 >= 38.4722  x2 >= 42.0043  x3 >= -1.8477  x3 >= -1.8477  x3 >= -1.8477  x3 >= -1.8477  x3 >= -1.93103  x3 >= -1.32184  x3 >= -0.795977  x1 >= 3.86207  x2 >= 30.7615  x1 >= 4.7931  x3 >= -0.513158  x1 >= 2.43416  x1 >= 2.3319  x1 >= 2.68927  x1 >= 2.38706  x2 >= 42.7058  x3 >= 0.557692  x2 >= 43.1921  x3 >= -0.134264  x3 >= -0.186782  x1 >= 4.74788  x1 >= 5.07328  x3 >= -0.0344828  x1 >= 3.67374  x3 >= -0.0344828  x1 >= 5.70551  x2 >= 29.8276  x1 >= 7.21121  x1 >= 5.73707  x3 >= 1.32184  x1 >= 3.12069  x1 >= 6.60776  x1 >= 3.65517  x1 >= 3.99569  x2 >= 33.5273  x1 >= 3.30603  x2 >= 33.5273  x1 >= 5.09483  x1 >= 6.96552  x3 >= 1.47414  x3 >= 1.5431  x1 >= 3.82759  x1 >= 2.78879  x2 >= 48.7572  x3 >= 1.24138  x2 >= 48.41  x1 >= 4.37931  x3 >= 1.62644  x2 >= 59.1379  x1 >= 2.625  x2 >= 52.3851  x2 >= 57.2342

  x1 >= 4.875  x2 >= 10.9339   x3 >= -0.795977  x3 >= -1.16954  x2 >= 18.5688  x1 >= 4.23729  x1 >= 3.67797  x2 >= 14.6697  x2 >= 14.4654  x1 >= 5.18578  x1 >= 7.7741  x3 >= 0.269231  x1 >= 2.71888  x1 >= 2.35593  x3 >= 1.11022e-16  x3 >= -0.0344828  x1 >= 5.38362  x3 >= 1.10345   x2 >= 22.2845  x1 >= 4.68966  x3 >= -1.65517  x2 >= 31.5278  x3 >= -1.10345  x1 >= 3.22414  x3 >= -1.24138  x3 >= -1.32184  x3 >= -1.31034  x3 >= -1.40835  x1 >= 2.72414  x2 >= 31.6236  x2 >= 53.7739  x2 >= 55.3305  x3 >= -0.241379  x3 >= -0.185897  x2 >= 26.954  x2 >= 27.9955  x2 >= 37.3524  x3 >= -0.241379  x1 >= 2.41029  x1 >= 2.47567  x2 >= 39.4857  x1 >= 3.53194  x3 >= -0.135965  x2 >= 25.4117  x2 >= 25.3454  x1 >= 3.45694  x3 >= -0.185897  x2 >= 47.8431  x3 >= -0.206012  x1 >= 5.98305  x2 >= 44.375  x2 >= 35.431   x2 >= 26.954  x1 >= 5.07328  x1 >= 4.46983  x1 >= 4.17241  x1 >= 4.28448  x2 >= 40.1724  x1 >= 3.53879  x2 >= 48.7572  x2 >= 56.1925

  x3 >= -0.948276   x1 >= 5.4898  x3 >= 0.116115  x1 >= 2.75196  x2 >= 13.6472  x1 >= 6.61485  x2 >= 19.6766  x2 >= 19.7631  x1 >= 6.86207   x3 >= -0.185897  x3 >= 0.0871143  x2 >= 28.8578  x3 >= -0.240495  x2 >= 37.0408  x3 >= 0.310345  x1 >= 2.93131  x2 >= 52.7382  x2 >= 49.6193  x1 >= 2.16467  x3 >= -0.185897  x3 >= -0.206012  x1 >= 3.74459  x3 >= 0.324561  x1 >= 6.20663  x1 >= 6.75431  x1 >= 3.59682  x1 >= 3.68473  x1 >= 3.79544  x1 >= 3.84144  x2 >= 48.7931  x1 >= 5.34463  x3 >= 0.304598  x1 >= 7.49576  x1 >= 4.26437   x1 >= 5.73707  x2 >= 59.1379

  x3 >= 0.184197  x1 >= 6.51315  x1 >= 3.5903  x2 >= 18.2483  x1 >= 7.49576   x3 >= 0.310345  x2 >= 31.9144  x1 >= 2.11207  x1 >= 2.75196  x3 >= -0.0181488  x3 >= -0.0344828  x1 >= 2.10169  x1 >= 2.31174  x1 >= 2.73093  x3 >= 0.206012  x1 >= 4.37931  x1 >= 4.38776  x1 >= 6.564  x1 >= 5.24038  x3 >= 0.295826  x2 >= 42.0573  x3 >= 0.295826  x3 >= -0.0871143  x2 >= 42.7058  x2 >= 44.1905  x3 >= 0.304598

  x1 >= 2.82497  x2 >= 12.5532  x1 >= 4.67816  x1 >= 6.13793   x2 >= 30.3736  x2 >= 39.661  x3 >= 0.304598  x3 >= 0.377193  x1 >= 3.67374  x2 >= 30.6207  x2 >= 28.5587   x1 >= 5.37027  x1 >= 4.7575

  x2 >= 20.7168   x1 >= 2.61647   x2 >= 26.4966  x2 >= 30.0906  x3 >= 0.0344828

Figure 11: Graphical illustration of a regression tree for the given data set.

If this process is not stopped there is a possibility is that the tree will end up having
the same amount of leaves as the size of the training set, that is one data point in each
leaf. In order for this not to happen we stop the growing process if a binary split would
result in one of the child-leafs would have less than q-points (for some fixed parameter
q). Furthermore we also stop the growing process if the decrease in S would be less than
some pre-defined δ > 0. Finally we stop the growing process if all elements of a leaf
have the same input parameters xn. This would happen in the case that the data we
are trying to fit does not represent a mathematical function (in the strict sense that one
input yields only one output).

Another technique used in order to combat the effects of overfitting is that a regression
tree can be pruned, meaning that subtrees are removed and replaced by leafs instead.
Therefore, some algorithms used grow a tree so that each node contains very few nodes,
and then starts pruning to reduce the complexity of the final regression tree.

In Matlab a regression tree can be built using the fitrtree -command.

4.3 Random Forest

An individual regression tree tends to overfit the data. A regression forest grows many
trees and use the combined result of these trees to predict the data. This can be achieved
using the TreeBagger-command in Matlab.

Bagging stands for bootstrap aggregation which means that each tree in the the forest
is trained on a bootstrap replica of the given data-set. This means that the data is given
resampled by drawing Nout of N observations with replacement (inherently not using all
available data for each of the regression trees). In order to assure that the trees in the
forest are not to similar some predictors for some of the nodes are chosen in a random
fashion.
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Figure 12: Graphical illustration of the neural network of 3 hidden layers with 25 neurons
per layer which is used for Task 1.

5 Task 1: Fitting System Model

In order to address this task, we experimentate with different algorithms that have been
presented in the previous section in order to fit the given input-ouput data. The procedure
and the parameters chosen is explicitly described. Comparison between methods as well
as experimental results are provided in detail.

5.1 Experimental Results

The first method to be investigated was a feed-forward neural network with sigmoid base
functions as in (3). Neural Network Toolbox of MATLAB is used which can implement
three algorithms:

• Levenberg-Marquardt;

• Bayesian Regularization;

• Scaled Conjugated.

By trying different experiments, the first algorithm was performing better to our given
data. Initially, the MIMO implementation was chosen, i.e., an architecture with 3 inputs
and 4 outputs. The neural network architecture is 3 hidden layers with 25 neurons each,
as is depicted in Figure 19. The outcome of the training is a function f̂(·). Then, we
compare the given output y with the output of ŷ = f̂(u), where u is the given input data.
Due to the fact that some values of ŷ are close to zero, instead of computing the relative
error, we used the robust relative error, as defined in (1).

Method
y1 y2

Mean Var Mean Var
1NN 2.4·10−3 1.6·10−2 1.7·10−3 3.5·10−3

Table 1: Mean and variance of robust relative errors of the samples for output y1 and y2.

Method
y3 y4

Mean Var Mean Var
1NN 7.1·10−4 2.8·10−3 3.4·10−5 3.7·10−5

Table 2: Mean and variance of robust relative errors of the samples for output y3 and y4.

Table 1 and 2 shows the mean and the variance of the robust relative errors of every
sample. The total training procedure takes 7 hours in a computer with 16GB of RAM
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Figure 13: Graphical illustration of the convergence rate of training and validadtion data.

and i7 CPU with frequency 3.6GHz. The convergence rate of training and validation
data is depicted in Figure 13. In the next subsection, we compare these results with
other statistical methods/algorithms.

5.2 Experiments with other Methods/Algorithms

After having experimentated with a MIMO neural network of 3 hidden layers and 25
neurons per layer, we compare these results with the following algorithms/methods:

1. 4 Multiple Input-Multiple Output (MISO) models;

2. 1 Regression Tree (RT);

3. Random Forest Algorithm (RFA) with multiple trees.

Methods (1) were implemented in Neural Network Toolbox of Matlab; Methods (2) and
(3) was implemented in Regression Learner Toolbox of Matlab. Tables 3 and 4 show the
mean and the variance of the robust relative errors, as defined in (1), of all samples with
reference to outputs y1, y2 and y3, y4, respectively. The outcome of all aforementioned
methods is represented in different lines. It can be observed that y1 is the most difficult
to be predicted and y4 could be predicted with high accuracy. Figure 14 shows the
prediction of 2 of the methods (1 MIMO neural network and Random Forest Algorithm)
for a random choice of samples.
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Method
y1 y2

Mean Var Mean Var
1NN 2.4·10−3 1.6·10−2 1.7·10−3 3.5·10−3

4NN 7.4·10−3 3.4·10−2 4.5·10−3 5.4·10−3

RFA 5.1·10−2 8.8·10−2 -1.0·10−2 8.6·10−2

RT 4.4·10−3 5.2·10−2 3.7·10−3 3.8·10−2

Table 3: The mean and variance of robust relative errors of the samples for different
methods with reference to output y1 and y2.

Method
y3 y4

Mean Var Mean Var
1NN 7.1·10−4 2.8·10−3 3.4·10−5 3.7·10−5

4NN 3.8 ·10−3 6.5 ·10−3 7.3 ·10−4 7.2 ·10−4

RFA 2.6·10−2 7.7·10−2 2.4·10−2 7.2·10−3

RT 2.4·10−3 4.5·10−2 4.3·10−4 1.6·10−3

Table 4: The mean and variance of robust relative errors of the samples for different
methods with reference to output y3 and y4.

0 2 4 6 8 10 12 14 16 18 20

Sample Number
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-2.5
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-1.5
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1

y 1

True
NN
RFA

Figure 14: Graphical illustration of estimation of output y1 by 2 of the experiments: one
MIMO neural network and Random Forest Algorithm.
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5.3 Comparison of Methods

After performing many experiments with the aforementioned methods we conclude that
each method has advantages and disadvantages. There is a trade-off between desired
specifications that a user needs to impose. We mention hereafter the conclusion state-
ments we reached after experimentation:

• NN methods require tuning of large amount of parameters; RT method is tuning-
free; RFA requires tuning only regarding the number of trees.

• NN require big amount of computation in order to train the network properly; RT
and RFA methods are relatively fast.

• NN requires pre-scaling of the data, while RFA and RT function without any pre-
scaling.

• NN returns as output a function which can be processed fast with small storage
space RT and RFA return output data structures which might be slow at process
and require large amount of system memory.

• NN are MIMO compatible while RFA and RT are not.

• All methods are robust in noisy changes of initial given data.

The aforementioned statements are summarized in Table 5.

Criteria NN RFA RT
Tuning hyper-parameters a lot low low
Speed of training 7 h 7 min 1s
Pre-processing (scaling) needed no no
Speed of function evaluation fast slow slow
MIMO compatible yes no no
Robustness (input-output) yes yes yes
Model Information Storage small big big

Table 5: Comparison of different methods/algorithms with respect to desired designer’s
specifications.

It should be noted here that the aforementioned conclusions are drawn by experimen-
tal testing. Thus, general conclusions with theoretical guarantees could not be provided.
An interested reader is suggested to read [1, 2] for more technical information regarding
the comparison of methods/algorithms.
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Figure 15: Figure with Example 1

6 Task 2: Fitting Inverse Model

In what follows, we consider the problem of constructing an inverse model for the system.
Recall that in this problem, we are given the data-set {(un,yn)}n=1,...,N ⊂ R3×4, and we
would like to find a regression model freg inv such that u ≈ freg inv(y) in some appropriate
sense. In this section, we propose and investigate several methods for constructing an
inverse model of the system. Prior to that, we explain difficulties we may encounter with
the inverse models. We also propose a possible approach that can be used in the case
that inverse models of desired quality cannot be obtained.

6.1 Difficulties with Inverse Model

On the first glance, one may assume that the problem of estimating an inverse model
does not differ from the problem of estimating the original mapping. We can simply use
the outputs of the system as an input to the machine learning algorithm, while the inputs
should be outputs of the algorithm that we want to approximate. However, this problem
may introduce additional difficulties, which we try to illustrate on the following example.

Example 1. In this example, we consider a problem of fitting inverse of quadratic func-
tion y = x2 on the interval [−10, 10]. Note that for this interval, two different inputs u1
and u2 = −u1 map into the same output: y1 = y2 = (u1)

2, that is, inverse function is
non-injective. Assume that a machine learning algorithm we use tries to minimize mean
square error of the sample. In that case, if we give this algorithm a task to calculate a best
estimate of the inverse function, the result will be zero due to symmetry, as illustrated
in Figure 15.

6.2 Investigating Non-Injectivity

Motivated by the previous example, we tried to discover if our system is non-injective.
However, while a function of one variable can easily be plotted and non-injectivity can
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Figure 16: Figure visualizing ”non-injectivity” of our mapping.

u1 u2 u3
Mean Var Mean Var Mean Var

3NN 4.2·10−2 5.8·10−2 9.2·10−4 2.0·10−4 -7.5·10−3 5.7·10−2

RFE 1.8·10−2 7.8·10−3 2.3·10−4 1.5·10−4 -8.2·10−3 2.4·10−3

be investigated by observing the plot, investigating this property in higher dimensional
spaces is not straight forward.

In Figure 16 the input and output spaces are visualized. The output space is 4-
dimensional where the fourth dimension is represented by the color of the point.

We see that two regions of distinct inputs are mapping to the same small neighbor-
hood (tol = ±5%). The visualization suggests that our function is non-injective in the
sense that inputs which lie in different parts of the input space are mapped to the same
neighborhood of the output space.

However, we are given data drawn from an analytical model. The question of whether
this model is non-injective can not be fully answered only having a finite data set. In
the case two of the data points have exactly the same output but with different inputs
non-injectivity can be concluded.

6.3 Experimental Results

To obtain inverse model of the system, we fitted 3 Multiple Input-Single Output (MISO)
models using neural networks and random forests. Table 6.3 show the mean and the
variance of the robust relative errors for inputs u1–u3, as defined in (1).As we can see,
the quality of input estimates is comparable to the quality of output estimates. In this
case, output u1 was the most difficult to estimate, and the output u2 was estimated with
the highest quality.
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6.4 Possible Approach for Non-Injectivity Case

In this particular case, we managed to obtain inverse models of relatively good quality.
The question is however what to do once this is not the case. Here, we propose a possible
approach that can be used if non-injective of a function represents an issue.

The idea is to use the original model of the system, and to formulate the problem of
finding an optimal control input as an optimization problem of the following form.

maximize
u

y1

subject to |yi − y∗i | ≤ εi, i ∈ {2, 3, 4},
uj ≤ uj ≤ ūj, j ∈ {1, 2, 3},
y = f(u).

The objective function represents the efficiency (output 1), which we want to maximize.
The first constraints imposes that other outputs should be sufficiently close to some
desired reference y∗i . The second constraints ensures that the inputs remain inside a
certain predefined bounds, while the third output ensures that the outputs and inputs
satify the physical model.

This problem is non-convex optimization problem in general, so we would be able
to recover the exact solution of the problem only in some special cases. Nevertheless,
nowadays there are solvers that work relatively well for these types of problems, for
example Gurobi.

20



7 Task 3: Robustness

In this section, we investigate how robust is the estimated function f̂(·) to small changes
of given data, i.e., in the presence of measurement noise. In order to test this, noise of
amplitude

d · randn(·),where d ∈
[

1

26
,
1

2

]
,

is added to the given data and we compare the output results on out of training data.
Figure 17 and 18 and 19 shows the outcome of the experiments.

We see that the single regression tree shows that the relative error in the out-of-
sample performance is downward trending with approximately linear order in relation to
the relative error imposed on the outputs the training data-set.

We do not observe any significant reduction of the corresponding error for the re-
gression forest algorithm, where all relative errors are of the same magnitude for all
disturbances.

These findings suggests that the imposed error for the random forest is immaterial
to the models predictive power, meaning that this type of model handles the input-noise
in a better fashion. The single-regression-tree-model will tend to overfit the data given
in the training session, hence the noise will tend to be encoded in to the model and the
out-of-sample performance will be deteriorate.

We see that the trend for the FFANN is that the error is relatively independent of
the noise added, which suggests that these types of models for this data set are robust.
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Figure 17: Graphical illustration of the relative difference in predicted values (out of
sample) of a single regression tree. Number of training points N ≈ 60000.
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Figure 18: Graphical illustration of the relative difference in predicted values (out of
sample) of a regression forest (TreeBagger in Matlab) with 10 trees, N ≈ 60000.
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Figure 19: Graphical illustration of the relative difference in predicted values (out of
sample) of a Neural Network [5, 5, 10], N ≈ 6000.
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8 Conclusions

8.1 Report Summary

In this work, we cosnidered the data driven model fitting for multiple input multiple
output thrust propulsion system of ABB company. In particular, the following tasks
were investigated.

The first task was to create a model that maps inputs of the system to the outputs.
For this purpose, we used neural networks and regression tree based methods. It was
shown that both of these machine learning based methods resulted in models that predict
behaviour of the output with relatively good accuracy. However, the quality of the
obtained estimates differed among outputs. It turned out that the estimate of the output
that was the most important one was of the poorest quality.

Secondly, we considered the problem of fitting a model that maps outputs of the
system to the inputs. We firstly illustrated that difficulty of this problem may lay in
non-injectivity property. We then disscussed how the non-injectivity property can be
investigated in the case of the function we consider. Although we suspected that the
mapping from outputs to inputs is non-injective, we managed to obtain the inverse models
of similar quality as for the case for models of input–output mapping, using neural network
and regression tree based methods. Finally, we proposed a solution in the case that non-
injectivity represent an issue.

Finally, robustness of the model was empirically investigated. We found that the
FFANN and Regression Forest was input-output robust with respect to noise in the
training data.

8.2 Future Work

The future work will go into two directions. Firstly, in this work we have considered a
static input-output model of the form y = f(u) with data that are outcome of analytical
model. Future work will be devoted towards the direction of dealing with dynamics of
the thrust propulsion system, i.e., the model will be of the form:

x(k + 1) = f(x(k), u(k)),

y(k) = h(x(k), u(k), w(k)),

where k ∈ N is the index of samples; x the internal vector state of the system; and
w stands for the output noise/disturbance. The main idea here is to is to express the
current output vector y(k) as a function of all the previous input and output data u(k−
1), u(k− 2), . . . and y(k− 1), y(k− 2), . . . , respectively. Ideas from System Identification
(SYSID) field could be employed.

Secondly, data used in this experiment was generated based on an analytical model.
Thus, it did not contain any noise, and generating rich enough data set did not represent
an issue. The future experiments will be based on the data collected from the real process.
In that case, we expect two issues to appear:

1. The size of the data set will be limited;

2. The data will contain measurement noise and other types of noise.
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